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Abstract— Modelling charge transport in a solid organic 

insulation has been actively developed this last decade, using 
homemade models or commercial ones for the case of fluid 
models, or macroscopic models based on the Maxwell-Wagner 
theory. Until now, no comparison has been performed to 
understand the advantages and drawbacks of each type of 
modelling. Moreover, the availability of 2D or 3D space charge 
measurements makes it now possible, in theory, to develop the 
available models in 2D or 3D. Going in this direction, two 
different fluid models, using either the finite volume method or 
the finite element method, and simulating charge transport in a 
model cable have been developed. A third model, macroscopic, 
based on the variation of the conductivity as a function of the 
electric field and the temperature has also been developed in 
parallel. We first compare the simulated results obtained using 
these models for the case of a polyethylene-insulated cable, i.e. a 
cylindrical geometry where the electric field and the temperature 
are not homogeneous along the insulation. The comparison shows 
the differences between the macroscopic model and the fluids 
ones, due to the fact that injection and bulk trapping of charges 
are not treated in the macroscopic model. A special attention is 
also paid to the comparison between the different fluid models, 
and to show the difficulty to handle the commercial software.  
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I.  INTRODUCTION  
Since the first works of Alison et al [1], Kaneko et al [2], 

and Fukuma et al [3] on charge transport modelling in solid 
organic insulators using a time and space dependent advection 
equation, a large number of studies has been published on this 
subject [4-6] mostly on polyethylene based materials. These 
models have been mostly developed in a 1D geometry, 
function of the thickness of the sample. Few attempts have 
been made to reproduce the space charge behaviour in a cable 
geometry for transport of electricity under direct current 
(HVDC) [7]. This has been done in 1D axisymmetric 
geometry. No attempts have been done to model the real 2D 
system, where charge transport is not only in one direction. 
One of the reason is the difficulty of development of such 
model, that are time consuming, complex to implement when 
working with 'home made' models, and requiring for more 
parameters that are not known. On the numeric side, 
commercial softwares, using finite element method as an 
example, can be used for developing such complex models, 

and seem easier to handle at first sight. Looking carefully at 
these models, the task is however not straightforward, and even 
risky if not carefully implemented. 

Moreover, other types of model are available in the 
literature, and are developed in 2D. Macroscopic models, based 
on the variation of the conductivity with electric field and 
temperature, cannot predict the space charge generation and 
transport, but can simulate the electric field distribution in 
complex situations such as cylindrical multilayers systems, and 
predict the charge density due to the conductivity gradient. 
These simulation results can be compared to simulated results 
arising from the fluid models. In the present paper, after 
describing each model, we present the electric field distribution 
in a polyethylene-insulated cable, arising from a macroscopic 
model and from fluid models. We also compare a 'home made' 
1D axisymmetric model solved using Fortran, to a 1D 
axisymmetric model using commercial software.  

II. MATERIALS DESCRIPTION 

A. Polyethylene cable system 
A MV cable, made from cross-linked polyethylene (XLPE) of 
thickness 4.5 mm is simulated using the different models. The 
inner insulation radius is 5 mm, the outer radius is 9.5mm. A 
temperature gradient can be applied on the cable. When the 
temperature gradient is dT=16°C, the inner electrode is at 
T=57°C and the outer at 41°C. The applied voltage at the inner 
electrode is -80 kV. The outer electrode is grounded. Fig. 1 
represents the geometric electric field distribution and the 
temperature distribution inside the cable for the example of a 
cable polarized at -80 kV and a dT=16°C.  
 

 
Fig. 1. Temperature distribution and electric field distribution in a MV cable 
of 4.5mm polarized at -80 kV, with a temperature gradient of ΔT=16°C. 



III. MODELS DESCRIPTION 

A. Charge transport models 
The bipolar model has already been presented elsewhere [7] 
and features the bipolar injection of electronic carriers at the 
electrodes, conduction between shallow traps via a field and 
temperature dependent mobility (hopping), trapping into deep 
traps, detrapping and recombination, function of the carriers 
mobility (Langevin) (Fig. 2). For sake of simplification, 
internal generation (dissociation) is not taken into account in 
the simulations. The equations to solve are of the form, 
neglecting diffusion: 
ja (r, t) = na,µ (r, t)µa (r, t)E(r, t)   Transport  (1) 

where a refers to the type of charge, i.e. electron or hole and r 
is the cable radius. j is the conduction current density for each 
kind of carriers, naµ is the mobile density of charge. µ refers to 
the mobility, E is the electric field and t the time. 
 
 
dE(r, t)
dr

=
ρ(r, t)
ε0εr

   Poisson equation (2) 

∂na (r, t)
∂t

+
∂ja (r, t)
∂r

= sa (r, t)   convection-diffusion (3) 

