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Abstract: Total and organic mercury concentrations were determined for males, 

females and juveniles of Euphausia superba collected at three discrete locations in 

the Scotia Sea (the South Orkney Islands, South Georgia and the Antarctic Polar 

Front) to assess spatial mercury variability in Antarctic krill. There was clear 

geographic differentiation in mercury concentrations, with specimens from the South 

Orkneys having total mercury concentrations 5 to 7 times higher than Antarctic krill 

from South Georgia and the Antarctic Polar Front. Mercury did not appear to 

accumulate with life-stage since juveniles had higher concentrations of total mercury 

(0.071 µg g-1 from South Orkney Islands; 0.015 µg g-1 from South Georgia) than 

adults (0.054 µg g-1 in females and 0.048 µg g-1 in males from South Orkney Islands; 

0.006 µg g-1 in females and 0.007 µg g-1 in males from South Georgia). Results 

suggest that females use egg laying as a mechanism to excrete mercury, with eggs 

having higher concentrations than the corresponding somatic tissue. Organic 

mercury makes up a minor percentage of total mercury (15 to 37%) with the 

percentage being greater in adults than in juveniles. When compared to euphausiids 

from other parts of the world, the concentration of mercury in Antarctic krill is within 

the same range, or higher, highlighting the global distribution of this contaminant. 

Given the high potential for biomagnification of mercury through food webs, 

concentrations in Antarctic krill may have deleterious effects on long-lived Antarctic 

krill predators. 

 

Capsule: Mercury concentrations in Antarctic krill decrease along life stage (females 

use egg laying to excrete mercury) and vary along the Scotia Sea. 

 

Keywords: Food-web; Eggs; Organic Mercury; Southern Ocean, Antarctica 
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Introduction 

Mercury contamination in the environment has been acknowledged as a global 

problem, and the production and use of this element is nowadays very strictly 

regulated and limited (Selin, 2009; UNEP, 2013). Pathways of dispersion through 

ecosystems, including in the Antarctic, of this long-range contaminant are complex 

(Streets et al., 2009). Interplay between the distinctive Antarctic atmosphere and the 

seasonal sea-ice cycle in the Southern Ocean generates a unique combination 

environmental factors that can explain why the remote Southern Ocean has some of 

the highest reported concentrations of organic mercury (i.e. compounds containing 

covalent bonds between carbon and mercury) in open waters (Cossa et al., 2011). 

Due to its high affinity for proteins (Bustamante et al., 2006), organic mercury is the 

most toxic form of the element (Clarkson, 1992). It accumulates in aquatic organisms 

and biomagnifies within food webs, being toxic for top predators (Ackerman et al., 

2014; Chouvelon et al., 2012; Coelho et al., 2010; Dehn et al., 2006) with 

consequences at the population level (Goutte et al., 2014a; 2014b). Wandering 

albatrosses are an example of this biomagnification effect in Antarctica, as it was 

found that they had some of the highest concentration of total mercury (from now on 

noted as mercury) in marine birds (up to 24.80 ± 8.61 µg g-1 dry weight) (Cherel et 

al., 2018; Tavares et al., 2013). 

In the Southern Ocean, Antarctic krill, Euphausia superba, is a key species in 

the marine food webs connecting primary producers and higher predators (Everson, 

2000). It has an estimated biomass of around 379million tonnes (Atkinson et al., 

2009) and being the main food for many vertebrates (Murphy et al., 2007; Xavier and 

Peck, 2015). For example, minke whales, Balaenoptera acutorostrata and Crabeater 

seals, Lobodon carcinophaga, feed almost exclusively (>95 %) on Antarctic krill 
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(Adam, 2005; Armstrong and Siegfried, 1991; Croll and Tershy, 1998; Dimitrijević et 

al., 2018; Perrin et al., 2008). Chinstrap penguins, Pygoscelis antarctica, Gentoo 

penguins, Pygoscelis papua, and other species of penguins, in the Southern Ocean, 

also feed mostly on Antarctic krill (Dimitrijević et al., 2018; Xavier et al., 2018) with 

values around 1.2 kg d-1 (Croll and Tershy, 1998). Finally, Antarctic krill is the most 

harvested species in the Southern Ocean, with > 260 000 tonnes fished in 2016, 

regulated under the Convention for the Conservation of Antarctic Living Resources 

(Nicol et al. 2000; Tou et al. 2007; CCAMLR 2017).  

