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Abstract: Chemical study of the CH2Cl2-MeOH (1:1) extract of the sponge Fascaplysinopsis reticulata
collected in Mayotte highlighted three new tryptophan derived alkaloids, 6,6′-bis-(debromo)-gelliusine
F (1), 6-bromo-8,1′-dihydro-isoplysin A (2) and 5,6-dibromo-8,1′-dihydro-isoplysin A (3),
along with the synthetically known 8-oxo-tryptamine (4) and the three known molecules
from the same family, tryptamine (5), (E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (6) and
(Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (7). Their structures were elucidated by 1D and
2D NMR spectra and HRESIMS data. All compounds were evaluated for their antimicrobial and
their antiplasmodial activities. Regarding antimicrobial activities, the best compounds are (2) and
(3), with minimum inhibitory concentration (MIC) of 0.01 and 1 µg/mL, respectively, towards Vibrio
natrigens, and (5), with MIC values of 1 µg/mL towards Vibrio carchariae. In addition the known
8-oxo-tryptamine (4) and the mixture of the (E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (6) and
(Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (7) showed moderate antiplasmodial activity against
Plasmodium falciparum with IC50 values of 8.8 and 8.0 µg/mL, respectively.

Keywords: Fascaplysinopsis reticulata; marine sponge; tryptamine alkaloids; antimalarial activity;
antimicrobial activity

1. Introduction

Tryptophan-derived alkaloids are well-established bioactive metabolites and have been isolated
from various marine organisms: sponges, scleratinian corals, one sea anemone and one nudibranch [1].
Species of the sponge genus Fascaplysinopsis have yielded several bioactive tryptophan alkaloids
reported to exhibit cytotoxic activity against several cancer cell lines [2,3], antimicrobial [2], antiviral [4]
and antimalarial [5] activities.
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In our continuing search for bioactive metabolites from marine invertebrates, the sponge
Fascaplysinopsis reticulata (Hentschel, 1912) from the Dictyoceratida order was investigated. Previous
studies on Fascaplysinopsis reticulata collected from the Benga Lagoon of the Fiji Islands by Jiménez et
al. [6], and then from Indonesia (Molucca Sea) and from the Fiji Islands by Segraves et al. [7], led to the
isolation of 23 alkaloids from the fascaplysin family. More recent study on Fascaplysinopsis reticulata
collected from Xisha Island (China) by Wang et al. led to the isolation of a pair of bisheterocyclic
quinolineimidazole alkaloids, (+)- and (−)-spiroreticulatine [8]. All of the isolated 25 molecules are
tryptophane-derived alkaloids.

Our chemical investigation of the extract of Fascaplysinopsis reticulata collected in Mayotte (Indian
Ocean), led to the isolation of three new members of the tryptophan family, 6,6′-bis-(débromo)-gelliusine
F (1), 6-bromo-8,1′-dihydro-isoplysin A (2) and 5,6-dibromo-8,1′-dihydro-isoplysin A (3), along with the
known derivatives 8-oxo-tryptamine (4), tryptamine (5), (E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin
(6) and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (7). The 8-oxo-tryptamine (4) was known as
synthetic compound [9], but was isolated here from a natural source. We report herein the purification and
structure elucidation by spectral data including HRESIMS, 2D NMR and comparison with published data.
The biological evaluations of the latter new compounds are described as well.

2. Results and Discussion

2.1. Chemistry

The CH2Cl2-MeOH extract of the lyophilized sponge Fascaplysinopsis reticulata was first subjected
to a reverse-phase silica gel column chromatography to yield fractions. The fractions were subjected to
repetitive reverse-phase semi-preparative and analytical HPLC to yield eight compounds (1–7) (Figure 1).
Three were new: one 6,6′-bis-(debromo)-gelliusine F (1) and two aplysinopsin derivatives 2 and 3,
described below. In addition to the new compounds, four other known members were identified as
8-oxo-tryptamine (4), tryptamine (5) and a mixture of (E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin
(6) and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (7) by comparison with published
spectroscopic data.

