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On void shapes and lattices effects on coalescence criterion

Void coalescence is known to be the last microscopic event of ductile fracture in metal alloys, and corresponds to the localization of plastic flow in between voids. Limit-analysis framework has been used to provide coalescence criteria that have been subsequently recasted into effective macroscopic yield criteria, leading to homogenized models for porous materials valid for high porosities. Such coalescence models remain up to now restricted to cubic or hexagonal lattices of spheroidal voids. Based on limit-analysis kinematic approach, a methodology is first proposed to get upper-bound estimates of coalescence stress for arbitrary void shapes and lattices. Semi-analytical coalescence criteria are derived for elliptic cylinder voids in elliptic cylinder unit-cells for isotropic matrix material, and validated through comparisons to numerical limit-analysis simulations. The practical relevance of these criteria for realistic void shapes and lattices is finally assessed numerically.

Introduction

Ductile fracture of metal alloys is mainly related to the nucleation, growth and coalescence of voids [START_REF] Puttick | Ductile fracture in metals[END_REF]. Experimental observations have provided guidance into the development of homogenized models of porous materials accounting for the presence of voids with additional state variables. Homogenized models can then be used to simulate crack growth in ductile materials and to predict fracture toughness [START_REF] Pardoen | An extended model for void growth and coalescence[END_REF], e.g., in structural analysis. The reader is referred to the recent reviews on ductile fracture mechanisms, modeling and computational aspects [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF][START_REF] Pineau | Failure of metals I: Brittle and ductile fracture[END_REF][START_REF] Besson | Continuum models of ductile fracture: a review[END_REF]. One of the key ingredient of these models is the yield criterion describing the effective or macroscopic plastic behavior of porous materials. Growth regime, i.e., when voids do not interact with each others, is by far the most widely studied part of void growth to coalescence ductile fracture. Following seminal contributions [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I -Yield criteria and flow rules for porous ductile media[END_REF][START_REF] Rousselier | Three-dimensional constitutive equations of damage and fracture[END_REF][START_REF] Ponte Castañeda | The effective mechanical properties of nonlinear isotropic composites[END_REF] based respectively on limit-analysis, thermodynamics and variational approach, yield criteria for porous materials have been proposed accounting for void shapes [START_REF] Gologanu | Continuum Micromechanics[END_REF][START_REF] Madou | A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids. I. Limit-analysis of some representative cell[END_REF][START_REF] Madou | A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids. II. Determination of yield criterion parameters[END_REF], anisotropy [START_REF] Benzerga | Plastic potentials for anisotropic porous solids[END_REF][START_REF] Han | A yield function for single crystals containing voids[END_REF][START_REF] Paux | An approximate yield criterion for porous single crystals[END_REF] or both [START_REF] Morin | A Gurson-type criterion for plastically anisotropic solids containing arbitrary ellipsoidal voids[END_REF][START_REF] Mbiakop | An analytical model for porous single crystals with ellipsoidal voids[END_REF][START_REF] Song | A finitestrain homogenization model for viscoplastic porous single crystals: I -Theory[END_REF], to name but a few. Coalescence regime, i.e., when voids strongly interact with each others through localized plastic flow in between adjacent voids, has been far less studied than growth. Thomason [START_REF] Thomason | A theory for ductile fracture by internal necking of cavities[END_REF][START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF] provided coalescence stress assuming internal necking of voids embedded in an isotropic perfectly plastic matrix. Yield criterion was proposed in [START_REF] Benzerga | Anisotropic ductile failure. part I: experiments[END_REF] based on the coalescence stress, and was subsequently used in combination with growth yield criterion [START_REF] Benzerga | Micromechanics of coalescence in ductile fracture[END_REF] to provide a complete physically-based homogenized modeling of ductile fracture. Thomason's coalescence criterion has been shown to be in good agreement with experimental data [START_REF] Weck | Experimental investigation of void coalescence in metallic sheets containing laser drilled holes[END_REF][START_REF] Weck | Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials[END_REF], and was used in its original form or with phenomenological modifications to account for strain hardening [START_REF] Pardoen | An extended model for void growth and coalescence[END_REF][START_REF] Scheyvaerts | The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension[END_REF], secondary voids [START_REF] Fabrègue | A constitutive model for elastoplastic solids containing primary and secondary voids[END_REF] or penny-shaped cracks [START_REF] Benzerga | Micromechanics of coalescence in ductile fracture[END_REF], and for the presence of shear loading conditions [START_REF] Tekoglu | A criterion for the onset of void coalescence under combined tension and shear[END_REF]. Recently, significant efforts have been devoted to reassess and/or extend Thomason approximate coalescence criterion which is limited in practice to spheroidal voids in isotropic plastic material (obeying von Mises plasticity) under axisymmetric loading conditions. Benzerga and Leblond [START_REF] Benzerga | Effective yield-criterion accounting for microvoid coalescence[END_REF] and Morin et al. [START_REF] Morin | Coalescence of voids by internal necking: Theoretical estimates and numerical results[END_REF] proposed analytical upper-bound estimates of the coalescence stress for spheroidal voids in isotropic plastic material under axisymmetric loading conditions, subsequently extended by Torki et al. [START_REF] Torki | On void coalescence under combined tension and shear[END_REF][START_REF] Torki | Theoretical and numerical analysis of void coalescence in porous ductile solids under arbitrary loadings[END_REF] to account for combined tension and shear loading conditions. Upper-bound estimate of coalescence stress for penny-shaped cracks under arbitrary loadings in isotropic plastic material has been proposed in [START_REF] Hure | Theoretical estimates for flat voids coalescence by internal necking[END_REF]. Anisotropic materials (obeying Hill's plastic criterion) have also been considered in [START_REF] Keralavarma | A criterion for void coalescence in anisotropic ductile materials[END_REF][START_REF] Morin | Influence des effets de forme et de taille des cavits, et de l'anisotropie plastique sur la rupture ductile[END_REF]. Anisotropic coalescence criterion has also been proposed considering interfacial effects for anisotropic materials under arbitrary loading conditions [START_REF] Gallican | Anisotropic coalescence criterion for nanoporous materials[END_REF].