In the context of environmental change (Constable et al., 2014; Cossa, 2013; 

Gutt et al., 2015), it is important to evaluate the impact of contaminants like mercury, 

particularly in a remote and presumably less impacted environments such as 

Antarctica with the associated risk to Southern Ocean top predators. This approach 

will contribute to a more in-depth knowledge of mercury bioaccumulation dynamics, 

in an effort towards the preservation of Antarctica ecosystems into the future (Rintoul 

et al., 2018; Seewagen, 2010). Despite the major role of Antarctic krill in the Southern 

Ocean, there are only a few studies reporting mercury concentrations in this region 

(Bargagli et al., 1998; Brasso et al., 2012b; Locarnini and Presley, 1995; Moren et al., 

2006). Indeed, to our knowledge, no studies have ever analysed organic mercury 

content in Antarctic krill. Assessing the levels of organic mercury in such an important 

prey as Antarctic krill is crucial to better understand the pathway of this contaminant 

through Southern Ocean food webs. In this context, this study compares the total and 

organic mercury of Antarctic krill from three different locations: the South Orkney 

Islands, an Antarctic island group which experiences winter sea ice (Murphy et al., 

1995); South Georgia, a sub-Antarctic island free of sea ice (Rogers et al., 2015); 

and the Antarctic Polar Front, a transition area from the Southern Ocean to the 
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Atlantic Ocean with warmer waters (Dong et al., 2006). Under this context, 

differences among life stages (eggs, juveniles, adults) and sexes (males and 

females), were assessed and interpreted in the scope of a possible biomagnification 

of mercury in the Antarctic trophic web. 

 

Material and methods  

Sampling 

Antarctic krill Euphausia superba were collected from the British research vessel 

RRS James Clark Ross during the austral summers of 2007/08, 2015/16 and 

2016/17 (cruises JR177, JR15004 and JR16003 respectively). The three cruises 

sampled three areas of the Scotia Sea (Figure 1) with different oceanic 

characteristics. JR16003 had one sampling point at the Antarctic Polar Front. Both 

JR16003 and JR177 sampled predominantly around South Georgia, and JR15004 

sampled around the South Orkney Islands. 

Samples were collected from the water column using an 8 m2 mouth-opening 

Rectangular Midwater Trawl (RMT8; mesh size reducing from 4.5 mm to 2.5 mm in 

the cod end) (Roe and Shale, 1979). The net was rigged with two nets that could be 

remotely opened and closed at different depths. The RMT8 was used to target 

particularly Antarctic krill swarms and other layers of interest (e.g. fish layers) 

identified by the vessel scientific echosounder system (i.e. Simrad EK60/EK80 

operating between 38 and 200 kHz). 

Antarctic krill in the catches were identified and total length (TL) of each 

individual was measured, from the anterior edge of the eye to the tip of the telson 

and rounded down (Morris et al., 1992). Sex and maturity stage were determined with 

reference to the presence of a petasma (males), thelycum (females) or absent 
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(juveniles; individuals without visible external sexual characteristics) (Ross and 

Quetin, 2000). Samples were either preserved in sample bags at -20ºC (JR15004 

andJR16003) or on vials in ethanol (for JR177) (Fort et al., 2016).  

 

Laboratory procedures 

Prior to the mercury analysis, all samples were freeze-dried for at least 24 hours. The 

eggs of females (Maturity stage III) (Ross and Quetin, 2000) from JR177 (South 

Georgia) were removed under the microscope before freeze-drying.  