6,6′-bis-(debromo)-gelliusine F (1) was obtained as a brown oil. The molecular formula, C20H23N4,
was established from HRESIMS molecular ion peak at m/z 319.2013 [M + H]+. Analysis of the 1D
and 2D 1H, and 13C NMR data for 1 (CD3OD, Table 1) revealed resonances and correlations (Figure 2)
consistent with those of a bis-tryptamine structure linked by the carbons C-2 and C-8′, like gelliusine
F [10,11]. Analysis of the HSQC correlations and the comparison with latter compounds pointed the
fragment C-8, C-9, C-9′ (δH 3.23, 3.00, 3.83–3.69; δC 23.7, 41.4, 44.3), one aliphatic methine C-8′ (δH
5.10; δC 34.3), nine aromatic methines C-4, C-5, C-6, C-7, C-2′, C-4′, C-5′, C-6′, C-7′ (δH 7.54, 7.38,
7.12, 7.06, 7.27, 7.58, 7.41, 7.14, 7.06; δC 118.9, 112.6, 123.1, 120.7, 124.0, 119.3, 112.9, 123.3, 120.6) and
seven nonprotonated aromatic carbons C-2, C-3, C-3a, C-7a, C-3′, C-3a’, C-7a’ (δC 124.0, 113.8, 127.5,
135.3, 113.7, 129.2, 138.0). Compound 1 was different from gelliusine F by the presence of the two
aromatic methines C-6 and C-6′ instead of two nonprotonated aromatic carbons substituted by bromine.
Analysis of the COSY correlations revealed the presence of the spin systems C-4−C-5−C-6−C-7 and
C-4′−C-5′−C-6′−C-7′ and confirmed this difference. These COSY correlations, in addition to the
HMBC correlations between H-4 and C-7a, between H-5 and C-3a, between H-6 and C-7a, between
H-2′, C-3′, C-3a’ and C-7a’, between H-4′ and C-7a’, between H-5′ and C-3a’, between H-6′ and C-7a’
and between H-7′ and C-3a’, confirmed the presence of two indole cores, the first one substituted
in C-2 and C-3 and the second one substituted in C-3′. The COSY correlation between H-8 and H-9
and the HMBC correlation between H-9 and C-3 and between H-8, C-2, C-3 and C-3a indicated the
substitution of the first indole core by an ethylamine chain in C-3. The COSY correlation between
H-8′ and H-9′ and the HMBC correlations between H-9′ and C-3′ and between H-8′, C-2′, C-3′ and
C-3a’ indicated the substitution of the second indole core by an ethylamine chain in C-3′. The two
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tryptamine patterns were linked between C-2 and C-8′ like gelliusine F. Compound 1 was named
6,6′-bis-(debromo)-gelliusine F according to gelliusine F, reported in 1995 [11].Mar. Drugs 2019, 17, x FOR PEER REVIEW 3 of 10 
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Figure 1. Chemical structures of compounds 1–7.

Table 1. 1D and 2D NMR spectroscopic data (1H, 13C 300 MHz, CD3OD) for 6,6′-bis-(debromo)-gelliusine
F (1).

Position δC, Type δH (J in Hz) COSY (1H-1H) HMBC (1H-13C)

2 124.0, C - - -
3 113.8, C - - -
3a 127.5, C - - -
4 118.9, CH 7.54, d (7.8) 5 6, 7a
5 112.6, CH 7.38, m 4, 6 3a, 7
6 123.1, CH 7.12, m 5, 7 4, 7a
7 120.7, CH 7.06, m 6 3a, 5
7a 135.3, C - - -
8 23.7, CH2 3.23, m 9 2, 3, 3a, 9
9 41.4, CH2 3.00, m 8 3, 8
2′ 124.0, CH 7.27, s - 3′, 3a’, 7a’
3′ 113.7, C - - -
3a’ 129.2, C - - -
4′ 119.3, CH 7.58, d (7.8) 5′ 6′, 7a’
5′ 112.9, CH 7.41, m 4′, 6′ 3a’, 7′

6′ 123.3, CH 7.14, m 5′, 7′ 4′, 7a’
7′ 120.6, CH 7.06, m 6′ 3a’, 5′

7a’ 138.0, C - - -
8′ 34.3, CH 5.10, t (8.6) 9′ 2′, 3′, 3a’, 9′

9′ 44.3, CH2 3.83–3.69 (m) 8′ 3′, 8′
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Figure 2. Key COSY and HMBC correlations for compounds 1 and 2.