One of the key parameter of void coalescence is the intervoid distance, which comes from voids lattice in the coalescence plane. Thomason [START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF] considered a cubic lattice of voids, while models developed later consider hexagonal lattices (through the approximation of cylindrical unit-cell).

It has been proposed in [START_REF] Torki | On void coalescence under combined tension and shear[END_REF] to consider equivalent porosity in the coalescence band to go from hexagonal lattices to cubic lattices. While such procedure lead to predictions in reasonable agreement with numerical simulations, it clearly calls for a theoretical improvement. Moreover, void aspect ratios are also influential parameters in void coalescence, but only spheroidal voids -having two axis length equal and thus only one aspect ratio -have been considered so far. As illustrated for example in [START_REF] Cao | A model for ductile damage prediction at low stress triaxialities incrorporating void shape change and void rotation[END_REF] with unit-cells simulations under non-axisymmetric loading conditions showing complex evolutions of void aspect ratios prior to coalescence, or in [START_REF] Navas | Void growth and coalescence in a three-dimensional npnperiodic void cluster[END_REF] through numerical simulations with non-periodic void clusters, including general void shapes and lattices in coalescence criterion is definitely required. Based on limit-analysis kinematic approach, a methodology is proposed in Section 2 to obtain formally trial velocity fields for arbitrary unit-cells. A semi-analytical coalescence criterion is then derived for the particular case of an elliptic cylinder void in elliptic cylinder unit-cell, under the assumption of isotropic matrix material and loading axes aligned with the principal axes of unitcell and void. Comparisons between the predictions and numerical results obtained through numerical limit-analysis are detailed in Section 3. The practical relevance of these criteria for realistic void shapes and lattices is finally discussed based on numerical results in Section 4, as well as potential extensions to more general void lattices.

Theoretical estimates of coalescence stress

Underline A and bold A symbols refer to vectors and second-order tensors, respectively. A cartesian orthonormal basis {e 1 , e 2 , e 3 } is used and position vectors are denoted X = {X,Y, Z} or x = {x, y, z}. Only isotropic materials are considered in the following.

Void coalescence deformation mode is defined from a general point of view as localized plastic flow in a layer Ω coa (of normal e 3 ) linking adjacent voids ω associated with an almost rigid motion (through elastic unloading) outside the coalescence layer Ω\Ω coa [START_REF] Koplik | Void growth and coalescence in porous plastic solids[END_REF], leading to macroscopic uniaxial straining conditions1 D D D = D 33 e 3 ⊗ e 3 at the scale of some (periodic) unit-cell Ω. For practical reasons, approximations of periodic unit-cells are classically used, as shown on Fig. 1, for which the boundary conditions for any velocity field v due to plastic flow in order to assess coalescence are:

v (x ∈ S lat ) .n S lat = 0 v x ∈ Ω\Ω ± coa = ±D 33 He 3 (1)
where S lat is the lateral surface, H the half-height of the unitcell (Fig. 1), and n stands as the normal vector. The relevance of the unit-cell approximation will be discussed in Section 4. The isotropic matrix material around voids is assumed to obey von Mises perfect plasticity with associated plastic flow.