Figure 1 – Sampling sites of Antarctic krill (white square – samples of juveniles, 
females and males; white dot – samples of juveniles ) and general positions of the 

Subantarctic Front (SAF), Polar Front (PF) and the Southern boundary of the 
Antarctic Circumpolar Current Front (SACCF) (Sallé et al., 2008). 
 

Dried individuals and tissues were homogenized and analysed for total mercury by 

thermal decomposition atomic absorption spectrometry with gold amalgamation, 
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using a LECO AMA-254 (Advanced mercury analyser) following (Coelho et al., 2008). 

Organic mercury was determined through digestion with a mixture of 18 % potassium 

bromide (KBr) in 5 % sulfuric acid (H2SO4), followed by extraction of organic mercury 

into toluene as described in (Válega et al., 2006). Analytical quality control was 

performed using certified reference material (CRM; in this case TORT-2 and TORT-3 

[lobster hepatopancreas, National Research Council, Canada]). The obtained values 

(mean ± SD) for the whole of the CRM analyses ranged from 81 to 102 % (TORT-2: 

87 ± 3 %, n = 41; TORT-3: 90 ± 8 %, n = 27), results were corrected using the daily 

recovery efficiency of CRMs. The mass of CRM used for quality control analyses was 

adjusted to be within the range of total mercury (in ng) present in the samples. 

Analyses were performed in duplicate, blanks were analysed at the beginning of 

each set of samples and the coefficient of variation between replicates never 

exceeded 10%. CRMs were also used to validate organic mercury analyses, with an 

extraction efficiency of 80 ± 2 % and 98 ± 5 %, respectively. The limit of detection for 

this analytical method is 0.00001 µg g-1 of absolute mercury and 0.004 µg g-1 for 

organic mercury. All concentration data are expressed subsequently in µg g-1 dry 

weight.  

 

Statistical analysis 

Wilcoxon test were used to investigate whether there were any differences in 

mercury concentrations between females and males, between eggs and females, or 

between sampling sites. Kruskall-Wallis were performed to examine if there were 

statistical differences between sex/maturity and location. Linear regressions were 

calculated to examine possible relationships between Antarctic krill length and 
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individual mercury concentration. All analyses were performed using the R software 

version 3.4.2 (R Core Team, 2013). All values are presented as mean ± SD. 

 

Results 

Total mercury concentrations in Antarctic krill according to geographic areas 

Total mercury concentrations varied between 0.054  0.018 µg g-1 in females, 0.048 

 0.011 µg g-1 in males and 0.071  0.023 µg g-1 in juveniles from the South Orkney 

Islands to 0.006  0.002 µg g-1 in females, 0.007  0.002 µg g-1 in males and 0.014  

0.005 µg g-1 in juveniles from the South Georgia and 0.017  0.006 µg g-1 in juveniles 

from the Antarctic Polar Front. 

There was a clear differentiation in mercury concentrations between the three 

locations (Figure 2): Adult Antarctic krill from the South Orkney Islands had 

concentrations of mercury about 7 times higher in females (Wilcoxon rank sum test, 

W = 120, p< 0.001) and males (Wilcoxon rank sum test, W =120, p< 0.001) than adult 

Antarctic krill from South Georgia, and juveniles showed concentrations around 5 

times higher in the South Orkney Islands (Kruskall-Wallis, H 3 = 41.03, p< 0.001) than 

those collected at South Georgia and the Antarctic Polar Front. Juveniles from the 

northern locations (South Georgia and Antarctic Polar front) had similar mercury 

concentrations (Wilcoxon rank sum test, W = 192, p= 0.093).  

