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Anisotropic compressed sensing for non-Cartesian

MRI acquisitions

Philippe CIUCIU ∗ Anna KAZEYKINA †

Abstract

In the present note we develop some theoretical results in the theory of anisotropic com-
pressed sensing that allow to take structured sparsity and variable density structured sam-
pling into account. We expect that the obtained results will be useful to derive explicit
expressions for optimal sampling strategies in the non-Cartesian (radial, spiral, etc.) setting
in MRI.
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1 Introduction

The mathematical problem of compressed sensing (CS) consists in recovering a sparse signal
from a small number of measurements. More precisely, we wish to recover a vector x ∈ Cn
from a vector of measurements y = Ax, where A ∈ Cm×n is the sensing matrix and m � n.
The signal is said to be s-sparse if it has at most s non-zero entries. The recovery is usually
performed by solving the following minimization problem called basis pursuit (BP):

min
x∈Cn,y=Ax

‖x‖`1 . (1)

One of the classical CS results can be formulated as follows [7, 6, 10]. Let A0 ∈ Cn×n satisfy
the isotropy condition: A∗0A0 = I, and suppose that the measurement matrix A is constructed
by drawing m random rows of A0 in an independent uniform manner. Define the coherence
of matrix A to be µ(A) = nmaxi ‖a∗i ‖2∞, where a∗i are the rows of matrix A. This quantity
represents the coherence between the sensing and the sparsifying bases (low coherence meaning
that a vector in the sparsifying basis is approximately uniformly spread in the sensing basis).
If m & µ(A)s ln(n/ε), then an s-sparse vector x can be exactly recovered by solving (1) with
probability at least 1− ε.

In many applications (including MRI), the sensing matrix A is coherent, meaning that µ(A)
is large. It can be shown that incoherence is typically met between the standard basis and
the Fourier basis. However, natural images x have sparse representations not in the pixel basis
directly, but rather in wavelet bases, i.e. x = Ψz with z sparse, which are not incoherent with
the Fourier basis.

In practice, uniformly drawn measurements lead to very poor reconstructions. It was ob-
served, however, that MR image reconstruction from undersampled frequencies could be sig-
nificantly improved by drawing measurements according to variable densities strategies (VDS),
preferring low to high frequencies.
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VDS strategies have received a justification in the CS literature [6, 8, 9]. If the measurements

are drawn independently with the probability to draw the j-th measure equal to πj =
‖a∗j‖2∞∑n
j=1 ‖a∗j‖2∞

,

then an s-sparse vector x can be reconstructed exactly from m measurements with probability
at least 1− ε provided that m &

∑n
j=1 ‖a∗j‖2∞s ln(n/ε).

It was shown experimentally, however, that this result is not sufficient to explain the success
of CS in applications such as MRI [1]. It is in particular due to the fact that in the above result
we do not assume any structure (apart from sparsity) in the signals to be recovered. A natural
extension would be to consider the structured sparsity approach, where one assumes that some
prior information on the support S is known, e.g. sparsity by level in the wavelet domain (see
[1] for a comprehensive theory for Fourier sampling, based on isolated measurements under a
sparsity-by-levels assumption in the wavelet domain). This strategy allows to incorporate any
kind of prior information on the structure of S and to study its influence on the quality of CS
reconstructions.

Another obstacle to applying classical CS results in a large number of practical settings is
that the isolated measurements are incompatible with the physics of acquisition. For this reason,
more recent relevant contributions [5, 2] have addressed structured VDS i.e. over sampling
trajectories. This approach allows to give recovery guarantees for block-structured acquisition
with an explicit dependency on the support of the vector to reconstruct and it provides many
possibilities such as optimizing the drawing probability π or identifying the classes of supports
recoverable with block sampling strategies.

Instead of drawing rows of A0, which corresponds to probing isolated points in the frequency
domain (k-space) in the context of MRI, it was proposed in [5, 2] to draw blocks of rows,
which corresponds to drawing independent Cartesian lines in k-space. This framework does not
cover, however, the case of non-Cartesian acquisition, e.g. acquisition along radial spokes, whose
intersection is given by the center of k-space, or more complex trajectories often used in MRI
(spiral or non-parametric SPARKLING trajectories, see Figure 1).

