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Scientific Significance Statement

Thermal performance curves are a crucial tool for predicting species responses to climate change. Recent studies have stressed
the importance of species’ thermal optima and critical thermal limits for predicting vulnerability to climate change. However,
studies often fail to consider the potential for multiple stressors associated with global climate change and human activities
such as decreases in nutrient availability or eutrophication to modulate thermal tolerance curves. Here, we studied how the
thermal optimum of growth rate in five freshwater phytoplankton species varied across a spectrum of limiting to nonlimiting
phosphorus concentration. We found that the thermal optimum increased with phosphorus availability in a saturating man-
ner. These results imply that declines in nutrient availability could increase the vulnerability of phytoplankton to thermal
stress from global warming.

Abstract
Thermal tolerance can depend critically on environmental context (e.g., resource availability and biotic interac-
tions), yet it is often measured only under idealized conditions. Here, we investigated how the concentration of
phosphate (a limiting resource for algal growth in freshwater ecosystems) influences the thermal optimum for
growth rate in five species of freshwater phytoplankton. We found that low-phosphate concentrations led to a
sharp decline in species’ thermal optima, by up to 15�C relative to replete conditions, with the magnitude of
the decline varying between species. Rapid global environmental change is expected to lead to rising tempera-
tures, while nutrient concentrations in freshwaters are forecast to increase in waterbodies subject to eutrophica-
tion and decline in large lentic systems that become warmer and more stratified. Our findings suggest that
phytoplankton that experience warming and nutrient limitation concurrently will be more vulnerable to envi-
ronmental change.

The threat of climate change on biodiversity has renewed
interest in the investigation of thermal physiology (Deutsch
et al. 2008; Dillon et al. 2010; Thomas et al. 2012). In ecto-
therms, performance (e.g., locomotor speed, metabolism, or
population growth rate) follows a left-skewed unimodal ther-
mal performance curve (Fig. 1a; Deutsch et al. 2008). Small
increases in temperature past the optimum translate into
strong declines in performance, which in the context of
global warming can lead to increased extinction risks (Dillon
et al. 2010). However, studies often focus on individual envi-
ronmental variables, without taking into account interactions
with other drivers of global change (Deutsch et al. 2008; Dil-
lon et al. 2010; Thomas et al. 2012), and consequently, very
little is known about how the shape of thermal performance
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curves is modulated by other stressors (but see Verberk
et al. 2016; Thomas et al. 2017).

In freshwater ecosystems, nutrient availability is a key driver
of ecosystem functioning, influencing population growth rates
(Monod 1949), interspecific competition (Tilman 1981), and
community assembly (Bulgakov and Levich 1999). In addition
to modifying water temperatures, global warming is expected
to alter the nutrient availability through an increase in vertical
stratification in lakes and oceans, reducing nutrient supply
(Behrenfeld et al. 2006; Coma et al. 2009; Kraemer et al. 2015),
or by increasing extreme precipitation events leading to greater
nutrient run-off into freshwaters, resulting in eutrophication
(Sinha et al. 2017). Furthermore, land-use change (e.g., for agri-
cultural or urban development) frequently leads to eutrophica-
tion in both freshwater and coastal marine ecosystems
(Bonsdorff et al. 1997; Ye et al. 2011). For instance, land-use
changes are predicted to lead to increased eutrophication in
most parts of the world and particularly in South Asia by 2030,
while European freshwaters are predicted to see a decrease in
eutrophication (Seitzinger et al. 2010). Consequently, climate
change and increased human domination of Earth’s ecosystems
are likely to lead to complex impacts on nutrient supply, with
both increases and decreases expected at local and regional
scales depending on local management practices (Dokulil and
Teubner 2010). It is therefore crucial to better understand how
changes in nutrient availability and temperature will influence
species’ thermal tolerance in a warming world.