6-bromo-8,1′-dihydro-isoplysin A (2) was obtained as a yellow oil. Its molecular formula,
C14H16BrN4O (9 degree of unsaturation), was established from HRESIMS pseudo-molecular ion
peak at m/z 337.0483 (see Supplementary Materials) indicating the presence of one bromine atom
in the molecule. Analysis of the 1D and 2D 1H, and 13C NMR data for 2 (CD3OD, Table 2) revealed
resonances and correlations (Figure 2) consistent with those of a 1′,8-dihydroaplysinopsin structure:
the HSQC correlations revealed the presence of one methylene C-8 (δH 3.35; δC 28.1), one aliphatic
methine C-1′ (δH 4.62; δC 61.8), four aromatic methines C-2, C-4, C-5, C-7 (δH 7.11, 7.51, 7.14, 7.50;
δC 126.4, 121.1, 123.3, 115.5), four nonprotonated aromatic carbons C-3, C-3a, C-6, C-7a (δC 109.0,
127.6, 116.6, 138.1), one guanidine-like carbon C-3′ (δC 159.2) and one amide carbonyl C-5′ (δC 174.9).
The structure of the indole core was determined by the analysis of COSY correlations between H-4
and H-5, the 4J coupling constant between H-5 and H-7 (J = 1.8 Hz) and HMBC correlations between
H-2, C-3, C-3a, and C-7a, between H-4, C-6 and C-7a and between H-5, C-3a and C-7. The HMBC
correlation between H-2 and C-8 indicated the substitution of the non-protonated carbon C-3 by the
methylene C-8. The COSY correlation between H-8 and H-1′ indicated link between the heterocycle
core and C-8. The structure of the heterocycle core was determined by the HMBC correlations between
H-1′ and C-5′, between CH3-6′ and C-3′ and between CH3-7′, C-3′ and C-5′.

Table 2. 1D and 2D NMR spectroscopic data (1H, 13C 300 MHz, CD3OD) for 6-bromo-8,1′-dihydro-isoplysin
A (2).

Position δC, Type δH (J in Hz) COSY (1H-1H) HMBC (1H-13C)

2 126.4, CH 7.11, s - 3, 3a, 7a, 8
3 109.0, C - - -

3a 127.6, C - - -
4 121.1, CH 7.51, d (8.6) 5 6, 7a
5 123.3, CH 7.14, dd (8.6, 1.8) 4 3a, 7
6 116.6, C - - -
7 115.5, CH 7.50, d (1.8) - 3a, 5

7a 138.1, C - - -
8 28.1, CH2 3.35, m 1′ -
1′ 61.8, CH 4.62, t (4.9) 8 5′, 8
3′ 159.2, C - - -
5′ 174.9, C - - -
6′ 25.9, CH3 2.90, s - 3′

7′ 29.3, CH3 2.86, s -’ 3′, 5′

5,6-dibromo-8,1′-dihydro-isoplysin A (3) was obtained as a yellow oil. Its molecular formula
C14H15Br2N4O (9 degrees of unsaturation), was established from HRESIMS pseudo-molecular ion
peak at m/z 414.9630 (see Supplementary Materials) indicating the presence of two bromine atom
in the molecule. Analysis of the 1H and 13C NMR data for 3 and comparison with the 1H and
13C NMR data for 2 (CD3OD, Table 3) revealed a 1′,8-dihydroaplysinopsin structure close to the
above-described 6-bromo-8,1′-dihydro-isoplysin A (2), where one hydrogen was replaced by a bromine
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atom. The spectra showed two N-methyles C-6′, C-7′ (δH 2.86, 2.94; δC 25.4, 28.9), one methylene
C-8 (δH 3.73; δC 28.2), one aliphatic methine C-1′ (δH 4.60; δC 61.4), three aromatic methines
C-2, C-4, C-7 (δH 7.16, 7.96, 7.69; δC 126.6, 123.6, 117.4), five nonprotonated aromatic carbons C-3,
C-3a, C-5, C-6, C-7a (δC 109.0, 129.8, 116.9, 115.9, 137.5), one guanidine-like carbon C-3′ (δC 157.9)
and one amide carbonyl C-5′ (δC 175.8). 5,6-dibromo-8,1′-dihydro-isoplysin A (3) differed from
6-bromo-8,1′-dihydro-isoplysin A (2) by the presence of one more aromatic nonprotonated aromatic
carbon and one less aromatic methine. The chemical shifts and the multiplicity of C-4 and C-7 also
differed between compound 3 (two singlets) and compound 2 (two doublets). For compound 3,
the multiplicity of C-4 and C-7 indicated that H-4 was para to H-7. These spectroscopic features,
as well as the molecular formula, supported that the position of the proton H-5 of 2 was substituted by
a bromine in compound 3.

