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Abstract  
This paper reports the synthesis and the characterization of four new compounds based on 

thorium and tetraethyldiglycolamide (TEDGA), [Th(TEDGA)2(C2O4)][NO3]2[H2C2O4].6H2O 

(1), [Th(TEDGA)2(C2O4)2][H2C2O4]2.2H2O (2), [Th(TEDGA)4][NO3]4.4H2O (3) and 

[Th2(C2O4)3(TEDGA)4][NO3][HC2O4][H2C2O4]4.7H2O (4). All of them are obtained by 

successive single crystal to single crystal phase transformation from a unique synthesis 

medium containing thorium nitrate and TEDGA, in presence of oxalic acid. Compound (1) 



(a=b=18.7140(12)Å, c=12.9212(9)Å, S.G. P42212) is obtained at first. This solid undergoes 

two successive transformations which lead to a mixture of (2) (a=12.246(2)Å, b=32.253(5)Å, 

c=12.256(2)Å, =106.741(12)°, S.G. P21/n) and (3) (a=26.5966(13)Å, b=15.4489(7)Å, 

c=18.5582(9)Å, =116.528(1)°, S.G. C2/c) then to a mixture of (1) and (4) (a=15.6611(7)Å, 

b=17.9082(9 Å, c=18.1814(7)Å, =89.896(2)°, =65.549(2)°, =87.623(2), S.G. P-1). 

Solving the crystal structure by single crystal diffraction reveals that the TEDGA is always 

coordinated to the thorium atom through its three oxygen atoms. In the mixed-ligands 

compounds (1), (2) and (4), the actinide atom is surrounded by two oxalate ligands and two 

TEDGA, leading to a 10-fold coordination. The dimensionality of the networks changes from 

linear chains (1D) (1) to isolated entities (0D) (2) or dimeric units (0D) (4). Compound (3) is 

formed by the assembly of 12-fold coordinated monomeric entities (0D) in which the thorium 

cation is surrounded by four TEDGA. This compound is the first example of such a 

coordination number without nitrate anion included in the coordination sphere of Th. 

 

Introduction  
In the nuclear industry, the long term radiotoxicity of the spent fuel is mainly due to 

plutonium and minor actinides.
1
 So, in order to reduce the radiotoxicity of ultimate wastes, 

researches for new generations of nuclear plants focus on the recycling of plutonium and 

minor actinides with the aim, on one hand, to fabricate new Pu and U-based mixed oxides 

nuclear fuel pellets (MOX), on the other hand, to synthesize Minor Actinides-based 

transmutation targets. In the current industrial PUREX process, uranium(VI) and 

plutonium(IV) are recovered from a nitric solution containing the fission products and minor 

actinides by liquid-liquid phase extraction thanks to the use of tributylphosphate (TBP) in 

dodecane.
2,3

 The extracting molecules have to meet various specifications such as (i) good 

extraction of actinides from a highly concentrated nitric solution to the organic diluent (ii) 

stability in aliphatic diluents ie resistance to radiolytic and hydrolytic degradation (iii) ease of 

synthesis (iv) low environmental impact. The use of tributylphosphate as an extracting agent 

may induce the presence of residual phosphate groups in the wastes which explain that new 

extracting molecules containing only C, H, O and N elements, fully incinerable, has been the 

subject of intense researches these last years.
4,5

 The amide family containing a carbonyl group 

and a nitrogen atom in alpha-position has shown promising results for the complexation of 

actinides and liquid-liquid extraction.
6
 Within this family of compounds, the diglycolamide 

molecules (DGA) of general formula (R2N(CO)(CH2)O(CH2)(CO)NR2) are promising An(IV) 

complexing agents due to their large number of electronegative sites. The solubility of DGA 

molecules and their complexing properties strongly depends on their substituent groups, R. 