One important aspect of the non-Cartesian setting from the CS theory viewpoint is that
when frequencies of the Fourier transform are not taken to be in Zd, then the corresponding
matrix A0 no longer fulfills the condition A∗0A0 = I. The isotropy condition is violated in the
non-Cartesian setting leading to the necessity to develop a theory for anisotropic CS.

Some classical CS results were extended to the anisotropic setting in [12]. The authors pro-
vided a theoretical bound on the number of measurements necessary for the exact reconstruction
of a sparse vector x in the case of uniform isolated measurements. Another recent paper [3] on
anisotropic CS extends the results of [12] to the infinite-dimensional setting.

In the present work we propose to combine the approaches of [12] and [5, 2] to develop
anisotropic CS results that take structured sparsity and variable density structured acquisition
into account.

The present note is organised as follows. In section 2 we introduce the notation. In section
3 we present the main result. In section 4 we give the proof of the main theorem. In section
5 we present formulas for optimal sampling densities in the case of isolated measurements and
block-structured sampling. The Appendix contains some classical results of probability theory
and compressed sensing theory that are used in the proofs of section 4.

Acknowledgements. This work was carried out during a one-year Inria delegation of A. Kazeykina
in the Parietal team of Inria at NeuroSpin, CEA Saclay.
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Figure 1: Examples of some non-Cartesian trajectories used in CS to accelerate the acquisition:
(a) radial trajectory [13], (b) spiral trajectory, (c) TWIRL: the first combination of radial and
spiral trajectories for 2D acquisitions [11], (d) TWIST: a 3D extension of the TWIRL method
[4], (e) FLORET: a 3D non-Cartesian sampling pattern based on the combination of radial and
spiral, (f) SPARKLING: a trajectory approximating a target variable density and satisfying
physical constraints [14].

2 Notation

Let n ∈ N and dk ∈ N, k = 1, . . . ,M , such that
∑M

k=1 dk = n. Let Bk ∈ Cdk×n and construct
matrix A0 ∈ Cn×n by stacking the blocks Bk on top of each other: A0 = (Bk)Mk=1. Matrix A0

represents the set of possible measurements imposed by a specific sensor device. We will assume
that A∗0A0 is invertible.

The sensing matrix A is constructed by drawing randomly blocks of rows of matrix A0. More
precisely, let B be a random variable taking values Bk/

√
πk with probabilities πk, k = 1, . . . ,M .

For m ≤M let B1, . . . , Bm be i.i.d. copies of the random block B. The random sensing matrix
is constructed as follows:

A =
1√
m

(Bl)
m
l=1. (2)

Define
X = (E[B∗B])−1.

Note that X exists since E[B∗B] = A∗0A0 that we assumed to be invertible. Note also that if
A0 satisfies the isotropy condition A∗0A0 = In, where In ∈ Cn×n is the identity matrix, then
X = In.

Let S ⊂ {1, 2, . . . , n}. Denote Sc = {1, . . . , n}\S. Define PS to be the matrix of the linear
projection x 7→ PSx, where PSx is the restriction of x to the components in S. Define quantities
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ΘS , ΛS to be positive numbers such that

ΘS ≥
√
‖B∗BXP ∗S‖∞→∞‖PSXB∗B‖∞→∞ a.s. (3)

ΛS ≥ ‖PSXB∗BP ∗S‖2→2 a.s. (4)

Note that

‖PSXB∗BP ∗S‖2→2 ≤
√
‖PSXB∗BP ∗S‖1→1‖PSXB∗BP ∗S‖∞→∞ =√

‖PSB∗BXP ∗S‖∞→∞‖PSXB∗BP ∗S‖∞→∞ ≤
√
‖B∗BXP ∗S‖∞→∞‖PSXB∗B‖∞→∞ ≤ ΘS ,

and thus, if ΛS is taken as the least upper-bound, then

ΛS ≤ ΘS . (5)

Note that in the isotropic case (X = In) ΘS defined by (3) does not coincide with the
quantity Θ(S) introduced in [5, 2]. That is due to the fact that a straightforward generalisation
of the definition used in [5, 2] to the anisotropic case does not preserve the relation (5) verified
in the isotropic case. To preserve this relation in the anisotropic case we prefer to consider a
symmetrised version of Θ.

We will denote by (ei)
n
i=1 the canonical basis of Rn.