ρ is the net charge density, 0ε the vacuum permittivity, and 

rε  the dielectric permittivity. sa are the source terms, which 
encompass the changes in local density by processes other 
than transport (trapping, detrapping, etc). Charge generation is 
only by injection at each electrode, and follows the modified 
Schottky law: 
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where A is the Richardson constant, ri0 corresponds to the 
interface coordinate, and winj is the injection barrier height. kB 
is the Boltzmann constant, T the temperature, and E(r,t) the 
electric field at the electrode at position r. The extraction of 
charges is possible at each electrode, and follows an ohmic 
law.  
The temperature distribution within the cable is calculated 
using the following equation: 
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where T(ri) and T(ro) are the temperature at the inner and the 
outer electrode, respectively. 
For all the simulations, the parameters taken into account are 
the one of [7] for LDPE based materials. No attempt has been 
made to optimize the set of parameters to fit to XLPE results. 
The only requirement was to have a mean hopping mobility 
(electrons-holes) of the same order of magnitude as the one 
fitted by the macroscopic model, for a given electric field, 
which was the case with the parameters used.  
 
1. FVM 'homemade' model 
The description of the 'homemade' model has already been 
published in [7]. It is a Finite Volume explicit code, using a 
third order accuracy in space and fourth order in time. The 
grid to discretize the insulating material is divided into 301 
elements, non-uniform, having a smaller size when 
approaching the electrodes. A flux limiter (ULTIMATE) is 
used to correct the charge flux within the dielectric. The time 
steps follow the CFL condition.  
 
2. FEM 1D axisymmetric model 
The model, developed with COMSOL Multiphysics® uses the 
Transport of Diluted Species (TDS) module to solve the 
convection-diffusion equation for each kind of carrier (4). The 
advantage of this module is that it already includes solutions 
to stabilize the solution and to prevent oscillations (i.e. 
negative densities). The mathematic module is used to couple 
these equations to the Poisson equation. Backward Difference 
F solver is used for the time integration (maximum order 2, 
and minimum order 1). The discretization grid is divided into 
9000 elements of 0.5 µm each.  
 

B. Macroscopic model 
The input data used in the macroscopic approach are issued 
from conductivity measurements realized in a previous work 
[8]. For each of the materials, the conductivity was estimated 
after 1 h charging time as a function of temperature (20 to 90 
°C) and field (from 2 up to 30 kV/mm), on 500 µm-thick 
samples metallized with gold electrodes. These experimental 
data were fitted with a conductivity law of the type: 
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Fig. 2. Schematic representation of the two-level transport model. 
Conduction is by free charges in the transport levels, associated with a 
hopping mobility between shallow traps. Deep trapping is taken into 
account through the existence of a single trapping level for each kind of 
carriers, electrons and holes. Si, Bi and Di are recombination (Langevin), 
trapping and de-trapping coefficients respectively. ni is the carrier density 
in transport and trapping levels. Indexes e and h refer to electrons and 
holes; µ ant t refer to mobile and trapped charges. 
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where E is the field, T  is the temperature, kB  is the 
Boltzmann’s constant and the other symbols are coefficients 
with values taken from [8]. In this model, two different 
modules of COMSOL Multiphysics® (Heat transfer and 
electric currents) have been coupled. Heat transfer consists in 
the exchange of thermal energy between physical systems. 
The heat transfer rate is dependent on the systems 
temperatures and on the properties of the involved medium 
through which the heat is transferred. The electric currents 
module allows solving the current equation considering the 
electrical potential as a reference under DC or AC stress. 

IV. RESULTS 

A. Comparison between FVM and FEM results 
Simulations have been performed for a MV cable polarized at 
-80 kV and a dT=16°C, for 48h, using the FVM model and the 
FEM model, with the same parameters. Figure 3 presents the 
comparison of the simulated electric fields as a function of the 
radius of the cable at different times. At times below 5 hours, 
both models give globally the same electric field distributions. 
Some differences already appear, on the location of the 
maximum of the electric field, and the maximal value. This 
difference is less than 1% in position, and around 2% in value 
for 5hours. However, when increasing the simulation time, the 
difference between FEM and FVM becomes substantial, 
leading to a maximum of electric field located in the middle of 
the dielectric for the case of FEM, whereas it is next to the 
outer electrode for the FVM method. Net charge density as a 
function of radius is also presented (Figure 4) for the same 
times of simulation. It seems that the FVM model smoothes 
the net charge density compared to the FEM model, which is 
surprising, as the scheme used is not known for having a high 
numerical diffusion. On the contrary, the FEM results show 
oscillations, which are not due to physical processes (packets).  
Simulations have been performed for plane/parallel geometry 
for each model, leading to similar results for each model. This 
validates the FEM model development, the FVM model 
having already been validated in different publications. The 
specific case of cable geometry, with a non-uniform electric 
field and temperature, increases the differences, notably at the 
inner interface, where charge generation is enhanced by the 
high temperature and field. A small difference in this 
boundary condition has a huge impact on the simulated data. 
Other causes could be found (discretization errors, diffusion, 
meshing...), without knowing at the moment which one has the 
most significant impact on the simulation results.  
B. Comparison between fluid and macroscopic models 
Electric field distribution vs. radius has been simulated for a 
XLPE material using the macroscopic model (Figure 5) [8]. 
These results are to be compared to those of Figure 3, issued 
from fluid models. Different processes are at play in the 
bipolar fluid models, with variable characteristic times for 
each process. At short times, injection is the most important 
process, while trapping/detrapping becomes more important at  