Analytical limit-analysis

In order to evaluate the macroscopic stress Σ 33 at which coalescence can occur for a given void shape and lattice, homogenisation along with limit analysis is used (see, e.g., [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF] for details). For periodic boundary conditions, macroscopic stress Σ Σ Σ and strain rate D tensors are related to their microscopic counterparts by volume averaging:

Σ Σ Σ = 1 volΩ Ω σ σ σ dΩ D = 1 volΩ Ω d dΩ (2) 
with σ σ σ the Cauchy stress and d the microscopic strain rate tensor. Hill-Mandel lemma reads:

1 volΩ Ω σ σ σ : d dΩ = Σ Σ Σ : D (3) 
Upper-bound theorem of limit analysis enables to assess the limit-load of the unit-cell Ω containing voids ω, and is, for a perfectly plastic material obeying von Mises' criterion:

Σ Σ Σ : D = Π(D) ≤ Π + (D) (4) 
with

Π + (D) = σ 0 d eq Ω-ω = 1 volΩ Ω-ω σ 0 d eq dΩ (5)
where σ 0 is the yield stress, d eq = [2/3]d : d the equivalent strain rate (d = [ t t t ∇ ∇ ∇v + ∇ ∇ ∇v]/2), and v a velocity field kinematically admissible with D and verifying the property of incompressibility tr(d) = 0. Π + (D) = Π(D) when v is the velocity field solution. Π(D) will be referred to as the macroscopic plastic dissipation and superscript + will be omitted in the following for clarity. In presence of a velocity field having a purely tangential discontinuity along an interface S d , the plastic dissipation related to the discontinuity is:

Π sur f (D) = 1 volΩ Sd σ 0 √ 3 ||v t ||dS (6) 
where ||v t || is the absolute value of the velocity jump. The macroscopic limit stress or yield locus is obtained from Eq. 4 by the equation:

Σ Σ Σ = ∂Π(D) ∂D (7) 
Analytical expression for macroscopic stress according to Eq. 7 that will stand as coalescence load requires the choice of trial velocity fields that should be (1) kinematically admissible with coalescence boundary conditions and (2) incompressible. Few of such trial velocity fields have been provided in previous studies [START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF][START_REF] Benzerga | Effective yield-criterion accounting for microvoid coalescence[END_REF][START_REF] Morin | Coalescence of voids by internal necking: Theoretical estimates and numerical results[END_REF][START_REF] Hure | Theoretical estimates for flat voids coalescence by internal necking[END_REF][START_REF] Keralavarma | A criterion for void coalescence in anisotropic ductile materials[END_REF]. However, finding trial velocity fields for arbitrary unit-cells is not an easy task, which has limited the development of general void coalescence criterion. 

Towards trial velocity fields for arbitrary unit-cells

The starting point of the methodology proposed to get a trial velocity field for arbitrary unit-cell is a trial velocity field V defined for a reference unit-cell (of coordinates X) satisfying the conditions described in Section 2.1:

∇ X .V (X) = 0 (8) V X ∈ S re f lat .n S re f lat = 0 V X ∈ Ω re f \Ω re f coa = ±D 33 He 3 (9) 
where Eq. 8 corresponds to the incompressibility condition and Eq. 9 to the coalescence boundary conditions. Considering an arbitrary unit-cell of coordinates x defined such that:

x = φ(X) (10) 
preserving the boundary surface. A trial velocity field v such that:

v(x) = ψ(V (X)) (11) 
will satisfy the property of incompressibility and coalescence boundary conditions if:

∇ x .v = ∇ x {ψ[V (φ -1 (x))]} = 0 (12) ψ V [φ -1 (x ∈ S lat )] .n S lat = 0 ψ V [φ -1 (x ∈ Ω\Ω coa )] = ±D 33 He 3 (13) 
Finding solutions to Eqs. 12,13 with respect to the functions φ and ψ leads to a trial velocity field satisfying the property of incompressibility and compatible with coalescence boundary conditions on the unit-cell Ω. While this provides an effective -albeit not trivial -procedure to get such velocity field and thus to upper-bound estimates of the coalescence stress through Eqs. 5,7, it should be noted here that nothing ensures that such trial velocity field is actually a good one, and thus leading to an accurate estimate of the coalescence stress, which should ultimately be checked through comparisons to numerical simulations.