 

Total mercury concentrations in Antarctic krill according to life stage 

There were significant differences (Wilcoxon signed rank test, Z= -3.351p = 0.001) 

between the mercury concentrations in the eggs (0.015  0.002 µg g-1) and the 

corresponding female somatic tissue (0.008  0.003 µg g-1) from South Georgia 

(Figure 2). There were no significant differences (Wilcoxon rank sum test, W = 189, p 
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= 0.071) between the females sampled in 2007/08 and 2016/17 at South Georgia 

(0.007  0.002 µg g-1). Juveniles caught around South Georgia (0.014  0.005 µg g-1) 

had significantly higher mean concentration of mercury than adults (0.007  0.002 µg 

g-1; Kruskall-Wallis H = 41.031, p < 0.01 ) from the same region. Juveniles and eggs 

from South Georgia also had similar concentrations (Wilcoxon rank sum test, W = 

205, p = 0.254). Like in juveniles from South Georgia, juveniles caught at the South 

Orkney Islands (0.071  0.024 µg g-1) also had significantly higher mercury 

concentrations than adults (0.051  0.015 µg g-1; Kruskall-Wallis H = 10.048, p 

=0.07). 

Significant negative correlations of mercury concentration with body size was 

common to both the South Orkney Islands and South Georgia (Y = -0.0124*X – 

1.525, R2= 0.46, F1, 43= 36.41, p < 0.001 from South Georgia; Y = -0.01072*X - 

0.8675, R2= 0.2746, F1, 52= 19.69, p < 0.001 from South Orkney Islands) meaning 

that bigger individuals had lower mercury concentrations (Figure 3). It was not 

possible to discern if such a relationship also existed at the Antarctic Polar Front, 

since 

only 

juveniles were found at this location. 
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Figure 2- Total mercury concentrations (µg g-1 dw) in Antarctic Krill (Euphausia 
superba) collected around South Georgia and at the Antarctic Polar Front in the 
austral summer of 2016/17, and around the South Orkney Islands during the 
austral summer of 2015/16. Bars show the mean. Error bar is 1 standard deviation. 
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Figure 3 – Total mercury concentration (µg g-1 dw) on a log10 scale versus total length (mm) for individual 
Antarctic krill (Euphausia superba) by maturity stage and sex respectively. Data are shown separately for krill 
collected around South Georgia (Y = -0.0124*X – 1.525, R2= 0.46, F1, 43= 36.41, p < 0.001), the Antarctic Polar 
Front (both in the austral summer of 2016/17) and the South Orkney Islands (Y = -0.01072*X - 0.8675, R2= 
0.2746, F1, 52= 19.69, p < 0.001; summer of 2015/16). 
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Total mercury concentrations in Antarctic krill according to sex 

Concentrations of mercury in adult females (0.054  0.018 µg g-1) and males (0.048  

0.011 µg g-1) from South Georgia were similar (t28= 0.9323, p= 0.4; Figure 2). There 

were also no differences in mercury concentration between sexes in the samples 

collected from the South Orkney Islands (t27 = 0.917, p= 0.4; Figure 2). 

 

Organic mercury in Antarctic krill 

Adult Antarctic krill from the South Orkney Islands had higher concentrations of 

organic mercury than adults from South Georgia (Table 1) (for both males and 

females), but concentrations in juveniles were similar between the two locations. 

While no significant differences between juveniles, males and females were observed 

in the South Orkney Islands, juveniles in South Georgia had higher organic mercury 

concentrations than adults. 

Organic mercury percentages in Antarctic krill were lower in the South Orkney 

Islands (15% in juveniles, 16% in females and 21% in males) than at South Georgia 

(29% in juveniles, 37% in females and 36% in males) and the Antarctic Polar Front 

(35% in juveniles; Table 1). Adults had slightly higher organic mercury percentages 

than juveniles (Table 1). 
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Table 1 – Organic mercury (OHg) and total mercury (THg) concentrations in samples 
of Antarctic krill (Euphausia superba) collected from different locations in the Scotia 

Sea during the austral summers of 2015/16 and 2016/17. Average  Standard 
deviation 

 

Discussion  

Despite some studies reporting mercury levels in Antarctic krill (Bargagli et al., 1998; 

Brasso et al., 2012b; Locarnini and Presley, 1995; Moren et al., 2006), there has 

remained a gap in knowledge regarding variability in mercury concentration by size, 

gender and location. Furthermore, to our knowledge this is the first study to 

determine organic mercury concentrations in Antarctic krill. 

