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Abstract 

One of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells are optical losses in the 
amorphous silicon (a-Si:H) layers that limit the short circuit current. In this work, we propose to replace amorphous silicon layers 
by a thin crystalline gallium phosphide (GaP) layer in heterojunctions solar cells. We show that the better transparency of GaP 
compared to a-Si:H promises gain in the UV region. However, the annealing in the MOCVD chamber before GaP growth that is 
necessary for high quality GaP epitaxial growth degrades the bulk silicon minority carrier lifetime. This degradation is attributed 
to fast diffusing species and can be overcome by a gettering process. 
 
© 2015 The Authors. Published by Elsevier Ltd. 
Peer review by the scientific conference committee of SiliconPV 2015 under responsibility of PSE AG. 
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1. Introduction 

Heterojunctions silicon-based solar cells have been studied for years [1-6,7]. There has been a regain of interest in 
these structures with the development and commercialization of so-called HIT solar cells by the Japanese company 
Panasonic [8]. Such solar cells have shown record efficiencies of 24.7% with front contacts and 25.6% with back 
contacts thanks to the extremely good passivation of the silicon surface by intrinsic hydrogenated amorphous silicon 
(a-Si:H) layers and to the large band-gap of a-Si:H [9]. However, absorption in the a-Si:H layer limits the efficiency 
in the UV region. To leverage the progresses made in heterojunction solar cells while improving the efficiency in the 
UV, it would be interesting to integrate new materials as front emitter with a higher transparency than a-Si:H. 
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Gallium Phosphide (GaP) has a lattice constant of 5.4906 Å that is close to the one of c-Si (5.4307 Å ), making it 
candidate for epitaxial growth on silicon [10]. In addition, GaP has a bandgap energy of 2.26 eV at 300 K and is 
therefore transparent to photons with a wavelength above 545 nm [2,11-13]. 

Some groups have investigated GaP as a material for heterojunctions or as a window layer on silicon solar cells 
[1,2,11,12,14]. Shahai and Milnes have computed several heterojunctions solar cells including a 5 μm- and a 250 
μm-thick GaP layer on silicon. They estimate the efficiency around 10%, close to the efficiency of the Silicon 
homojunction they computed. They anticipate though a loss in photogeneration because the optical absorption edge 
in the UV is sharper for GaP than for c-Si [2]. Katoda and Kishi reported the first GaP/c-Si heterojunction solar cell 
with an open circuit voltage (VOC) of 660 mV and an efficiency of 1.7% [11]. Landis et al. used GaP grown by 
MOCVD (Molecular Organic Chemical Vapor Deposition) as a window layer on an homojunction silicon solar cell 
but also reported the GaP/c-Si heterojunction solar cell results in their paper. They obtain a VOC of 603 mV, which is 
lower than the one of their homojunction silicon solar cell. They showed that the GaP heterojunction provided 
excellent passivation but was significantly absorbing in the short wavelengths end of the spectrum [12]. Huang et al. 
used LPE (Liquid Phase Epitaxy) to form multijunctions GaP/c-Si solar cells and also report a GaP/c-Si 
heterojunction solar cell with a VOC of 508 mV and an efficiency of 8%. 

Recent progresses have been published on GaP growth on silicon. On nominal c-Si <100> wafers, it has been 
demonstrated that antiphase boundary defects (APD) could be confined to the first 40 nm [15]. By choosing a slight 
miscut angle and proper growth initiation, the volume of the APDs could be also minimized [16].  

In this paper, we propose to use GaP as a replacement of amorphous silicon on the front side of heterojunction 
silicon solar cells. A 10 nm-thick layer of GaP is grown by epitaxy on nominal <100> silicon by Metal Organic 
Chemical Vapor Deposition (MOCVD), and the integration flow of a-Si:H/c-Si heterojunction solar cells is used to 
build a solar cell with a GaP/c-Si heterojunction. We will first discuss the best structures and the limitation of c-
GaP/c-Si heterojunction solar cells, and we will discuss then the origin of the limitations. 