Finally, for a number x ∈ C we denote

sgn(x) =

{
x
|x| , x 6= 0,

0, x = 0

and for a vector x ∈ Cn we define sgn(x) = (sgn(xj))
n
j=1.

3 Main result

Theorem 1. Let x ∈ Rn or Cn be a vector supported on S, such that sgn(xS) forms a
Rademacher or a Steinhaus sequence. Let A be the random sensing matrix defined by (2) asso-
ciated with parameter ΘS. Suppose we are given the data y = Ax. Then, given 0 < ε < 1 and
provided that

m > cΘS(ΘS + 2) ln2

(
8n

ε

)
(6)

for c a numerical constant, the vector x is the unique minimizer of the basis pursuit problem (1)
with probability at least 1− ε.

Remark 1. Note that the analogous result in the isotropic case (see Theorem 3.3 of [2]) ensures
the exact reconstruction of x provided that m & Θ ln2 (6n/ε). The possibility to obtain a bound
in Θ rather than in Θ2 is due to the presence of additional symmetries that can be efficiently
exploited in the isotropic case (see also Remark 2).

4 Proof

The proof of Theorem 1 is based on the following proposition.

Proposition 1. For x ∈ CN with support S if
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(i) PSXA
∗AP ∗S is injective,

(ii)
∣∣〈(PSXA∗AP ∗S)−1PSXA

∗Ael, sgn(xS)〉
∣∣ < 1 ∀l ∈ Sc,

then the vector x is the unique solution of (1).

Proof This proposition is a corollary of Theorem 4.26 of [10] that we formulate as Theorem 2
of the Appendix (see also Corollary 4.28 of [10]).

Indeed, consider the condition (ii) of Theorem 2. First of all, we note that the fact that
PSXA

∗AP ∗S is injective implies that AP ∗S is injective. Next, take

h = AXP ∗S(PSA
∗AXP ∗S)−1 sgn(xS)

where (PSA
∗AXP ∗S)−1 exists due to assumption (i) of the proposition (indeed PSA

∗AXP ∗S is
the adjoint of the matrix PSXA

∗AP ∗S which is invertible because it is square and injective).
Then the condition PSA

∗h = sgn(xS) is satisfied. Further, the condition |(A∗h)l| < 1, l ∈ Sc
is rewritten as |〈Ael, h〉| < 1, l ∈ Sc, which is satisfied if (ii) of Proposition 1 is satisfied.

We now formulate and prove two Lemmas that will be used in the proof of Theorem 1.

Lemma 1. For every S ⊂ {1, 2, . . . , n} with |S| = s and for every δ > 0, the following holds

P(‖PSXA∗AP ∗S − Is‖2→2 ≥ δ) ≤ 2s exp

(
− mδ2

4ΛS(2ΛS + δ/3)
.

)
Proof. Let

Mi = PSXB
∗
iBiP

∗
S and Xi :=

1

m
(Mi − EMi) , i = 1, 2, . . . ,m.

Then PSXA
∗AP ∗S − Is =

∑m
i=1Xi.

We have the following estimate:

‖Xi‖22→2 =
1

m2
sup
‖x‖2≤1

‖(Mi − EMi)x‖22 ≤
4Λ2

S

m2
=: K2.

Consider
∑m

i=1 EX∗iXi, this matrix being self-adjoint we have

σ2
1 := ‖

m∑
i=1

EX∗iXi‖2→2 = sup
‖x‖2≤1

m∑
i=1

〈x,EX∗iXix〉.

Since

〈x,X∗iXix〉 ≤
4Λ2

S

m2
,

we have that σ2
1 ≤

4Λ2
S

m . In a similar way,

σ2
2 := ‖

m∑
i=1

EXiX
∗
i ‖2→2 ≤

4Λ2
S

m
.

Finally, the required result follows from Proposition 4 of Appendix; it suffices to set t = δ,
B = K = 2ΛS

m .

Lemma 2. Let S ⊂ {1, 2, . . . , n}. Then, for every t > 0

P(max
i∈Sc
‖PSXA∗Aei‖2 ≥ ΘS/

√
m+ t) ≤ n exp

(
− mt2/2

4Θ2
S + 4Θ2

S/
√
m+ 2ΘSt/3

)
.
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Proof. Fix i ∈ Sc and define Nj = PSXB
∗
jBj , Yj = 1

m(Njei − ENjei) and Z = ‖
∑m

j=1 Yj‖2.
Note that EYj = 0.