 

Total mercury concentrations according to geographic areas 

We found Antarctic krill from South Orkney Islands had mercury body burdens 5 to 7 

times higher than those from South Georgia and from the Antarctic Polar Front. 

Habitat differences may explain the differences in contamination levels between 

Location Year Sex / Maturity Number 
OHg (ug g-1 

dw) 
THg (ug g-1 dw) %OrgHg 

South Orkney 

Islands 
2016 Juvenile 

20 
0.008  0.003 0.051  0.016 15% 

South Orkney 

Islands 
2016 Female 

20 
0.008  0.002 0.052  0.022 16% 

South Orkney 

Islands 
2016 Male 

20 
0.008  0.003 0.040  0.014 21% 

South 

Georgia 
2017 Juvenile 

20 
0.008  0.002 0.024  0.006 29% 

South 

Georgia 
2017 Female 

20 
0.002  0.0002 0.006  0.0003 37% 

South 

Georgia 
2017 Male 

20 
0.003  0.0001 0.007  0.0004 36% 

Antarctic 

Polar Front 
2017 Juvenile 

20 
0.005  0.001 0.014  0.005 35% 
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these three areas in the Southern Ocean. The average sea surface temperature 

around the South Orkney Islands is lower than in South Georgia (Barnes et al., 2005; 

Clarke and Leakey, 1996) and at the Antarctic Polar Front. This temperature gradient 

leads to an important ecosystem difference, promoting the presence of more winter 

ice in the South Orkney Islands (Atkinson et al., 2001). Ice formation can act as a 

buffer for mercury and other elements (Lindberg et al., 2002). Furthermore, the ice 

may act as a trap for contaminants precipitating from the atmosphere (Beyer and 

Matthies, 2001; Cossa et al., 2011), which are released into the water column upon 

ice melting (Brierley and Thomas, 2002; Geisz et al., 2008; Mastromonaco et al., 

2017). In the Arctic, for instance, higher concentrations of mercury were measured in 

seawater under sea-ice, when compared with ice-free regions (Hintelmann et al., 

2007) and higher concentrations of mercury were found under ice during spring 

(Mastromonaco et al., 2017). Additionally, depletion events promote higher 

precipitation rates of atmospheric mercury in colder areas, mainly during springtime, 

when halogen radicals oxidize the mercury (Ebinghaus et al., 2002; Lindberg et al., 

2002). Indeed, these depletion events have been reported along and between 

regions of Antarctic sea-ice (Dommergue et al., 2010).Thus, higher depletion rates, 

sea ice formation and its melting may explain why there were more contaminants 

available to Antarctic krill around the South Orkney Islands than around South 

Georgia. Comparing our data with previous records of mercury in Antarctic krill, we 

see that samples from the Ross Sea, an area with winter sea ice (Bargagli et al., 

1998), had higher concentrations than South Georgia and the Antarctic Peninsula 

(Brasso et al., 2012a; Cipro et al., 2016; Locarnini and Presley, 1995), but similar to 

those at the South Orkney Islands (Table 2).  
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Other possible explanations for the higher mercury contamination in Antarctic 

krill from the South Orkney Islands could be the proximity to active volcanoes, which 

are well-known sources of mercury (Varekamp and Buseck, 1981; Zambardi et al., 

2009). Several volcanoes have recently been reported in the Antarctic Peninsula 

(van Wyk de Vries et al., 2018), which is closer to the South Orkney Islands than to 

the other two sampling sites in the present study. Nevertheless, the uptake of 

mercury from such sources is likely to be variable given that previous studies 

measuring mercury concentrations in Antarctic krill from the Antarctic Peninsula 

measured levels that were lower than those specifically in the South Orkney Islands 

Antarctic krill population reported here (Brasso et al., 2012a; Locarnini and Presley, 

1995; Moren et al., 2006) (Table 2). Mercury body burdens in Antarctic krill may also 

be related to food availability (Chen and Folt, 2005). Phytoplankton blooms, which 

are a main source of mercury to krill, are spatially and temporally variable in the 

Southern Ocean and have a large influence on Antarctic krill growth (Atkinson et al., 

2006; Cuzin-Roudy, 2000). Accordingly, the dynamics and availability of food 

between locations will probably have a significant effect on the mercury 

bioavailability, intake and bioaccumulation in Antarctic krill. 