Table 3. Comparison of 1D NMR Spectroscopic Data (1H, 13C 300 MHz, CD3OD for (2) and
1H 500 MHz, 13C 600 MHz, CD3OD for (3)) between 6-bromo-8,1′-dihydro-isoplysin A (2) and
5,6-dibromo-8,1′-dihydro-isoplysin A (3).

Position
δH (J in Hz) δC, Type

6-Bromo-8,1′-dihydro-
isoplysin A (2)

5,6-Dibromo-8,1′-dihydro-
isoplysin A (3)

6-Bromo-8,1′-dihydro-
isoplysin A (2)

5,6-Dibromo-8,1′-dihydro-
isoplysin A (3)

2 7.11, s 7.16, s 126.4, CH 126.6, CH
3 - - 109.0, C 109.0, C

3a - - 127.6, C 129.8, C
4 7.51, d (8.6) 7.96, s 121.1, CH 123.6, CH
5 7.14, dd (8.6, 1.8) - 123.3, CH 116.9, C
6 - - 116.6, C 115.9, C
7 7.50, d (1.8) 7.69, s 115.5, CH 117.4, CH

7a - - 138.1, C 137.5, C
8 3.35, m 3.73, m 28.1, CH2 28.2, CH2
1′ 4.62, t (4.9) 4.60, t (5.3) 61.8, CH 61.4, CH
3′ - - 159.2, C 157.9, C
5′ - - 174.9, C 175.8, C
6′ 2.90, s 2.86, s 25.9, CH3 25.4, CH3
7′ 2.86, s 2.94, s 29.3, CH3 28.9, CH3

2.2. Microfouling Activity

The capacity of compounds to interfere with microfouling was assessed by screening the pure
compounds against five bacterial strains that are involved in the initial formation of the fouling
biofilm: Shewanella putrefaciens, Roseobacter litoralis, Vibrio carchariae, Vibrio natrigens and Vibrio
proteolyticus. The effects on both adhesion and growth (A and G) were studied, and the results
expressed as the minimal inhibitory concentration (MIC) are summarized in Table 4. The two new
6-bromo-8,1′-dihydro-isoplysin A (2) and 5,6-dibromo-8,1′-dihydro-isoplysin A (3) showed promising
antifouling activity against Vibrio natrigens, with MIC values of 0.01 and 1.00 µg/mL, respectively,
towards growth inhibition. Vibrio natrigens is a major component of biofilms due to its fast generation
doubling time, its biofilm producing ability and steel corrosion behavior. Thus, it has considerable
negative economic impacts on man-made immersed surfaces [12,13].

The activity of these compounds was lower towards inhibition of adhesion (respectively 100 and
>100 µg/mL for (2) and (3)). Based on MICs values and mode of action, 6-bromo-8,1′-dihydro-isoplysin
A (2) is the most potent compound as it has the ability to reduce growth when used at very low
concentration and can also affect adhesion at higher doses. Regarding the known compound,
tryptamine (5) showed promising antimicrobial activity against Vibrio carchariae with MIC value
of 1 µg/mL. This result is of high interest, as Vibrio carchariae is responsible for mass mortalities of
fish [14] and invertebrates [15]. Thus, Vibrio carchariae is considered to be a major nuisance for the
aquaculture sector [16], and new ways to stop its development are sought after.
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Table 4. Antimicrobial activities in vitro for pure isolated natural products.