First, due to the definition of ΘS , we can estimate

‖Njei‖2 = |〈N∗jNjei, ei〉| ≤ ‖N∗jNjei‖2 ≤ ‖N∗jNjei‖1 ≤ ‖N∗jNj‖∞→∞ ≤
‖N∗j ‖∞→∞‖Nj‖∞→∞ ≤ Θ2

S , (7)

which is due to the following:
‖M‖∞→∞ = max

i
‖e∗iM‖1.

Thus the following estimate is true: ‖Yj‖2 ≤ 2ΘS/m =: K.
The next required estimate is obtained by using the Cauchy-Schwarz inequality and (7):

sup
‖x‖2≤1

m∑
j=1

E|〈x, Yj〉|2 =
1

m2
sup
‖x‖2≤1

m∑
j=1

E|〈x,Njei − ENjei〉|2 ≤

≤ 1

m2
sup
‖x‖2≤1

m∑
j=1

E‖x‖22(‖Njei‖2 + E‖Njei‖2)2 ≤
4Θ2

S

m
=: σ2.

We use the independence of the vectors Yj and the fact that they have zero mean value to
get the following estimate:

(EZ)2 ≤ EZ2 = E‖
m∑
j=1

Yj‖22 =
m∑
j=1

E‖Yj‖22 +
m∑
j=1

∑
k 6=j
〈EYj ,EYk〉 =

m∑
j=1

E‖Yj‖22.

Now we use (7) again to estimate:

m∑
j=1

E‖Yj‖22 =
1

m2

m∑
j=1

E‖Njei−ENjei‖22 =
1

m2

m∑
j=1

(E‖Njei‖22−‖ENjei‖22) ≤ 1

m2

m∑
j=1

E‖Njei‖22 ≤
Θ2
S

m
,

which implies

EZ ≤
√

Θ2
S/m =: µ.

The result then follows from Proposition 5 of Appendix and a union bound.

Remark 2. Note that for X = In the estimates of Lemmas 1, 2 are looser than those obtained
for the isotropic case in [2] (see Lemmas C.1, C.2 of [2]; note Λ2 instead of Λ and Θ2 instead of
Θ in our results). That is due to the fact that in the isotropic case it is possible to exploit some
extra symmetries to obtain tighter estimates.

Proof of Theorem 1. We follow the reasoning proposed in [2].

By Lemma 1, condition (i) of Proposition 1 fails with probability not higher than 2s exp
(

m
4ΛS(2ΛS+1/3)

)
.

The latter expression is bounded by ε
4 provided that

m ≥ 4ΛS(2ΛS +
1

3
) ln

(
8s

ε

)
.
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Now let us study when condition (ii) of Proposition 1 fails. DenoteA†S = (PSXA
∗AP ∗S)−1PSXA

∗.
Then, by union bound,

P((ii) fails ) = P
(
∃ l ∈ Sc :

∣∣∣〈A†SAel, sgn(xS)〉
∣∣∣ ≥ 1

)
≤ P

(
∃l ∈ Sc :

∣∣∣〈A†SAel, sgn(xS)〉
∣∣∣ ≥ 1 and max

l∈Sc
‖A†SAel‖2 ≤ α

)
+ P

(
max
l∈Sc
‖A†SAel‖2 ≥ α

)
≤
∑
l∈Sc

P
(∣∣∣〈A†SAel, sgn(xS)〉

∣∣∣ ≥ α−1‖A†SAel‖2 and max
l∈Sc
‖A†SAel‖2 ≤ α

)
+ P

(
max
l∈Sc
‖A†SAel‖2 ≥ α

)
≤ 2n exp

(
− 1

2α2

)
+ P

(
max
l∈Sc
‖A†SAel‖2 ≥ α

)
,

where the last bound is due to Hoeffding type inequality for Rademacher or Steinhaus sequence
(see Propositions 6, 7: we take al to be equal to (PSXA

∗AP ∗S)−1PSXA
∗Ael and we set u = α−1,

λ = 1
2 ).

Now we study the second term. Note that

‖A†SAel‖2 = ‖(PSXA∗AP ∗S)−1PSXA
∗Ael‖2 ≤ ‖(PSXA∗AP ∗S)−1‖2→2‖PSXA∗Ael‖2.