In comparison with other krill species around the world (Table 2), there are 

examples where the concentration of mercury is lower, for instance, species from the 

Order Euphausiacea in the Hudson bay (Canada) (Foster et al., 2012) and 

Euphausia pacifica in the Californian Current (Sydeman and Jarman, 1998) than in 

some of our samples. Mercury concentrations in euphausiids from more 

industrialized European regions (Chouvelon et al., 2012; Leatherland et al., 1973; 

Minganti et al., 1996) and the Arctic (Ritterhoff and Zauke, 1997) are nevertheless 

considerably higher than in Antarctic krill (Table 2). Higher concentrations are also 
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evident in euphausiid populations in the sub-Antarctic Kerguelen Islands (Cipro et al., 

2018) which, like the Southern Ocean, is likely to result from remote atmospheric 

sources (Cossa et al., 2011). 
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Species Hg (µg g-1) Location Reference 

Euphausia frigida 0.023  0.002  Kerguelen Islands Cipro et al. (2017) 

Euphausia pacifica, Thysanoessa 

spinifera 

0.030 Californian Current  Sydeman et al (1998) 

Euphausia superba 0.008   0.002 Antarctic Peninsula Brasso 2012 

Euphausia superba 0.008  Krill food Moren 2006 

Euphausia superba 0.018   0.005 King George Island Cipro et al. (2016) 

Euphausia superba 0.013 to 0.049 Antarctic Peninsula Locarnini (1995) 

Euphausia superba 0.077   0.026 Ross Sea Bargali 1998 

Euphausia superba (Adult) 0.007 0.002 South Georgia This study 

Euphausia superba (Adult) 0.051  0.015 South Orkneys This study 

Euphausia superba (Female) 0.008  0.003 South Georgia This study 

Euphausia superba (Juvenile) 0.014  0.004 South Georgia This study 

Euphausia superba (Juvenile) 0.017  0.006 Polar Front This study 

Euphausia superba (Juvenile) 0.071  0.023 South Orkneys This study 

Euphausia triacantha 0.036  0.006 Kerguelen Islands Cipro et al. (2017) 

Euphausia vallentini (Large 25-30mm)  0.017  0.001 Kerguelen Islands Cipro et al. (2017) 

Euphausia vallentini (Small 16-24mm) 0.042  0.003 Kerguelen Islands Cipro et al. (2017) 

Euphausiaceae 0.023   0.004 Hudson Bay (Canada) Foster et al. (2012) 

Meganyctiphanes norvegica 0.130   0.004 Arctic Ritterhoff et al. (1997) 

Meganyctiphanes norvegica 0.172   0.014 Bay of Biscay  Chouvelon et al (2012) 

Table 2 – Total mercury concentrations (µg g-1 dw) in different species of Antarctic krill around the world from 

published data and this study (mean  standard deviation). 
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Meganyctiphanes norvegica 0.250 South of Portugal Leatherland et al. (1973) 

Meganyctiphanes norvegica 0.490 Mediterranean Minganti et al (1996) 

Thysanoessa inermis 0.120   0.004 Arctic Ritterhoff et al. (1997) 

Thysanoessa sp. 0.067  0.031 Kerguelen Islands Cipro et al. (2017) 