A solution to Eqs. 12 and 13 can be found for elliptic cylinder unit-cell, and is described in the next section.

Trial velocity field for elliptic cylinder unit-cells

Elliptic cylindrical unit-cell Ω of half-height H and semi-axes L 1 and L 2 containing a coaxial void ω (of semiaxes R 1 and R 2 and half-height h) is now considered (Fig. 2). Four dimensionless ratios can be defined:

W 1 = h R 1 W 2 = h R 2 χ 1 = R 1 L 1 χ 2 = R 2 L 2 (14) 
where W i are the out-of-plane (with respect to the coalescence plane) aspect ratios of the void, χ i the in-plane dimensionless length of the inter-void ligament. An additional dimensionless parameter c = h/H can be defined, but does not play any role in coalescence criterion derived hereafter, as long as the phenomenon considered is coalescence in layers, and not coalescence in columns [START_REF] Benzerga | Ductile fracture by void growth to coalescence[END_REF].

Fig. 2: Elliptic cylinder unit-cell with coaxial elliptic cylinder void considered in this study. The principal axes of the mechanical loading are assumed to be the same of the ones of the unit-cell (and void).

In order to apply the methodology described in Section 2.2 to the elliptic cylinder unit-cell, the reference trial velocity field chosen is the one proposed in [START_REF] Benzerga | Effective yield-criterion accounting for microvoid coalescence[END_REF] for cylindrical unit-cell of radius L 1 :

V X (X,Y ) = D 33 H 2h L 2 1 X 2 +Y 2 -1 X V Y (X,Y ) = D 33 H 2h L 2 1 X 2 +Y 2 -1 Y V Z (Z) = D 33 H h Z (15) 
for |Z| ≤ h. The following function φ allows to map the cylindrical unit-cell to the elliptic cylinder unit-cell of semi-axis L 1 and L 2 :

x = φ(X) =          X Y L 2 L 1 Z (16)
Eqs. 12 and 13 can be satisfied by defining the function ψ such as:

v = ψ(V ) =          V X V Y L 2 L 1 V Z (17)
Finally, the trial velocity field v can be written as:

                 v x (x, y, z) = D 33 H 2h L 2 1 x 2 + α 2 y 2 -1 x v y (x, y, z) = D 33 H 2h L 2 1 x 2 + α 2 y 2 -1 y v z (x, y, z) = D 33 H h z (18) 
for |z| ≤ h, and where the dimensionless parameter α is defined such that:

α = L 1 /L 2 (19)

Coalescence criterion for elliptic cylinder unit-cell 2.4.1 General case

The equivalent plastic strain rate d eq can be computed with the trial velocity field defined in Eq. 18, as well as the tangential discontinuities at the top/bottom surfaces ||v t ||. We make use of the change of coordinates systems, from cartesian to elliptic: x = r cost and αy = r sint:

             d eq = D 33 H h 1 + L 4 1 3r 4 1 + α 2 -1 2α sin 2t 2 ||v t || = r D 33 H 2αh L 2 1 r 2 -1 1 + (α 2 -1) cos 2 t (20)
inside in the coalescence layer Ω coa , while d eq = 0 outside. Macroscopic plastic dissipation (Eq. 5) can now be computed Π = Π 1 + Π 2 , where Π 1 corresponds to the volumic plastic dissipation, while Π 2 is related to the velocity field discontinuity. Only half of the unit-cell is considered due to symmetry.

Π 1 = 1 volΩ Ω σ 0 d eq dΩ (21) 
With the change of variables considered, dΩ = dx dy dz = r dr dt dz/α, and volΩ = (πHL 2 1 )/α:

Π 1 = D 33 σ 0 πL 2 1 L 1 R(t) 2π 0 1 + L 4 1 3r 4 1 + α 2 -1 2α sin 2t 2 rdrdt (22) 
where R(t) can be written as:

R(t) = R 1 cos(t) 2 + (1 -cos(t) 2 )[R 2 1 /(αR 2 ) 2 ] (23) 
The 2D integral can not be computed analytically, and can only be reduced to a 1D integral (once the integration over the variable r is done, similarly to [START_REF] Morin | Coalescence of voids by internal necking: Theoretical estimates and numerical results[END_REF]).