Interactions between temperature and nutrient availability
have long been recognized to play a key role in shaping algal
physiology (Rhee and Gotham 1981; Raven and Geider 1988).
For instance, the half-saturation constant for growth (i.e., the
nutrient concentration at which species grow at half the max-
imum rate under saturating nutrient conditions; Fig. 1b)
increases with temperature in algae for nitrogen (Sterner and
Grover 1998), silicate (Mechling and Kilham 1982) and phos-
phate (Bestion et al. 2018). Such temperature-dependent
changes in nutrient physiology can also affect interspecific
competition, leading to reversals in competitive advantages
with warming (Tilman et al. 1981; Bestion et al. 2018). How-
ever, studies on the interaction between temperature and
nutrients on phytoplankton have often focused on tempera-
tures below the optimum temperature Topt (Rhee and Gotham
1981; Tilman et al. 1981; Sterner and Grover 1998; Marañón
et al. 2014).

In a recent study, Thomas et al. (2017) argued that the
optimum temperature for growth rate should be a saturating
function of increasing nutrient concentrations—i.e., the ther-
mal optimum rises rapidly at low-nutrient concentrations and
decelerates toward an asymptote under replete conditions
(Fig. 1c,d). Thomas et al. (2017) used the coastal marine dia-
tom Thalassiosira pseudonana to support their prediction and
showed that the optimum temperature (Topt) decreased by
3–6�C in this organism at low phosphorus and nitrogen con-
centrations relative to saturating nutrient conditions. Their
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Fig. 1. (a) The thermal performance curve. Performance, which can be measured as growth rate or metabolism, increases with temperature until an
optimum Topt and then decreases sharply. (b) Monod curve for growth rate as a function of nutrient concentration. The half-saturation constant Ks is the
nutrient concentration at which the growth rate is half of the maximum rate at saturating nutrient conditions. (c) Impact of both temperature and nutri-
ents on growth rate following Thomas et al. (2017). At low nutrient concentration, the maximum growth rate is lower than at high nutrient conditions,
and the thermal optimum shifts to lower temperatures. (d) The thermal optimum is a saturating function of nutrient concentration.
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study highlighted the potential for other stressors to pro-
foundly alter the way temperature change affects algal physi-
ology; however, this proof of concept was only done on one
marine species. It is now necessary to understand whether

these findings can be generalized to other species of phyto-
plankton. Here, we address this gap by investigating how
changes in phosphate concentrations affect the thermal toler-
ance of five species of freshwater phytoplankton.
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Fig. 2. (a) Thermal optimum Topt is a saturating function of phosphate concentration for each species. (b–f) Growth rates as a function of temperature
for each species by phosphate concentration. Lines are from the best fitting GAM model quantifying the coupling between the natural logarithm of
growth rate as a function of temperature.
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Methods
Nonaxenic strains of five phytoplankton species, Ankistro-

desmus nannoselene, Chlamydomonas moewusii, Monoraphidium
minutum, Scenedesmus obliquus, and Raphidocelis subcapitata,
were obtained from the Culture Collection of Algae and Proto-
zoa (www.ccap.ac.uk, Supporting Information Table S1).
Stocks of each strain were cultured in standard COMBO
medium without animal trace elements (Kilham et al. 1998)
in semi-continuous cultures in incubators at 15�C on a 12 : 12
light–dark cycle with 90 μmol m−2 s−1 light intensity. Cultures
were transferred weekly to keep them in the exponential
phase of growth. These conditions allowed healthy culturing
of the samples under exponential, nutrient replete growth
conditions until the start of the experiment. We then mea-
sured growth rates of each of the five species over a 1-month
long experiment at 13 phosphate concentrations and six tem-
peratures, each with three replicates, yielding a total of 1170
cultures. Due to the large number of cultures, we did not per-
form preacclimation of the cultures to each condition before
measuring growth rate.