2. Experimental setup 

The proposed structure of GaP/c-Si heterojunction solar cell consists of a p- or n-type crystalline silicon base with 
a n-type GaP front layer and an a-Si:H (intrinsic and p-type) back layer. For p-type base, the structure has a front 
emitter while for n-type base the structure has a back emitter. Each surface is covered then with a 70 nm-thick 
indium tin oxide (ITO) transparent electrode. The back side electrode is a blank silver sheet while the front side 
electrode is made of screen-printed silver paste grid with one central bus bar and 25 fingers covering an active area 
of 25 cm2. Reference solar cells with an intrinsic and n-type a-Si:H front emitter are also used for comparison. The 
c-GaP growth is performed in a Metal Organic Chemical Vapor Deposition (MOCVD) tool from Applied Material 
operating on 300 mm silicon wafers. Before the growth, the substrate is deoxidized using a Siconi dry process 
(NH3/NF3 remote plasma) in a separate chamber. Then, the wafer is transferred under vacuum to the MOCVD 
chamber were it is annealed before the actual GaP growth. Silicon diffusion in the GaP results in an n-type doping of 
the GaP. The complete process flow for the reference a-Si:H/c-Si and for the c-Si/c-GaP heterojunction solar cells is 
depicted in Figure 1. 

The spectral response is determined using a Spequest system. A broadband light source is first monochromatized 
between 300 nm and 1300 nm with a step size of 10 nm and chopped at 30 Hz. It shines on the solar cell while the 
short circuit current is measured with a lock-in amplifier. The source intensity as well as the reflected light are 
monitored with CCD detectors to extract the external and internal quantum efficiency. The minority carrier lifetime 
is measured with a Sinton WCT120 in Quasi Steady State Photoconductance (QSSPC) or in transient mode with a 
flash duration of 1 s or 1/64 s, respectively. 
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Fig. 1. Process flow used for solar cells fabrication. 

3. Experimental results 

3.1. Observation of silicon substrate degradation 

The Internal Quantum Efficiencies measured on finished cells are shown on figure 2. Different solar cells 
structures with a front (p-type silicon substrate) and a rear (n-type Si substrate) emitter are reported. First it is worth 
noticing that the cell with a (n)GaP/(p)c-Si heterojunction has a better response for wavelengths between 400 nm 
and 600 nm compared to the cell with a (i+n)a-Si:H/(p)c-Si heterojunction (reference cell). This is attributed to the 
better transparency of GaP compared to amorphous silicon in the UV-region. However, this cell also shows a strong 
degradation for longer wavelengths compared to the reference cell. This degradation is attributed to a degradation of 
the bulk silicon properties during the cell fabrication process. 

Interestingly, the rear emitter cell with front GaP shows an extremely low IQE over the whole wavelength range, 
indicating clearly for the first time that GaP does not chemically passivate the c-Si surface. For the largest 
wavelengths, the IQE reaches the values of the front emitter structure with GaP, confirming the degradation of the 
bulk properties for both structures with GaP front layer. 

These data indicate that the appropriate structures for c-GaP/c-Si based solar cells would be a front emitter 
structure with GaP on the front surface to beneficiate from the better transparency and from the field effect to 
minimize losses in the heterojunction. However, for such a structure to compete with standard a-Si:H/c-Si 
heterojunctions, the degradation of the bulk silicon properties must be understood and overcome. 
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Fig. 2. Internal Quantum Efficiency (IQE) measurement for cells with different structures and thermal treatments. 
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3.2. Origin of the substrate degradation 

To determine the origin of the IQE degradation at the longest wavelengths, we performed minority carrier 
lifetime measurements on silicon substrates passivated with a-Si:H layers on both sides. Before the a-Si:H 
deposition, the silicon substrates were treated with specific steps of the process flow for GaP/c-Si fabrication: the 
wafers were treated or not with the Siconi process and the wafers were annealed or not in the MOCVD chamber. 
When the wafers were not annealed, they were placed on the MOCVD chuck for few minutes without process. The 
minority lifetime is reported figure 3.a. This figure clearly shows two populations for the various treatments. In the 
upper part of the graph, substrates without annealing in the MOCVD chamber present a minority carrier lifetime 
larger than 1 ms. Therefore the bulk properties of the silicon substrate were not degraded during the treatments. In 
the lower part of the graph, substrates with annealing in the MOCVD chamber present a minority carrier lifetime 
below 1 ms. This clearly indicates that the thermal treatment performed in the MOCVD chamber is responsible for 
the minority carrier lifetime degradation in the bulk silicon. One wafer that sat in the MOCVD chamber were then 
treated in an oven operated at an identical temperature as the nominal thermal treatment. In this case (not shown 
here), the minority lifetime was comparable to the one of a silicon substrate that did not see the MOCVD chamber 
environment before the thermal treatment. 