Take 0 < δ < 1 and t̃ > 0. Denote s = |S|. Let A be the event that ‖PSXA∗AP ∗S −
Is‖2→2 < δ and let B be the event that maxi∈Sc ‖PSXA∗Aei‖2 < t̃. Note that A implies that
‖(PSXA∗AP ∗S)−1‖ < 1

1−δ .

Set α = t̃
1−δ .Then A∩B implies that maxl∈Sc ‖A†SAel‖2 < α, and so maxl∈Sc ‖A†SAel‖2 ≥ α

means that Ac ∪ Bc holds, where Ec denotes the event complementary to E . Thus we get the
following estimate

P(max
l∈Sc
‖A†SAel‖2 ≥ α) ≤ P(‖PSXA∗AP ∗S − Is‖2→2 ≥ δ) + P(max

i∈Sc
‖PSXA∗Aei‖2 ≥ t̃).

Define

P1 = 2n exp

(
− 1

2α2

)
, P2 = P(‖PSXA∗AP ∗S−Is‖2→2 ≥ δ), P3 = P(max

i∈Sc
‖PSXA∗Aei‖2 ≥ t̃).

By Lemma 1 the probability P2 is bounded by 2s exp
(
− mδ2

4ΛS(2ΛS+δ/3)

)
. Thus it can be

majorised by ε
4 if

m ≥ 4ΛS(2ΛS + δ/3)

δ2
ln

(
8s

ε

)
. (8)

Now take t̃ = ΘS√
m

+ t for some t > 0. By Lemma 2 probability P3 is bounded by ε
4 , if

m ≥ 8

t2
ΘS(ΘS + ΘS/

√
m+ t/6) ln

(
4n

ε

)
.

If we assume that m ≥ Θ2
S , then we can write that P3 is bounded by ε

4 , if

m ≥ 8

t2
ΘS(ΘS + 1 + t/6) ln

(
4n

ε

)
. (9)

Finally, set t = δ, assume

m ≥ cΘ2
S ln

(
8n

ε

)
, for some constant c > 0, (10)
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and choose δ =
√

1
c′ ln( 8n

ε )
with min(c′, c) ≥ 16. Then P1 is bounded by ε

4 if

2n exp

(
− (1− δ)2

2(ΘS/
√
m+ δ)2

)
≤ ε

4
⇔ (1− δ)2

2(ΘS/
√
m+ δ)2

≥ ln

(
8n

ε

)
.

The latter condition is satisfied due to assumption (10) and the choice of δ. Indeed, due to (10)
we have that

ΘS√
m
≤ 1√

c ln
(

8n
ε

)
and thus, due to the definition of δ,(

ΘS√
m

+ δ

)2

≤ 4

min(c, c′) ln
(

8n
ε

) ,
which implies that

(1− δ)2

2(ΘS/
√
m+ δ)2

≥ min(c, c′)

8
ln

(
8n

ε

)
(1− δ)2 ≥ ln

(
8n

ε

)
.

Plugging the chosen value of δ into (8), we obtain that it suffices to take

m ≥ 64ΛS(2ΛS + 1) ln

(
8n

ε

)
ln

(
8s

ε

)
,

m ≥ 128ΘS(ΘS + 2) ln2

(
8n

ε

)
for (BP) to have a unique solution with probability 1− ε. If we choose ΛS in the definition (4)
to be the least upper-bound, then the inequality (5) implies that it suffices to choose m verifying
(6) to guarantee the result of Theorem 1.

5 Optimal sampling strategies

In this Section we derive formulas for probabilities πk minimising the quantity ΘS defined by
(3) and arising in the bound (6).

We consider the following two principal sampling strategies.

• Isolated measurements

Let (a∗i )1≤i≤n ∈ Cn be a set of row vectors. Set M = n, dk = 1 for all k and Bk = a∗k.
This setting represents isolated measurements in MRI.

• Block-structured sampling Let (a∗i )1≤i≤n ∈ Cn be a set of row vectors and let (Ik)1≤k≤M
denote a partition of the set {1, . . . , n}. The rows (a∗i ) are then partitioned into blocks
(Dk)1≤k≤M : Dk = (a∗i )i∈Ik . In this setting dk = |Ik| and Bk = Dk. This setting corre-
sponds to sampling blocks of measurements in MRI.