The plastic dissipation Π 2 related to the velocity field tangential discontinuity is computed according to Eq. 6:

Π 2 = 1 volΩ S top σ 0 √ 3 ||v t ||dS (24) 
Again, with the change of variables considered, dS = dx dy = r dr dt/α:

Π 2 = D 33 σ 0 2 √ 3πL 2 1 hα L 1 R(t) 2π 0 (L 2 1 -r 2 )dr 1 + (α 2 -1) cos 2 tdt (25 
) Finally, according to Eq. 7 that reduces to Σ 33 = Π/D 33 and normalizing length by L 1 , the coalescence stress can be written as:

Σ 33 ≤ σ 0 π 1 R(t)/L 1 2π 0 1 + 1 3r 4 1 + α 2 -1 2α sin 2t 2 rdrdt + σ 0 2 √ 3πW 1 χ 1 α 1 R(t)/L 1 2π 0 (1 -r 2 )dr 1 + (α 2 -1) cos 2 tdt (26) 
Eq. 26 gives an upper-bound of the coalescence stress for an elliptic cylinder unit-cell containing a coaxial elliptic cylinder void, for an isotropic material and in absence of shear stresses with respect to the principal axes defined by the unitcell. It extends previous studies aiming at predicting coalescence stress for spheroidal voids. Some progress could be made to compute partially the integrals (or using Cauchy-Schwartz inequality to get an upper-bound). One should note however that the computations of these integrals can easily been done numerically. Some simplifications can be made considering homothetic void and unit-cell, as detailed in the next section.

Homothetic voids and unit-cells

The particular case of homothetic void and unit-cell, that corresponds to R 1 = αR 2 or χ 1 = χ 2 = χ, allows to simplify the coalescence stress (Eq. 26). In order to get analytical coalescence estimate, Cauchy-Schwartz inequality is used to get an upper-bound of the volumic plastic dissipation:

Π 1 ≤ D 33 σ 0 πL 2 1 L 1 R 1 rdr 2π 2π 0 1 + L 4 1 3r 4 1 + α 2 -1 2α sin 2t 2 dt ≤ 2D 33 σ 0 L 2 1 L 1 R 1 1 + β 4 L 4 1 r 4 rdr (27) 
where a new dimensionless ratio is defined:

β 4 = α 4 + 6α 2 + 1 24α 2 (28) 
Upon integration over r, the upper-bound of the volumic plastic dissipation is:

Π 1 ≤ D 33 σ 0 -β 4 + χ 4 + β 4 + 1 - β 2 2 log ( β 4 + 1 + β 2 )( β 4 + χ 4 -β 2 ) ( β 4 + 1 -β 2 )( β 4 + χ 4 + β 2 ) (29) 
Eq. 29 depends only on two geometrical ratios χ and β and verifies the property Π 1 (α) = Π 1 (α -1 ) which corresponds to a permutation of the axes e 1 and e 2 . An analytical upperbound of the plastic dissipation Π 2 can also be obtained with Cauchy-Schwartz inequality:

Π 2 ≤ D 33 σ 0 √ 6W 1 χ √ α 2 + 1 α χ 3 -3χ + 2 3 ( 30 
)
The analytical expression for the upper-bound of the surfacic plastic dissipation (Eq. 30) can alternately be written in a symmetric form (with respect to W 1 and W 2 ):

Π 2 ≤ D 33 σ 0 √ 6χ W 2 1 +W 2 2 W 1 W 2 χ 3 -3χ + 2 3 (31)
Finally, the upper-bound estimate of the coalescence stress can be written (using Eq. 7 that reduces to Σ 33 = Π/D 33 ):

Σ 33 σ 0 ≤ -β 4 + χ 4 + β 4 + 1 - β 2 2 log ( β 4 + 1 + β 2 )( β 4 + χ 4 -β 2 ) ( β 4 + 1 -β 2 )( β 4 + χ 4 + β 2 ) + 1 √ 6χ W 2 1 +W 2 2 W 1 W 2 χ 3 -3χ + 2 3 ( 32 
)
For α = 1 (and thus W 1 = W 2 = W ), i.e., for cylindrical unitcells and voids, Eq. 32 reduces to the expression given in [START_REF] Benzerga | Effective yield-criterion accounting for microvoid coalescence[END_REF][START_REF] Morin | Coalescence of voids by internal necking: Theoretical estimates and numerical results[END_REF]:

Σ 33 σ 0 ≤ χ 3 -3χ + 2 3 √ 3W χ + 1 √ 3 2 -1 + 3χ 4 + log 1 + 1 + 3χ 4 3χ 2 (33) 
Eq. 32 corresponds to an upper-bound of the coalescence stress for elliptic cylindrical voids in homothetic unit-cells, for isotropic material and in absence of shear stresses.