By example, tetraoctyldiglycolamide (TODGA) is deemed to be a very good extractant of 

transuranic elements in dodecane
1,7,8

 while tetraethyldiglycolamide (TEDGA) shows good 

abilities for precipitating actinides and other metals in acidic conditions.
9
 Despite the possible 

use of DGA as extracting and/or complexing agents of f-elements, few structural studies have 

been conducted in the DGA-lanthanides or -actinides systems. The crystal structures of 

lanthanides complexes coordinated by DGA ligands, L, have been reported for lanthanum 

[La(pic)3(L2) with L containing RR’ = Et and Ph;
10

 (LaL3)(La(NO3)6) with L substituted by R 

= i-Pr or by i-Bu], for cerium and ytterbium [(CeL)(Ce(NO3)6)(CH3OH)(C4H10O), 



(YbL)(NO3)3 where L is a tris-DGA ligand and (YbL3)(NO3)4 with L holding R = i-Pr]
11

 and 

for the heavy lanthanides series (Ln = Tb, Dy, Ho, Er, Tm, Yb, and Lu) [(LnL3)(NO3)3.4H2O 

with L substituted by R = Et].
12

 Main of the crystal structures of the actinides-DGA 

complexes were reported for An-yl salts with a DGA:actinyle ratio of 1:1 [(UO2L)X2 with L 

carrying R = i-Pr or R = i-Bu and X = Cl
-
 or NO3

-
]

13
 or 1:2 [(UO2L2)(X)2

13,14
, (PuO2L2)(X)2

15
 

and (NpO2L2)(X)
16

 with R =Me and X = ClO4
-
]. But, to the best of our knowledge, the crystal 

structures reported in the An(IV)-DGA system have remained limited to 

(Pu
IV

L3)(NO3)3.MCN and (Pu
IV

L3)(NO3)3.ETOH with R = Me attached to L.
17

  

This paper reports the influence of tetraethyldiglycolamide (TEDGA) on the crystallization 

process in the An(IV)-oxalate system, where Th(IV) was used as an analog of Pu(IV). Under 

evaporation, the presence of TEDGA leads to the crystal growth of four new compounds 

hereafter named (1), (2), (3) and (4) which crystal structures were determined by single-

crystal X-Ray Diffraction. This paper aims to describe and compare the structural 

arrangement of these compounds and to report the spectroscopic study of compound (3), 

obtained as a pure phase. 

 

Experimental section  
 

Synthesis Caution! Thorium nitrate (Th(NO3)4.4H2O) is a radioactive and chemically toxic 

reactant, so precautions with suitable care and protection for handling such substances have 

been followed. 

 

Reactants 

(NO3)4.4H2O was purchased from Prolabo (99%), oxalic acid from Alfa Aesar (98%) and 

TEDGA from Pharmasynthèse SA (>99%). 

  

 

Synthesis of [Th(TEDGA)2(C2O4)][NO3]2[H2C2O4].6H2O (1), 

[Th(TEDGA)2(C2O4)2][H2C2O4]2.2H2O (2), [Th(TEDGA)4[NO3]4.4H2O (3) and 

[Th2(C2O4)3(TEDGA)4][NO3][HC2O4][H2C2O4]4.7H2O (4) 

Thorium nitrate (0.2 mmol) and TEDGA (1.4 mmol) were added in 10 mL of deionized 

water. The solution was heated at 50°C for 2h then a solution of oxalic acid (1.4 mmol in 10 

mL of deionized water) was added within 2h. The colorless solution obtained after adding all 

reactants was left under the hood for slow evaporation. After ten days, a viscous solution 

containing crystals of (1) was obtained. The crystals of (1) had to be retained into their 

solution otherwise a rapid degradation was observed.  

The solution was sealed to prevent further evaporation which leads to the massive 

crystallization of oxalic acid. The compound (1) was initially retained into the viscous 

solution but after five weeks it was transformed into a mixture of (2) and (3). Four months 

later the mixture has turned into a new mixture, containing crystals of (1) and (4). It has to be 

noted that the single-crystal to single-crystal transformation is reproducible except for the 

formation of (2) which has occurred just at once and couldn’t be reproduced. Several trials 

were conducted in order to obtain the compound (2) from (1). In particular, the effect of the 



temperature on the transformation was studied. Despite a careful monitoring on the solutions 

at different temperatures, the compound (2) was not obtained. 

These transformations are accompanied by a morphological change of the crystals (Figure 1). 

Indeed, the compound (1) displays a rod-like shape (Figure 1a) while intermediate compounds 

(2) and (3) have a platelet shape (Figure 1b), the smallest single crystals being typical of 

compound (2) and the biggest corresponding to (3). In the final mixture, the rod-like single-

crystals of (1) appear again whereas compound (4) displays a block type morphology (Figure 

1c).  

 

 
 

Figure 1: Micrographs of the single-crystals of compound (1) (a); the mixture of (2) and (3) (b) and the mixture 

of rods like crystals (1) and blocks (4) (c). 