Compounds
Shewanellia putrefaciens

MIC, µg/mL
Roseobacter littoralis

MIC, µg/mL
Vibrio carchariae

MIC, µg/mL
Vibrio natrigens

MIC, µg/mL
Vibrio proteolyticus

MIC, µg/mL

A G A G A G A G A G

6,6′-bis-(debromo)-
gelliusine F (1) - - - - - - - - - -

6-bromo-8,1′-dihydro-
isoplysin A (2) - 100 - - 100 - 100 0.01 - -

5,6-dibromo-8,1′-dihydro-
isoplysin A (3) - - - - - - - 1 - -

8-oxo-tryptamine (4) - - - - - - - - - -

tryptamine (5) - - - - - 1 - - - -

(E) and
(Z)-6-bromo-2′-demethyl-3′-N-
methylaplysinopsine (6 + 7)

- - - - - - - - - -

A: Adhesion inhibition; G: Growth inhibition.

2.3. Antiplasmodial Activity

All the isolated compounds were also tested against the protozoan parasite
Plasmodium falciparum (3D7 strain). The 8-oxo-tryptamine (4) and the mixture of
the known (E) and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (6, 7) exhibited
antiplasmodial activity against Plasmodium falciparum with IC50 values of 8.8 and 8.0 µg/mL
respectively while 6,6′-bis-(debromo)-gelliusine F (1), 6-bromo-8,1′-dihydro-isoplysin A
(2), 5,6-dibromo-8,1′-dihydro-isoplysin A (3) and tryptamine (5) did not show significant
antimalarial activity. Hu et al. [17] have already reported the antiplasmodial activity of (E)
and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (6, 7) together with the activity of two other
aplysinopsins, isoplysin A and 6-bromoaplysinopsin isolated from the sponge Smenospongia aurea.
Bialonska et Zjawiony [1] also reported, for 27 aplysinopsins, their biological activities, among which
the antiplasmodial activity seems to be dependent on the skeleton: all the aplysinopsins that presented
antiplasmodial activity had a double bond between C-8 and C-1′. The lack of antiplasmodial activity
for compounds (2) and (3) confirms this study. These activities are moderate compared to control
drugs, but these simple molecular scaffolds could be investigated for further pharmacomodulations in
order to improve final bioactivity.

3. Materials and Methods

3.1. General Experiment Procedures

Optical rotations were measured on a MCP 300 polarimeter (Anton Paar, Les Ulis, France) at 25 ◦C
(MeOH, c in g/100 mL). 1H and 13C NMR data were acquired with a Brucker UltraShield Avance-300
and 600 MHz spectrometers (CNRS-ICSN, Brucker, Wissembourg, France). Chemical shifts were
referenced using the corresponding solvent signals (δH 3.31 and δC 49.00 for CD3OD). The spectra
were processed using TopSpin software (TopSpin 3.5, Brucker, Wissembourg, France). HRESIMS
spectra were recorded using a Waters Acquity BEH C18, 1.7 µm, 50 × 2.1 mm column on a Waters
Micromass LCT-Premier TOF mass spectrometer (Waters, Guyancourt, France) with a Waters Acquity
UPLC system.