 To clarify the role of the thermal treatment on the minority carrier lifetime degradation, we performed additional 
experiments with various maximum temperature for the thermal treatment (see figure 3.b). In this case too, the 
silicon wafers were passivated with a-Si:H before minority carrier lifetime measurements. These data clearly show 
the dramatic effect of the temperature in the MOCVD chamber on the minority carrier lifetime. All these 
experiments indicate that the minority carrier lifetime degradation is induced by the simultaneous exposition of the 
silicon to the MOCVD chamber environment and the thermal treatment at a temperature above nominal temperature 
– 100°C. This tends to indicate that the minority carrier lifetime degradation is due to the contamination of the bulk 
silicon by species present in the MOCVD chamber that are simultaneously activated by the thermal treatment.  
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Fig. 3. (a) Minority carrier lifetime measured in p-type 300 mm, 750 μm thick CZ silicon wafers for various treatments in the MOCVD chamber. 
(b) Minority carrier lifetime measured in p-type 300 mm CZ silicon wafers for various treatments temperature in the MOCVD chamber. 

3.3. Analysis of silicon contamination 

Additional experiments have been performed to confirm the origin of the minority carrier lifetime degradation. 
First we exposed a silicon wafer covered by 500 nm of PECVD silicon nitride barrier (each face) to the thermal 
treatment in the MOCVD chamber. Excellent minority carrier lifetimes are measured (see figure 4.a.), which 
indicates that the 500 nm-thick Si3N4 layer prevents the contaminating species diffusion in the bulk silicon. Second 
we etched with a diluted KOH solution pieces of silicon extracted from a reference wafer and from a wafer that was 
annealed in the MOCVD chamber. The amount of silicon removed by the chemical bath was determined with a 
microbalance. The pieces of silicon were then passivated with a-Si:H on both side and the minority carrier lifetime 
was measured. The results presented Figure 4.b. show that even after more than 20 μm was removed from each side 
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of the silicon, the bulk properties of the silicon did not change. This shows that the contaminating species is a fast 
diffusing species that diffuses more than 20 μm inside the silicon. Finally, TXRF analyses were performed on a 
sample thermally treated in the MOCVD chamber. As shown table 1, no significant difference is observed except 
for As and Mg between the reference sample and the thermally treated sample, which indicates that the 
concentration of the contaminating species is below the detection level. The Mg detection is a measurement artefact 
from interference with the As line. This was confirmed by ICPMS where Mg concentration was below the detection 
level of 109 cm-3. Arsenic is a dopant for silicon and is not known to be a recombination center. 

These various experiments confirm that the minority carrier lifetime degradation is attributed to a contaminating 
species diffusion from the MOCVD chamber to the sample. The contaminating species has a very low concentration 
and diffuses across (at least) 20 μm. 
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Fig. 4. Minority carrier lifetime measured (a) on p-type 200 mm, 750 μm CZ silicon wafers covered with 500 nm-thick Si3N4 with and without 
annealing in the MOCVD chamber. (b) Minority carrier lifetime measured on p-type 300 mm CZ silicon after etching more than 20 μm from 

each side of the sample (with and without annealing in the MOCVD chamber) 

Table 1. Elemental concentration in cm-3 of contamination at the wafer of p-type 300 mm CZ silicon wafer measured by TXRF. *The Mg line 
interferes with the As line 

Al As Au Br Ca Cl Co Cr Cu Fe
Ref. < 2E11 5E12 < 5E10 3E11 < 5E11 3E12 < 5E10 < 5E10 < 5E10 < 5E10

Annealed < 2E11 4E13 < 5E10 < 6E10 < 5E11 1E12 < 5E10 < 5E10 < 5E10 < 5E10
Ga In K Mg* Mn Mo Na Ni P Pb

Ref. < 9E10 < 6E10 < 5E11 4E12 < 5E10 < 5E10 < 5E11 < 5E10 < 5E13 < 5E11

Annealed < 9E10 < 6E10 < 5E11 3E13 < 5E10 < 5E10 < 5E11 < 5E10 < 5E13 < 5E11
Pt Ru S Ta Ti V W Zn Zr

