Hierarchical materials to remove and confine radioactive Cs

Clément Cabaud^a, Yves Barré^a, Laurent De Windt^b, Simerjeet Gill^c, Micheal Moloney^{a,d}, Nicolas Massoni^d, Agnès Grandjean^{*a}

^{a.} CEA, DEN, DE2D, SEAD, Laboratory of Supercritical and Decontamination Processes, Univ. Montpellier, F-30207 Bagnols-sur-Cèze. ^{b.} MINES Paris Tech, PSL Research University, Centre de Géosciences, F-77300 Fontainebleau. ^{c.} BNL

d. CEA, DEN, DE2D, SEVT, Research Laboratory for the development of conditioning matrices, Univ Montpellier, F-30207 Bagnols-sur-Cèze.

Total concentration (mg.L ⁻¹)							
Ca ²⁺	80	HCO ₃	360				
Mg ²⁺	26	so ₄ ²⁻	12,6				
Na	6,5	Cl	6,8				
K ⁺	1	NO ₃	3,7				

Supplementary material

Table S1: Composition of the commercially available mineral water used for Cs sorption experiments.

	Content in g.kg ⁻¹ as measured by ICP					Specific surface
	Cs	Cu	Fe	K	Si	$1n m^2.g^2$
Cs :Cu-HCF@silica before annealing	13.6±1.4	7.5±0.8	4.8±0.5	11.2±1.1	431±43	140.4
Cs :Cu-HCF@silica after 1000°C annealing in air	14.5±1.5	7.5±0.8	4.8±0.5	11.0±1.1	427±42	0.75

Table S2: Composition and specific surface of samples before and after thermal treatment at 1000°C in air.

Figure S2: Adsorption isotherm silica-based monolithic samples of pristine silica monolith (grey), Cu-HCF@silica-monolith (black), Cu-HCF@silica-grains (red) and dense Ni-HCF@zirconia (green).

Figure S3: Kinetics of Cs sorption on ground silica monolith in freshwater $([Cs^+]_i = 3.9x10^{-4} mol.L^{-1})$.

Figure S4: Sorption isotherm of Cs for ground monolith in freshwater.

Bed efficiency (BE) equation:

$$BE = \frac{\int_{V=0}^{V_R} [Cs]_i - [Cs]_{outlet} \, dV}{V_R * [Cs]_i}$$

Figure S5: (Above) FT-IR showing the v(CN) stretch of Cu-HCF which has been heated to 140, 160 and 170 0 C for 4, 3 and 4 hours respectively (total 11 Hrs heating). Peak decomposition takes place at 170 0 C. (Below) A Cs exchanged sample subjected to the same temperatures. No change is observed.

ES1