Eqs. 26,32,33 are upper-bounds of the coalescence stress. In particular, and due to the some limitations of the trial velocity field used, Eq. 33 overestimates numerical results by an approximately constant multiplicative factor 2 from results 2 Refined calibration has been proposed in [START_REF] Torki | On void coalescence under combined tension and shear[END_REF] which is close to Eq. 34 for W ∈ [0.5 : 3] and χ ∈ [0.3 : 0.7] (and equivalent for W 1).

presented in [START_REF] Morin | Coalescence of voids by internal necking: Theoretical estimates and numerical results[END_REF]:

Σ 33 σ 0 ≈ 0.9 Σ 33 σ 0 upper-bound [START_REF] Gallican | Anisotropic coalescence criterion for nanoporous materials[END_REF] where [Σ 33 /σ 0 ] upper-bound is taken as Eq. 33 (or Eqs. 26,32). Therefore, in the following, Eq. 34 will be compared to numerical results, keeping in mind that the theoretical derivation gives only the upper-bound used in Eq. 34. The ability of the proposed analytical expression to predict coalescence stress for ellipsoidal voids will be assessed in Section 3.

3 Assessment of theoretical coalescence criterion

Numerical limit-analysis

In order to assess coalescence stress derived through limit-analysis by choosing a trial velocity field (Eq. 7), exact coalescence stresses are computed through numerical simulations known as numerical limit-analysis (see, e.g., [START_REF] Madou | A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids. II. Determination of yield criterion parameters[END_REF][START_REF] Tekoglu | Void coalescence in ductile solids containing two populations of voids[END_REF]): the problem defined in Fig. 1 is solved (classically with finite-element method (FEM)) under the small perturbation hypothesis, with elastic-perfectly plastic material (obeying von Mises criterion). Macroscopic stresses are computed through volume averaging (Eqs. 2). A loading parameter is increased until saturation of the macroscopic stresses that correspond to exact coalescence stresses, up to numerical errors. As an alternative to FEM simulations, Fast Fourier Transform (FFT-) based solver [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF] has been used in this study, as in [START_REF] Paux | Plastic yield criterion and hardening of porous single crsytals[END_REF]. FFT simulations rely on periodic unitcell discretized in voxels. Different constitutive equations can be applied to subsets of voxels in order to model heterogeneous unit-cells. Material voxels constitutive equations correspond to elasto-plasticity with von Mises criterion (of Young's modulus Y , Poisson's ratio ν and yield stress σ 0 ), while void voxels are pure elasticity with zero rigidity. Loading parameters are either average strains E E E or stresses Σ Σ Σ: to assess coalescence corresponding to uniaxial straining (in absence of shear stresses), E E E = E 33 e 3 ⊗ e 3 is applied, where E 33 is the scalar loading parameter. In order to be able to simulate non-periodic unit-cells as the ones considered in Section 2.2 (Fig. 2), a fictive orthotropic elastic material is added around the elliptical unit-cell, with particular elastic moduli:

ν 12 = ν 23 = ν 13 = 0 Y 1 = Y 2 = G 12 Y Y 3 = G 13 = G 23 Y (35) 
In the limit defined by Eqs. 35 for the fictive elastic material around the elliptic-cylinder unit-cell, the boundary conditions used in the theoretical approach can be recovered, which is checked in Section 3.2. An example of the typical discretized unit-cell used is shown in Fig. 3. AMITEX FFTP [41] software was used for all simulations performed in this study, along with MFront software [START_REF] Helfer | Introducing the opensource mfront code generator: Application to mechanical behaviors and materials knowledge management within the PLEIADES fuel element modelling platform[END_REF] for generating constitutive models, with σ 0 /Y = 10 -4 . A convergence study w.r.t the number of voxels was performed for all numerical results shown hereafter.