The sponge was lyophilized with Cosmos −80 ◦C CRYOTEC and extracted with Dionex ASE 300.
Reversed phase column chromatography separations were carried out on glass column (150 × 10 mm
i.d.) packed with Acros Organics C18-RP, 23%C, silica gel (40−63 µm). Precoated TLC sheets of silica
gel 60, Alugram SIL G/UV254 were used, and spots were visualized on the basis of the UV absorbance
at 254 nm and by heating silica gel plates sprayed with formaldehyde−sulfuric acid or Dragendorff
reagents. Analytical HPLC was carried out using a Waters Sunfire C18 (150 × 4.6 mm i.d., 5 µm)
column and was performed on an Agilent 1100 series system controller equipped with a photodiode
array detector (Serie Agilent 1100 G1315B, Agilent Technologies, Wilmington, Germany) and a mass
spectrometer detector (Serie Agilent 1100 G1956A, Agilent Technologies, Wilmington, Germany) with
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Chemstation software (Version B.04.03. Agilent Technologies, Wilmington, Germany). Preparative
HPLC was carried out using a Waters Sunfire Prep RP18 (150 × 19 mm i.d., 5 µm) column and was
performed on a Waters 600 system controller equipped with a photodiode array detector (Waters
2996, Waters, Guyancourt, France). Semi-preparative HPLC was carried out using Waters Sunfire
Prep RP18 (250 × 10 mm i.d., 5 µm) column and was performed on a Waters 600 system controller
(Waters, Guyancourt, France) equipped with photodiode array detectors (Waters 2996 and Waters 486).
All solvents were analytical or HPLC grade and were used without further purification.

3.2. Animal Material

The sponge Fascaplysinopsis reticulata (phylum Porifera, class Demospongiae, order Dictyoceratida,
family Thorectidae) was collected in May 2013 in Passe Bateau, Mayotte (12◦58,653′ S, 44◦58,949′ E at
15–17 m depth). One voucher specimen (RMNH POR 8466) was deposited in Naturalis, the Netherlands
Centre for Biodiversity. Sponge samples were frozen immediately and kept at −20 ◦C until processed.

3.3. Extraction and Isolation

The frozen sponge (28 g, dry weight) was chopped into small pieces and extracted by ASE first
with Water (×1) and then with MeOH/CH2Cl2 (1:1, v:v) (×2). After evaporating the solvents under
reduced pressure, a brown, oily residue (2.91 g) was obtained. The extract (2.90 g) was then subjected
to fractionation by C-18 SPE, eluted with a combination of Water, MeOH and CH2Cl2 of decreasing
polarity and twelve fractions were obtained (F1–F12).

Fraction F3 (543 mg). Separation of only 100 mg of this fraction was performed by preparative
HPLC (Waters Sunfire Prep C18 Column, 5 µm, 150 × 19 mm i.d., 18 mL min−1 gradient elution with
2% ACN-H2O (+0.1% formic acid) over 5 min, then 10% ACN-H2O (+0.1% formic acid) to 100% ACN
over 30 min; UV 280 nm) to furnish pure compound 1 (6,6′-bis-(debromo)-gelliusine F, 0.6 mg).

Fraction F4 (355.4 mg). Only 200 mg was subjected to preparative HPLC (Waters Sunfire Prep
C18 Column, 5 µm, 150 × 19 mm i.d., 18 mL min−1 gradient elution with 2% ACN-H2O (+0.1%
formic acid) over 5 min, then 2% ACN-H2O (+0.1% formic acid) to 100% ACN (+0.1% formic acid)
over 35 min; UV 280 nm) to give pure compounds 2 (6-bromo-8,1′-dihydro-isoplysin A, 4 mg),
3 (5,6-dibromo-8,1′-dihydro-isoplysin A, 4 mg) and 5 (tryptamine, 4.0 mg).

Fraction F5 (99.1 mg) was subjected to preparative HPLC (Waters Sunfire Prep C18 Column, 5 µm,
150 × 19 mm i.d., 18 mL min−1 gradient elution with 2% ACN-H2O (+0.1% formic acid) over 5 min,
then 2% ACN-H2O (+0.1% formic acid) to 100% ACN (+0.1% formic acid) over 45 min; UV 280 nm) to
give pure compound 1 (6,6′-bis-(debromo)-gelliusine F, 1.5 mg), 4 (8-oxo-tryptamine, 0.7 mg) and 5
(tryptamine, 3.0 mg).

Fraction F6 (51.1 mg) was subjected to semi-preparative HPLC (Waters Sunfire Prep RP18 Column,
5 µm, 250 × 10 mm i.d., 4.5 mL min−1 gradient elution with 2% ACN-H2O (+0.1% formic acid)
over 5 min, then 2% ACN-H2O (+0.1% formic acid) to 100% ACN (+0.1% formic acid) over 35 min;
UV 280 nm) to give pure compounds 2 (6-bromo-8,1′-dihydro-isoplysin A, 1.2 mg), 4 (8-oxo-tryptamine,
0.4 mg) and 5 (tryptamine, 0.6 mg).