 
Fig. 3. Electric field distribution vs. radius for different times of simulation, 
for the FVM model (lines), and for the FEM model (dotted lines) for a MV 
cable of 4.5mm thick insulation polarized at -80 kV, and a temperature 
gradient of ΔT=16°C. 
 

 

 
Fig. 4. Net charge density vs. radius for different times of simulation, for the 
FVM model (lines), and for the FEM model (dotted lines) for a MV cable of 
4.5mm thick insulation polarized at -80 kV, and a temperature gradient of 
ΔT=16°C. 
 
longer times. On the other side, only a mean conductivity 
drives the charge dynamics in the macroscopic model. We 
then choose to compare the electric field distributions at 
stationary states for each model, not regarding the transient 
results. Both models (macroscopic and fluid) are able to 
predict the change in the location of the maximal field that 
changes from the inner electrode (Laplacien Field) to the outer 
electrode with time. The maximal and minimal values are 
however overestimated in the fluid models compared to the 
macroscopic model, the maximal electric field reaching 22.5 
kV/mm in the case of the fluid model (FVM), whereas the 
maximal value in the case of the macroscopic model is less 
than 20 kV/mm. Moreover, both fluid models (FVM and 
FEM) predict an electric field being almost 0 at the inner 
electrode, which is not the case in the macroscopic model, 
where the electric field minimum is of the order of 17 kV/mm. 
Fluid models, taking into account charge injection and 
accumulation (homocharges in this case) allow having such a 
variation of the electric field whereas the macroscopic model 
results will remain in the limits fixed by the conductivity 
variation linked to the thermal and/or electrical gradient. 
However, the parameterization for the fluid models, the 
physics behind, is not straightforward to implement. Besides, 
it requires a long computation time, compared to macroscopic 
models.  



 
Fig. 5. Electric field distribution vs. radius for different times of simulation, 
for the macroscopic model and for a MV cable of 4.5mm thick polarized at -
80 kV, and a temperature gradient of ΔT=16°C. 

 

C. Comparison between experimental and simulated electric 
field distribution 

Space charge measurements have also been performed for this 
specific protocol, on MV cables polarized at -80 kV for a 
temperature gradient of dT=16°C [9]. The Poisson equation 
(2) allows obtaining the measured field distribution as a 
function of cable radius for different times (Figure 6). The 
maximal value of the electric field, initially located at the 
inner electrode, is observed at the outer electrode after 2h of 
applied voltage. The maximal value is around 22 kV/mm after 
3 hours, while another peak appears at the inner electrode, due 
to positive heterocharges accumulating there. When 
comparing the simulated results to the experimental ones, the 
location of the maximal electric field is predicted. The value 
of this electric field is however underestimated in the case of 
the macroscopic model, while the fluid models prediction is 
consistent. However, the charge dynamics is excessively low 
in the fluid models (due to a non optimization of the 
parameters for XLPE among other possible explanations). 
Macroscopic and fluid models fail to reproduce the increase in 
the electric field at the inner electrode with time. The 
macroscopic model will never be able to predict it, as only 
based on conductivity variation. The fluid models could 
predict this peak if either barrier to extraction or ionic species 
were considered in as physical processes.  
 

V. CONCLUSION 
Two fluid models, a Finite Volume code and a Finite Element 
code, have been developed and compared as regards a real 
situation, i.e. a MV cable geometry with a thermal gradient. 
Comparison between FEM and FVM model shows 
discrepancy in the electric field distribution that increases with 
the simulation time. Even for steady state, the simulation 
results are not totally consistent. This shows at first the need to 
take care of the numerical resolution of the model. On this 
area, more work needs to be done to improve the FEM model. 
Comparing fluid models to macroscopic ones by means of 
electric field distribution shows the strengths and drawbacks 

of each approach, i.e. easy implementation of the conductivity 
and short time simulations in the case of macroscopic models, 
while limited when charge accumulation comes at play. On 
the other side, the complex physics/complex 
parameterization/long lasting simulation drawbacks are 
counterbalanced by an efficient description of the charge 
behaviour.  
 

 
Fig. 6. Measured (PEA) electric field distribution vs. radius for different 
times, for a MV cable of 4.5mm polarized at -80 kV, and a temperature 
gradient of ΔT=16°C. 
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