Define

c1
S,k = ‖ak‖∞‖a∗kXP ∗S‖1, c2

S,k = ‖PSXak‖∞‖a∗k‖1, k = 1, . . . , n.

8



Proposition 2. In the setting of isolated measurements the probability minimising ΘS is

πΘS
k =

√
c1
S,kc

2
S,k∑n

k=1

√
c1
S,kc

2
S,k

, k = 1, 2, . . . , n.

The corresponding ΘS is given by

ΘS =

n∑
k=1

√
c1
S,kc

2
S,k.

Define

C1
S,k = ‖D∗kDkXP

∗
S‖∞→∞, C2

S,k = ‖PSXD∗kDk‖∞→∞, k = 1, . . . ,M.

Proposition 3. In the setting of block-structured sampling the probability minimising ΘS is

πΘS
k =

√
C1
S,kC

2
S,k∑M

k=1

√
C1
S,kC

2
S,k

, k = 1, 2, . . . ,M.

The corresponding ΘS is given by

ΘS =
M∑
k=1

√
C1
S,kC

2
S,k.

The proof of Propositions 2 and 3 follows from Lemma D1 of [2].

Remark 3. Note that for X = In we do not find the same expressions for πΘS as those presented
in [2] for the isotropic case, but rather their symmetrised versions. That difference is due to the
difference in the definition of Θ explained in Section 2.

6 Conclusion

In the anisotropic setting we provided a theoretical bound on the number of measurements that
are needed to reconstruct a sparse signal with large probability. The bound is given in terms
of a quantity that allows to take into account a priori information on the sparsity structure of
the signal and to apply variable density block-structured sampling strategies. We have provided
general formulas for probability distributions optimising the obtained theoretical bound. We
hope that these formulas can be further analysed to derive explicit expressions for optimal
sampling densities in the context of non-Cartesian MRI.

Appendix

Proposition 4. (Matrix Bernstein inequality [15])
Consider a finite sequence {Mk} ∈ Cd×d of independent random matrices. Assume that each

random matrix satisfies E[Mk] = 0 and ‖Mk‖ ≤ B a.s. and define

σ2 = max

{
‖
∑
k

E(MkM
∗
k )‖2→2, ‖

∑
k

E(M∗kMk)‖2→2

}
.
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Then for all t ≥ 0,

P

(
‖
∑
k

Mk‖2→2 ≥ t

)
≤ 2d exp

(
− t2/2

σ2 +Bt/3

)
.

Proposition 5. (Vector Bernstein inequality [2])
Consider a set of independent random vectors Y1, Y2, . . . , Ym such that

EYi = 0, ‖Yi‖2 ≤ K a.s. ∀i = 1, . . . ,m,

and let σ, µ > 0 such that

sup
‖x‖2≤1

m∑
i=1

E|〈x, Yi〉|2 ≤ σ2, EZ ≤ µ, where Z := ‖
m∑
i=1

Yi‖2.

Then for every t > 0 the following holds:

P(Z > µ+ t) ≤ exp

(
− t2/2

σ2 + 2Kµ+ tK/3

)
Proposition 6. (Hoeffding’s bound for Rademacher sequence [10]) Let a ∈ CM and ε =
(ε1, ε2, . . . , εM ) be a Rademacher sequence.Then

P

(
M∑
i=1

|εiai| ≥ u‖a‖2

)
≤ 2 exp(−u2/2) ∀u > 0.

Proposition 7. (Hoeffding-type bound for Steinhaus sequence [10]) Let a ∈ CM and ε =
(ε1, ε2, . . . , εM ) be a Steinhaus sequence.Then for any 0 < λ < 1

P

(
M∑
i=1

|εiai| ≥ u‖a‖2

)
≤ 1

1− λ
exp(−λu2) ∀u > 0.

Theorem 2. (Theorem 4.26 of [10]) Given a matrix A ∈ Cm×N , a vector x ∈ CN with support S
is the unique minimizer of ‖z‖1 subject to Az = Ax if one of the following equivalent conditions
holds:

(i) ∣∣∣∣∣∣
∑
j∈S

sgn(xj)vj

∣∣∣∣∣∣ < ‖vSc‖1 for all v ∈ kerA\{0},

(ii) AP ∗S is injective and there exists a vector h ∈ Cm such that

(A∗h)j = sgn(xj), j ∈ S, |(A∗h)l| < 1, l ∈ Sc.
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