We created 13 solutions of different phosphate concentra-
tions ranging from 0.01 μmol L−1 to 50 μmol L−1 of phosphate
by mixing different amounts of COMBO medium with and
without potassium phosphate dibasic (Supporting Informa-
tion Table S2). This range is relevant to phosphate concentra-
tions commonly found in North American and European
temperate lakes (Downing and McCauley 1992; Cardoso
et al. 2007; see Supporting Information Table S3), and to the
nutrient physiology of these species (half-saturation constant
for growth at 15�C ranged from 0.002 μmol L−1 to
0.274 μmol L−1 with all five species at saturating growth con-
ditions by 10 μmol L−1; Bestion et al. 2018). Because we
focused on the impact of a limitation in phosphate concentra-
tion, we did not simultaneously vary nitrate concentrations to
avoid confounding effects of complex colimitation. By design,
this means that not only phosphate concentration but also
the N : P stoichiometry covaried in the experiment. Small tis-
sue culture flasks (Nunclon™) filled with 40 mL of each solu-
tion were inoculated with each species in monoculture at
100 cells mL−1. To avoid potential-carry over, where phospho-
rus taken in excess by cells before the experiment would allow
algae to grow even at low experimental phosphate concentra-
tions, we inoculated cells at very low density and ensured that
the increase in phosphate concentration due to the inoculum
volume (8 μL of sample at 5 × 105 cells mL−1) or to potential
intracellular storage of phosphatewasminimal (0.01 μmol L−1 P).
Samples were incubated in Percival incubators at 15�C, 20�C,
25�C, 30�C, 35�C, and 40�C on a 12 : 12 light–dark cycle with
90 μmol m−2 s−1 light intensity. The range of temperatures was
chosen to encompass the likely optimum temperature for
growth at saturating nutrient conditions in these species,
within the 25–35�C range commonly observed for freshwater
green algae, including other strains of the same species or the

same genus (Bouterfas et al. 2002; Hodaifa et al. 2010; Litch-
man et al. 2010; Lürling et al. 2013; Bestion et al. 2018). The
light intensity was consistent with the long-term culture condi-
tions of these strains. Cultures were manually shaken and their
position in the incubator was randomly changed daily. Every
2 d, a 200 μL sample was taken, preserved by adding 10 μL of
1% sorbitol solution as a cryoprotectant, and frozen at −80�C.
Cell density was estimated by counting 10 μL of each sample
on fast flux settings (66 μL min−1) on a flow cytometer
(BD Accuri C6).

Statistical analyses
Specific growth rate, μ, for each sample was calculated by

fitting the logarithm of population density log10(cells mL−1)
to the Buchanan three-phase linear growth model (Buchanan
et al. 1997) using nonlinear least squares regression (see Sup-
porting Information Methods for a more in-depth description
of the statistics).

We used generalized additive models (GAMs) to quantify
the thermal tolerance curves. For each species and phosphate
level, we fitted a GAM of ln(μ) with temperature as a smoother
term (see Supporting Information Methods). Using these fits,
we then estimated the optimal temperature, Topt, as the tem-
perature at which ln(μ) was maximal.

We fitted Topt for each species at each phosphate concen-
tration against a modified Monod equation (Monod 1949)

Topt ¼Topt:min + Topt:max−Topt:min
� �

*
S

Ks + S

� �

where Topt.max is the temperature at which the specific growth
rate is maximal (�C), Topt.min is the temperature at which the
specific growth rate is the minimum when the concentration
of nutrients S is zero (here fixed at 15�C as it was the mini-
mum temperature in the assays), S the concentration of phos-
phate in the culture (μmol L−1), and Ks the half-saturation
coefficient for Topt (μmol L−1).

Results and discussion
Growth rate followed a unimodal function of temperature

and a saturating function of phosphate concentration
(Fig. 2a–f). Optimum temperatures for growth followed a sat-
urating function of phosphate concentration in each species
(Fig. 2). The saturating function was a better fit than either a
linear model or an intercept-only (i.e., no nutrient-
dependence of Topt) model (ΔAICc >> 2 in both cases,
Table 1). Under nutrient replete conditions, Topt ranged from
29.6�C to 31.1�C (Table 1), falling within the 25–35�C range
commonly observed for freshwater green algae (Bouterfas
et al. 2002; Hodaifa et al. 2010; Litchman et al. 2010; Lürling
et al. 2013). Studies on species of the same genera have for
instance shown a 32.5�C optimum for Ankistrodesmus falcatus
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(Lürling et al. 2013), a 27.5�C optimum for Chlamydomonas
reinhardtii, M. minutum, and Scenedesmus acuminatus (Lürling
et al. 2013) while Selenastrum minutum and Scenedesmus maxi-
mus had a 35�C optimum (Bouterfas et al. 2002; Lürling
et al. 2013) and estimates for Scenedesmus obliquus varied
between 27.5 and 29.5 depending on the study (Hodaifa
et al. 2010; Lürling et al. 2013). However, under limiting
phosphate concentrations, optimum temperature for growth
drastically dropped to values as low as 15�C. The drop in Topt