Fraction F7 (266.8 mg) was subjected to semi-preparative HPLC (Waters Sunfire Prep RP18

Column, 5 µm, 250 × 10 mm i.d., 4.5 mL min−1 gradient elution with 2% ACN-H2O (+0.1% formic
acid) over 5 min, then 2% ACN-H2O (+0.1% formic acid) to 100% ACN (+0.1% formic acid) over
35 min; UV 280 nm) to give pure compounds 5 (tryptamine, 0.4 mg) and the mixture of 6 and 7 ((E)
and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin, 10 mg).

6,6′-bis-(debromo)-gelliusine F (1): brown oil, 1H and 13C NMR, see Table 2; HRESIMS m/z 319.2015
[M + H]+ (calcd for C20H23N4, 319.1923).

6-bromo-8,1′-dihydro-isoplysin A (2): yellow oil, α20
D 0.0 (c 0.5, MeOH); 1H and 13C NMR, see Table 2;

HRESIMS m/z 337.0483 [M + H]+ (calcd for C14H16N4O81Br, 337.0487).
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5,6-dibromo-8,1′-dihydro-isoplysin A (3): yellow oil, α20
D 0.0 (c 0.5, MeOH); 1H and 13C NMR, see Table 3;

HRESIMS m/z 414.9630 [M + H]+ (calcd for C14H15N4O79Br81Br, 414.9592).

3.4. In Vitro Antiplasmodial Assays

Activity against Plasmodium falciparum chloroquine-sensitive 3D7 strains was assessed following
the procedure already described in Frédérich et al. [18]. The parasites were obtained from MR4-BEI
Resources (Manassas, VA, US). Each compound, fraction and extract was applied in a series of eight
2-fold dilutions (final concentrations ranging from 0.8 to 100 µg/mL for an extract and from 0.08 to
10 µg/mL for a pure substance) on two rows of a 96-well microplate and were tested in triplicate
(n = 3). Parasite growth was estimated by determination of lactate dehydrogenase activity as described
previously [19]. Artemisinin (98%, Sigma-Aldrich, Saint-Louis, MO, USA) was used as positive control
with IC50 of 0.006 ± 0.002 µg/mL.

3.5. In Vitro Antimicrobial Assays

All compounds were tested against five marine bacterial strains commonly found on biofilms,
Roseobacter litoralis (ATCC 495666), Shewanella putrefaciens (ATCC 8071), Vibrio carchariae (ATCC 35084),
Vibrio natrigens (ATCC 14048) and Vibrio proteolyticus (ATCC 15338). Bacterial adhesion and growth
rates were determined according to the methods of Thabard et al. [20], Messina et al. [21] and Trepos
et al. [22]. Bacterial suspensions (100 µ aliquots, 2 × 108 colony forming units/mL) were aseptically
added to the microplate wells containing compound (0.01–10 µg/mL), and the plates were incubated
for 48 h at 26 ◦C prior to assessment of bioactivity. Media only (Marine Broth 2216, Difco) was used
as a blank. Bacterial growth was monitored spectroscopically at 630 nm. The minimal inhibitory
concentration (MIC) for bacterial growth was defined as the lowest concentration which results in
a decrease in OD, compared to the blank. The microplates were then emptied, and the bacterial
adhesion assay was performed using aqueous crystal staining method [22]. The MIC for bacterial
adhesion was defined as the lowest concentration of compound that, after 48-h incubation, produced
a decrease of the OD at 595 nm compared to the blank.