Comparisons to numerical results

Semi-analytical coalescence stress derived in Section 2 (Eq. 34) are compared to numerical results. For homothetic void and unit-cell, results are given in Fig. 4a,b,e. In the particular case of cylindrical void and unit-cell (corresponding to α = 1), numerical results obtained with FFT simulations are equal to the ones obtained in previous studies with FEM [START_REF] Morin | Coalescence of voids by internal necking: Theoretical estimates and numerical results[END_REF][START_REF] Hure | Theoretical estimates for flat voids coalescence by internal necking[END_REF], validating the use of a fictive elastic material described in Section 3.1 to impose a given macroscopic strain to a non-periodic unit-cell. For α = 1, numerical results are in good agreement with the analytical predictions, capturing the increase of coalescence stress for both α > 1 and α < 1. The agreement is particularly good for large values of the parameters W 1 and χ 1 , but deviations appear for W 1 = 0.5 and χ 1 = 0.4. This was somehow expected as the reference trial velocity field as been already shown to lead to predictions in less good agreement with numerical results in such situations [START_REF] Torki | On void coalescence under combined tension and shear[END_REF]. Analytical equivalent strain rate field (derived from the trial velocity field) and equivalent strain field of the simulation (Fig. 4f) taken at the height z = h share some common points, explaining the good agreement between numerical results and theoretical predictions. One should finally note that, whatever the value of the parameter α, the porosity in the coalescence layer is constant, and therefore the strategy proposed in [START_REF] Torki | On void coalescence under combined tension and shear[END_REF] to use a coalescence criterion derived for a given unit-cell to another one (based on equivalent porosity) would not be able to capture the results shown here.

Two other situations are assessed in Fig. 4. The first one (Fig. 4c) corresponds to the case of an elliptical cylinder unit-cell with a cylindrical void. For such situations, it was not possible to derive (simple enough) analytical coalescence stress, and therefore the integral equation (Eq. 26 along with Eq. 34) for the coalescence stress is used to compare to numerical results. A good agreement is also observed in this situation, for different values of void aspect ratio W 1 , which can again be explained by the fact the trial velocity field used captures some aspects of the real deformation mode, as shown on Fig. 4g. Similar conclusions also hold for the case of cylindrical unit-cells with elliptic cylinder voids, as shown on Fig. 4d,h. Comparisons of the proposed coalescence criteria to numerical results validate the use of Eqs. 26,32,34 to describe coalescence stress accounting for the effect of unit-cells and voids shapes, under the assumption that the principal axes of mechanical loading are the same as the ones of the unitcell and void. On the contrary, i.e. in presence of additional shear stresses, the derivation proposed in [START_REF] Torki | On void coalescence under combined tension and shear[END_REF] could be used, which remains to be done and validated against numerical results. More importantly, the unit-cells considered so far in this study are only approximations of some space-filling unit-cells with more realistic void shapes, which is detailed in the following section.

Discussion

Hexagonal-type lattices of ellipsoidal voids and associated unit-cells (Fig. 5) are considered as a more realistic description of void lattices and void shapes in a coalescence layer. Another classical choice would have been to choose cubictype lattices -which are as realistic than hexagonal ones -but are not considered in the following as being poorly described by elliptic unit-cells 3 .

Fig. 5: Hexagonal-type lattices of ellipsoidal voids. Unitcells in red solid lines are used to perform numerical simulations, and results are compared to predictions from the elliptic cells inscribed in the Voronoi cells.

FFT coalescence simulations have thus been performed on periodic unit-cells shown in solid red lines on Fig. 5, corresponding to deformed hexagonal lattices. Numerical results are compared to theoretical predictions (Eq. 34) assuming:

(1) that the corresponding unit-cell is the elliptic cylinder inscribed in the Voronoi cell of voids (red dashed line and black solid line in Fig. 5, respectively), ( 2) an effective value of the intervoid ligament χ is chosen to account for its variation along the height for ellipsoidal voids. For the latter, different approach can be considered: equivalent porosity in the coalescence layer (that would lead to χ m i = 2/3χ i ) as in [START_REF] Torki | On void coalescence under combined tension and shear[END_REF], or average value leading to χ m i = [π/4]χ i . Hereafter, the effective value has been calibrated with numerical results on hexagonal lattices (α = 1) and spheroidal voids χ m i = 0.85χ i , and used for other situations. Numerical results are compared to theoretical predictions in Fig. 6a,c,d, showing the ability of the predictions to capture all the trends due to void shapes and lattices. However, the agreement is less quantitative than for previous comparisons based on similar geometry between theoretical analysis and numerical simulations. Discrepancies appear mainly for large (or low) values of the parameter α, of low values of χ i . Both were somehow expected: the former can be understood as the assumption of representing an elliptic cylinder to represent the cell around each voids fails as α 1 or α 1, as shown on Fig. 6b, where the Voronoi cell tends to become of rectangular shape. The latter comes from the fact that for spheroidal voids, the effective intervoid ligament is lower than its maximal value, where the reference trial velocity field is known to become less accurate, even for cylindrical unit-cell for cylindrical voids. Both inaccuracies could in principle be handled by refining the theoretical analysis with refined reference trial velocity field and cubic-type unit-cells. 

Conclusions and Perspectives

Void coalescence deformation mode is strongly sensitive to both void shapes and intervoid distances. As a result, void lattices play a key role, as shown recently in [START_REF] Navas | Void growth and coalescence in a three-dimensional npnperiodic void cluster[END_REF]. However, up to now, coalescence criteria have been derived assuming idealized hexagonal or cubic lattices of spheroidal voids, while criteria derived for arbitrary void shapes and lattices will be ultimately required. As a step towards this goal, coalescence criteria have been derived for elliptic cylinder unit-cells with elliptic cylinder voids, based on limit-analysis framework and on a methodology allowing getting trial velocity fields from known reference trial velocity fields. Coalescence stress predictions have been shown to be in good agreement with numerical results performed with the same geometry, and also in relatively good agreement for spacefilling arrangements of voids well approximated by elliptic unit-cells, i.e., for large values on the intervoids ligaments χ i 0.5 and in-plane cell aspect ratio up to a factor 2. Various extensions of this study could be considered. A first one corresponds to the case of a coalescence layer composed of a random arrangement of voids: the Voronoi cell around each void could be used or approximated as the unit-cell on which limit-analysis framework can be done by solving Eqs. 12,13.

A second extension is to develop evolution laws for the parameters W i and χ i that will be required for implementing the coalescence criterion as a yield criterion in constitutive equations for porous materials. In particular, the evolution of χ i can not be inferred from mass conservation as usually done when χ 1 = χ 2 . Last, the combined influence of void shapes / lattices and shear stresses (defined as macroscopic stresses not in the principal axes of voids) should be studied.

Fig. 1 :

 1 Fig. 1: Reference cylindrical unit-cell Ω re f and deformed unit-cell Ω. Coalescence deformation mode corresponds to localized plastic flow in a coalescence layer Ω coa associated with (almost) rigid body motion of the outer parts Ω\Ω coa , thus to uniaxial straining conditions D D D = D 33 e 3 ⊗ e 3 .

Fig. 3 :

 3 Fig. 3: One-eighth of the typical periodic unit-cell with cylindrical void used for FFT simulations to assess numerically coalescence stress. Three different constitutive equations are used for the blue, white and red voxels: zero rigidity, elasto-plastic von Mises plasticity and fictive elastic material, respectively. Macroscopic strain is imposed: E = E 33 e 3 ⊗ e 3 . Macroscopic coalescence stress Σ 33 is computed through volume averaging over the white and blue regions only.

Fig. 4 :

 4 Fig. 4: (a,b,c,d,e) Coalescence stress for elliptic cylinder unit-cells with elliptic cylinder voids, as a function of the parameter α, for various values of W 1 and χ 1 . Solid lines correspond to Eq. 34, squares to numerical results. (f,g,h) Comparisons of the analytical and numerical strain-(rate) fields (Arbitrary units). Numerical results are taken at an height z = h.

Fig. 6 :

 6 Fig.6: (a,c,d) Coalescence stress for hexagonal-type lattices of ellipsoidal voids as a function of the parameter α, for various values of W 1 and χ 1 . Squares correspond to numerical results, solid lines to Eq. 34 considering the elliptic unit-cell inscribed in the Voronoi cell of the void. (b) Evolution of the equivalent strain field taken at z = h obtained with numerical simulations as the parameter α decreases. Arbitrary units.

In absence of shear stresses with respect to the coalescence layer, which are not considered in this study

An obvious solution to deal with cubic-type lattices is to start from a reference trial velocity field defined for cubic unit-cell, as one of those proposed by Thomason[START_REF] Thomason | Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids[END_REF], which is left for a future study