with nutrient limitation may even be underestimated, as our
measurements were carried out in the 15–40�C range and
some Topt for the lower nutrient concentrations were likely
below 15�C. Indeed, in these cases, the highest performance
was observed at 15�C, meaning we measured only the
decreasing part of the performance curve. Thus our measured
Topt at 15�C represented the highest possible value for Topt

and the true Topt value could be anywhere between 0�C and
15�C (Fig. 2b–f). A higher number of temperature levels
would have yielded a more precise estimate of Topt. However,
given the magnitude of the decrease in Topt under low-
nutrient conditions, the low number of temperature treat-
ments should not affect the general patterns we observe. Fur-
ther, given the large scale of the experimental design, we
were unable to preacclimate each species to each of the phos-
phate and temperature conditions. Although we took every
precaution to avoid carry-over, where phosphate stocked in
excess would allow cells to grow faster even at low tempera-
ture, this possibility cannot be discarded. However, potential
for carry-over of phosphate would only lead to a reduced
impact of phosphate limitation on thermal optimum, and
thus to a higher than reported half-saturation constant. The
half-saturation constants for Topt varied between
0.18 μmol L−1 and 0.33 μmol L−1, which suggests important
effects on thermal physiology at nutrient concentrations rel-
evant to phosphate concentration commonly found in

northern hemisphere temperate lakes (approximately
0.01 μmol L−1 to 150 μmol L−1 in North American lakes, with
a quarter of the lakes having a phosphate concentration
below 0.12 μmol L−1, below the observed half-saturation con-
stant for Topt (Downing and McCauley 1992; Downing
et al. 2001), and 0–0.36 μmol L−1 in European lakes, with
more than 50% of the lakes below 0.19 μmol L−1, close to the
minimum saturating concentration for Topt (Cardoso
et al. 2007; Supporting Information Table S3). Higher satura-
tion constants would mean that the impacts of phosphate
limitation on thermal optimum would arise even faster than
expected.

Our results expand previous results on a marine species by
Thomas et al. (2017). We investigated a different group of
phytoplankton (green algae from two different orders (Sphaer-
opleales and Chlamydomonadales) from a different ecosystem
type (freshwater vs. marine), and our findings suggest that
decreases in optimum temperatures at low-nutrient concentra-
tions are likely to be a general phenomenon (Downing
et al. 2001). Interestingly, although the study from Thomas
et al. (2017) assumed that the half-saturation constant for
growth was independent of temperature, a previous study on
the same strains showed that half-saturation constant varied
with temperature (Bestion et al. 2018), suggesting that this
condition is not needed for the nutrient-dependence of ther-
mal optimum to arise. Over the range of phosphate concen-
trations investigated, optimum temperatures decreased by up
to 15�C (Fig. 1, Supporting Information Table S4). This shift is
substantially larger than observed in T. pseudonana (Thomas
et al. 2017), where Topt declined by 3.5�C under phosphate
limitation and 6�C under nitrate limitation. This larger
decrease could be due in part to the lower phosphate concen-
trations used in this study compared to the Thomas
et al. study (the lowest concentrations being respectively
0.01 μmol L−1 and 1 μmol L−1). Restricting our data to the

Table 1. Parameters returned from fitting the Monod model to the coupling between Topt and the phosphate concentration. The
table compares the small sample size corrected Akaike information criterion, AICc, of the Monod model to the AICc of a simple linear
model and no nutrient-dependence of Topt. The 95% confidence intervals for the parameters are given within brackets.

Species Topt. max Ks AICc Quasi R2
AICc linear model
Topt~ phosp

AICc linear
model Topt ~ 1

Ankistrodesmus 30.14
[27.98, 32.3]

0.33
[0.04, 0.62]

43.99 0.92 65.10 63.09

Chlamydomonas 29.62
[27.86, 31.39]

0.28
[0.05, 0.52]

44.91 0.87 64.14 62.59

Monoraphidium 31.12
[27.9, 34.34]

0.18
[−0.1, 0.46]

58.67 0.70 70.96 67.57

Scenedesmus 30.11
[26.85, 33.36]

0.75
[−0.27, 1.76]

54.55 0.84 70.58 69.80

Raphidocelis 29.59
[24.9, 34.29]