4. Conclusions

In conclusion, three new tryptophan derived alkaloids, 6,6′-bis-(debromo)-gelliusine F (1),
6-bromo-8,1′-dihydro-isoplysin A (2) and 5,6-dibromo-8,1′-dihydro-isoplysin A (3), were isolated
from Fascaplysinopsis reticulata together with four known alkaloids from the same family,
8-oxo-tryptamine (4), tryptamine (5), (E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (6)
and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (7). 6,6′-bis-(debromo)-gelliusine F
(1) was a new alkaloid with a bis-tryptamine structure and 6-bromo-8,1′-dihydro-isoplysin
A (2) and 5,6-dibromo-8,1′-dihydro-isoplysin A (3) were two new alkaloids with
1′,8-dihydroaplysinopsin structure. The 8-oxo-tryptamine (4) and the mixture of
the known (E) and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsin (6, 7) exhibited
antiplasmodial activity against Plasmodium falciparum with IC50 values of 8.8 and 8.0 µg/mL
respectively while 6,6′-bis-(debromo)-gelliusine F (1), 6-bromo-8,1′-dihydro-isoplysin A (2),
5,6-dibromo-8,1′-dihydro-isoplysin A (3) and tryptamine (5) did not show significant antimalarial
activity. The two new 6-bromo-8,1′-dihydro-isoplysin A (2) and 5,6-dibromo-8,1′-dihydro-isoplysin A
(3) showed promising antifouling activity against V. natrigens and trpyptamine (5) showed promising
antifouling activity against V. carchariae. Further isolation, structure elucidation, and structure-activity
relationship studies of this type of alkaloids are required for the development of new drugs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/
3/167/s1, Figure S1: HRMS spectrum for 6,6′-bis-(debromo)-gelliusine F (1), Figure S2: 1H NMR
(300 MHz, MeOD) spectrum for 6,6′-bis-(debromo)-gelliusine F (1), Figure S3: 13C NMR (300 MHz,
MeOD) spectrum for 6,6′-bis-(debromo)-gelliusine F (1), Figure S4: 1H-1H COSY NMR (300 MHz, MeOD)
spectrum for 6,6′-bis-(debromo)-gelliusine F (1), Figure S5: HSQC NMR (300 MHz, MeOD) spectrum

http://www.mdpi.com/1660-3397/17/3/167/s1
http://www.mdpi.com/1660-3397/17/3/167/s1
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for 6,6′-bis-(debromo)-gelliusine F (1), Figure S6: 1H-13C HMBC NMR (300 MHz, MeOD) spectrum for
6,6′-bis-(debromo)-gelliusine F (1), Figure S7: HRMS spectrum for 6-bromo-8,1′-dihydro-isoplysin A (2), Figure S8:
1H NMR (300 MHz, MeOD) spectrum for 6-bromo-8,1′-dihydro-isoplysin A (2), Figure S9: 13C NMR (300 MHz,
MeOD) spectrum for 6-bromo-8,1′-dihydro-isoplysin A (2), Figure S10: 1H-1H COSY NMR (300 MHz, MeOD)
spectrum for 6-bromo-8,1′-dihydro-isoplysin A (2), Figure S11: HSQC NMR (300 MHz, MeOD) spectrum
for 6-bromo-8,1′-dihydro-isoplysin A (2), Figure S12: 1H-13C HMBC NMR (300 MHz, MeOD) spectrum for
6-bromo-8,1′-dihydro-isoplysin A (2), Figure S13: HRMS spectrum for 5,6-dibromo-8,1′-dihydro-isoplysin A
(3), Figure S14: 1H NMR (600 MHz, MeOD) spectrum for 5,6-dibromo-8,1′-dihydro-isoplysin A (3), Figure S15:
13C NMR (600 MHz, MeOD) spectrum for 5,6-dibromo-8,1′-dihydro-isoplysin A (3), Figure S16: 1H NMR
(600 MHz, MeOD) spectrum for 8-oxo-tryptamine (4), Figure S17: 13C NMR (600 MHz, MeOD) spectrum
for 8-oxo-tryptamine (4), Figure S18: 1H NMR (300 MHz, MeOD) spectrum for tryptamine (5), Figure S19:
13C NMR (300 MHz, MeOD) spectrum for tryptamine (5), Figure S20: 1H NMR (500 MHz, DMSO) spectrum for
(E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsine (6) and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsine
(7), Figure S21: 13C NMR (500 MHz, MeOD) spectrum for (E)-6-bromo-2′-demethyl-3′-N-methylaplysinopsine (6)
and (Z)-6-bromo-2′-demethyl-3′-N-methylaplysinopsine (7).
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