 19 

Total mercury concentration according to life stage and sex 

Mercury concentration in Antarctic krill unexpectedly decreased with age (see 

results). Since juveniles have a faster rate of growth compared to adults, one would 

otherwise expect burdens to be lower in juveniles through a growth dilution effect, as 

reported for Daphnia pulex (Karimi et al., 2007). Furthermore, juveniles have more 

frequent molting cycles compared to adults (Buchholz, 1991), and excretion ratios 

will probably be more efficient at these early stages. Somatic growth of Antarctic krill 

is pre-programmed to slow once a certain age or maturity has been reached (Tarling 

et al., 2006), in order to divert considerable resources to reproductive tissue when 

reaching adulthood (Atkinson et al., 2006; Cuzin-Roudy, 2000). Adults also prey on 

higher trophic levels compared to juveniles (Atkinson et al., 2002) which should 

mean higher bio-magnification potential, and therefore contrary to what was 

observed. The higher contaminant load of juveniles when compared with adults has, 

however, been reported in previous studies on Antarctic krill (Locarnini and Presley, 

1995) as well as the subantarctic krill Euphausia vallentini (Cipro et al., 2018). One 

mechanism that may explain this phenomenon is through egg laying, which has 

been reported as an important elimination route for mercury in several organisms 

such as birds (Brasso et al., 2012a; Pedro et al., 2015) and fish (Johnston et al., 

2001; Schofield et al., 1994), and also previously hypothesized for crustaceans 

species (Coelho et al., 2008). In the present study, the higher mercury 

concentrations were found in Antarctic krill eggs when compared to corresponding 

somatic tissue, suggesting that egg laying maybe an elimination mechanism. 

However, males also have lower mercury burdens compared to juveniles which 

either rules out this hypothesis or indicates that males also eliminate mercury 

through their own gonadic tissue. Spermatophores are regularly produced and 
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passed out of the body throughout the lifespan of males, although concentrations of 

mercury in these structures has yet to be measured.  

 

Organic mercury 

We found concentrations of the highly toxic, organic form of mercury of between 

0.002 and 0.008 ug g-1 dw, with the higher concentrations being found in both the 

South Orkneys and South Georgia, particularly in juveniles. Antarctic krill is the main 

prey for several Southern Ocean predators and it is estimated that more than half of 

its total biomass of 379 Mt is eaten by whales, seals, seabirds, squid and fish 

(Atkinson et al., 2009). Assuming the lowest individual mercury concentrations 

measured by the present study, this would mean 1.33 t of mercury will be passed on 

from the consumption of Antarctic krill, of which 0.57 t will be in the organic form. 

However the 1.33t of mercury potentially transferred in the trophic web is a 

conservative number, as it was calculated from the lowest concentration levels found 

in the present study, that is, at the same time the lowest concentration ever 

measured in the literature. So it can be considered an underestimation. This organic 

mercury will be potentially bioaccumulated in the tissues of Antarctic krill predators 

and transferred towards upper food web predators leading to its biomagnification. 

Thus, it may reach concentrations that can affect the behaviour, reproductive 

success and even to reduce the survival of the top predators (Tan et al. 2009; 

Eagles-Smith et al. 2018). Such bioaccumulation of organic mercury from Antarctic 

krill consumption can explain how some Antarctic seabirds have particularly high 

concentrations of mercury (Tavares et al., 2013). 
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Conclusions 

The accumulation of mercury in Antarctic krill decreases with increasing body 

size and maturity. Juveniles have higher concentrations than adults which may be 

the result of a growth dilution effect and also elimination through gonadic tissue 

(eggs and spermatophores).  

The observed spatial differences suggest that Antarctic krill reflects differential 

contaminant bioavailability in the Southern Ocean, while further studies are needed 

to discern the most significant variables governing site-specific mercury 

bioaccumulation.  

The range of mercury concentrations reported in Antarctic krill are within the 

same range, or even higher, than other euphausiids from areas closer to the 

industrialized part of the world, highlighting mercury as a global pollutant.  

Overall, our results stress the need to put into action pollutant monitoring 

programs to evaluate the sources, pathways and effects of contaminants in remote 

ecosystems. 
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