0.17
[−0.24, 0.57]

54.44 0.67 64.14 59.01
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same phosphate concentrations gave a 2.1–6.5�C decline in
Topt depending on species identity, higher than the drop
found by Thomas et al. (2017) for two out of five species
(Supporting Information Table S4). Alternatively, it might be
due to a greater sensitivity of our freshwater green algae to
phosphorus concentrations, as phosphate limitation is
thought to be particularly important in freshwater ecosys-
tems, specifically in lakes (Schindler 1977; Hecky and Kilham
1988; Elser et al. 2007), while nitrogen regulation has been
thought to play a major role in oceanic systems (Falkowski
1997). Together, these results reveal striking declines in Topt at
phosphate concentrations that are commonly found in natu-
ral environments.

Reduced thermal tolerance under nutrient limited condi-
tions may have important consequences for the impacts of
environmental warming on phytoplankton communities.
Indeed, in some locations, climate change is leading to longer
periods of water stratification and thus nutrient depletion in
lakes and oceans (Coma et al. 2009; Kraemer et al. 2015). In
Lake Tahoe, warming waters led to nutrient depletion in the
euphotic layer, causing a selection toward smaller cell sizes in
diatom communities (Winder et al. 2009). Further, in Europe,
the Water Framework Directive has led to 34% declines in sol-
uble reactive phosphate (Dokulil and Teubner 2010), which
are predicted to continue until 2030 (Seitzinger et al. 2010).
On the other hand, some lakes and coastal marine ecosystems
will see an increase in nutrient concentrations due to eutro-
phication (Bonsdorff et al. 1997; Ye et al. 2011), that will
likely be exacerbated by extreme precipitation events brought
about by climate change (Dokulil and Teubner 2010; Sinha
et al. 2017). Furthermore, climate change might lead to
changes in land use which could either reduce or increase
eutrophication as changing climates will make some practices
unsustainable (Heino et al. 2009). These complex socio-
ecological interactions make impacts of climate change on
water quality quite highly unpredictable and variable at the
local scales (Heino et al. 2009; Dokulil and Teubner 2010). In
locations where climate change is linked to lower nutrient
availability (e.g., due to water stratification or land-use
changes), or in oligotrophic systems (as the > 25% North
American and > 50% European lakes where phosphate con-
centration is below KS, Supporting Information Table S3), the
combination of increased temperature and low nutrient avail-
ability might be strongly detrimental for some species. On the
contrary, phytoplankton species in eutrophic systems
(e.g., the 25% most eutrophic North American lakes, Support-
ing Information Table S3; where eutrophication is predicted
to increase, Seitzinger et al. 2010) are likely to be less suscepti-
ble to warming.

Further; it should be noted that although all of the species
were affected, the impact of nutrient limitation on Topt varied
between species, with some species showing a drop in Topt at
higher nutrient concentrations (higher Ks) than others (Fig. 1,
Supporting Information Table S4). The combination of

stressors might alter community composition through differ-
ential impacts on phytoplankton species. Together with the
combined impacts of climate and nutrients on competitive
interactions below Topt (Tilman et al. 1981; Litchman
et al. 2010; Bestion et al. 2018), these complex effects might
also affect phytoplankton community structure.

Overall, we found consistent declines in thermal tolerance
among six species of freshwater green algae that are in line
with recent work on a marine diatom (Thomas et al. 2017).
Together this work emphasizes the importance of considering
the potential impact of multiple stressors when quantifying
thermal tolerance. Indeed, this body of work suggests that
phytoplankton are highly sensitive to a combination of high
temperature and low nutrients. Trend of rising global temper-
atures are therefore particularly worrying when accompanied
by nutrient limitation—e.g., when the vertical stratification in
lakes and oceans reduces nutrient supply (Behrenfeld
et al. 2006) or when land-use change lead to reoligotrophica-
tion (Anneville et al. 2005), or in already oligotrophic lakes
(such as the 50% of European lakes where phosphate concen-
tration is currently below 0.18 μmol L−1 [Supporting Informa-
tion Table S3] and for which eutrophication is predicted to
decrease; Seitzinger et al. 2010). Our results therefore suggest
that failing to account for nutrient-temperature interactions
might severely underestimate species’ vulnerability to future
environmental change.
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