Ref. < 5E10 < 5E10 1E13 < 7E10 < 5E10 < 5E10 < 6E10 < 5E10 < 5E11

Annealed < 5E10 < 5E10 3E12 < 7E10 < 5E10 < 5E10 < 6E10 < 5E10 < 5E11

4. Discussion  

The major limitation for c-GaP/c-Si heterojunctions solar cells fabrication comes from minority carrier lifetime 
degradation in the silicon during the surface preparation in the MOCVD chamber. Garcia-Tabares et al. have also 
observed the degradation of minority carrier lifetime during sample preparation in MOVPE environment.[17, 18] 
They list three different explanations for this effect. (1) Introduction of intrinsic carrier lifetime killers during the 
annealing in the chamber. One potential killer element is Zinc that is a known center of recombination. (2) The 
treatment at high temperatures leads to the formation of crystal defects that eventually become recombination 
centers. (3) The thermal treatment activates lifetime killing impurities that are already present in the wafer in an 
inactive state. In our experimental conditions, the lifetime degradation may originate from similar mechanisms. Our 
experiments rule out the 2nd hypothesis since wafers with identical thermal treatments but not in the MOCVD 
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chamber do not show significant degradation of the minority lifetime. They also rule out the third hypothesis. 
Indeed, wafers treated in the MOCVD chamber with a Si3N4 barrier would show minority carrier lifetime 
degradation if the contaminating species were already present inside the silicon. Our experiments show that the first 
hypothesis is the most valid one. We attributes the bulk degradation to a fast diffusing impurity from the MOCVD 
chamber in the silicon. The environment in the MOCVD chamber is as clean as possible and no other elements than 
In, Ga, As, Al, P, H, C and Si have ever been intentionally introduced in the chamber. In addition, contamination 
measurements by TXRF and VPD-ICPMS on silicon wafers processed in the MOCVD chamber show no significant 
surface contamination except for As (that was also present on the reference sample but to a lower level). This 
indicates that the contaminating species is a highly effective center of recombination. Furthermore, the same 
observation from two different research groups indicates that the contaminating species is a common species in III-
V deposition chambers. The exact species is not clearly identified yet. 

In their paper, Garcia-Tabares et al. have shown that phosphorous diffusion after the thermal annealing could 
recover the minority carrier lifetime, which shows that there are technological solutions to overcome the issue of 
lifetime degradation. We investigated a gettering process to recover the minority carrier lifetime in the bulk silicon. 
Samples exposed to the thermal treatment in the MOCVD chamber were doped by phosphorous diffusion and 
chemically etched in diluted KOH. Such processes are known to reduce contaminating species concentration [19]. 
After this process, the sample was passivated by a-Si:H and the minority carrier lifetime was measured. As shown 
figure 5, the gettering process recovers the minority carrier lifetime of reference samples while etching only would 
not recover it. This solution could be used for recovering minority carrier lifetime in the silicon after the full GaP 
deposition process. However, such solutions would require a detailed development to be performed in conditions 
compatible with the GaP stability. 
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Fig. 5. Minority carrier lifetime for silicon wafers after annealing in the MOCVD chamber, and after phosphorous diffusion and/or etching. The 
minority carrier lifetime is also reported for a reference wafer without annealing.  

5. Conclusion 

We have evaluated the potential of GaP as a replacement of a-Si:H in heterojunction solar cells. The spectral 
response of the cell is improved in the UV region thanks to the lower light absorption of GaP compared to 
amorphous silicon. We showed that the GaP does not chemically passivate the silicon surface. The best candidate 
structure is a front emitter c-GaP/c-Si structure to beneficiate from the high transparency and from the field effect 
between GaP and Si to minimize losses in the heterojunction. With our current process, a strong minority carrier 
lifetime degradation in the silicon during surface preparation in the MOCVD chamber leads to a decrease in 
quantum efficiency for long wavelengths. This degradation is attributed to a fast diffusing species with a very low 
concentration that is common in III-V deposition chambers but that has not been identified yet. If the contaminating 
species cannot be avoided, solutions like a gettering process have the potential to recover the silicon bulk properties. 
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