 

Synthesis of pure [Th(TEDGA)4[NO3]4.4H2O (3) 

Compound (3) was obtained as a pure phase by adding thorium nitrate (0.2 mmol), TEDGA 

(0.8 mmol) and oxalic acid (50 mg) to 10 mL of deionized water, at room temperature. Solid 

oxalic acid was used in place of oxalic acid solution to favor slow diffusion and then achieve 

a better crystal growth. The colorless solution obtained after adding all the reactants was left 

under the hood. After ten days, a precipitate matching the X-Ray powder diffraction pattern of 

compound (3) was obtained (Figure S2) with a yield of 25%. This pure powder was afterward 

used to perform further chemical analysis. 

 

Single crystal diffraction 

Except for (2), the collections of the diffraction data were performed at 100K, on a Bruker 

DUO-APEX2 CCD area detector diffractometer using Mo-Kα radiation (λ= 0.71073 Å) with 

an Incoatec microsource. The data reduction was accomplished using SAINT V7.53a.
18

 The 

substantial redundancy in data allowed a semi empirical absorption correction (SADABS 

V2.10) to be applied, on the basis of multiple measurements of equivalent reflections. Due to 

the low stability of (1), data were collected with 5s frame exposure while data for (2), (3) and 

(4) were recorded with 20s frame exposure. The structures were solved by direct methods, 

developed by successive difference Fourier syntheses, and refined by full-matrix least-squares 

on all F
2
 data using OLEX2 and SHELXL program software.

19,20
 Hydrogen atoms of the 

TEDGA were included in calculated positions and allowed to ride on their parent atoms. 

Hydrogen atoms of water molecules and oxalic acid parts were found on Fourier-difference 

maps. The low quality of the data for the compound (2) has led to consider several C-O 

distance constrains for free oxalic part.  



Selected crystallographic data are reported Table 1. The CIF files of compounds 1-4 are 

provided as supplementary materials under the CCDC numbers xxx for (1) etc.  

 

  



Table 1: Crystallographic data for compounds 1-4. 

Compound 1 2 3 4 

Chemical formula C28 H60 N6 

O26 Th 

C32 H48 N4 

O24 Th 

C48 H104 N12 

O28 Th 

C64 H117 N9 

O54 Th2 

M (g.mol
-1

) 1128.86 1104.78 1529.47 2340.74 

Temperature (K) 100 293 100 100 

Symmetry tetragonal  monoclinic monoclinic triclinic 

Space group P 42 21 2 P 21/n C 2/c P -1 

a (Å) 18.7140(12) 12.246(2) 26.5966(13) 15.6611(7) 

b (Å) 18.7140(12) 32.253(5) 15.4489(7) 17.9082(9) 

c (Å) 12.9212(9) 12.256(2) 18.5582(9) 18.1814(7) 

 90 90 90 89.896(2) 

 90 106.741(12) 116.528(1) 65.549(2) 

 90 90 90 87.623(2) 

V Å
3
 4525.2(7) 4635.6(13) 6822.5(6) 4637.2(4) 

Z 4 4 4 2 

Density calc.  

(g.cm
-3

) 

1.657 1.583 1.489 1.676 

mm

 3.387 3.301 2.273 3.310 

 range 1.539 – 26.393 1.846 – 22.002 1.527 – 30.511 1.449 – 26.351 

Limiting indices -23 ≤ h ≤ 18 

-16 ≤ k ≤ 22 

-12 ≤ l ≤ 16 

-12 ≤ h ≤ 12 

-33 ≤ k ≤ 33 

-12 ≤ l ≤ 12 

-37 ≤ h ≤ 37 

-22 ≤ k ≤ 22 

-26 ≤ l ≤ 26 

-19 ≤ h ≤ 19 

-22 ≤ k ≤ 22 

-22 ≤ l ≤ 22 

Collected 

reflections 

21750 39816 51745 61346 

Unique reflections 4652 5668 10367 18660 

R(int) 0.0739 0.0879 0.0287 0.0338 

Parameters 289 575 416 1206 

Goodness of fit 1.026 1.015 1.070 1.020 

Final R indices [I 

> 2(I)] 

R1 = 0.0352 

wR2 = 0.0651 

R1 = 0.0432 

wR2 = 0.0844 

R1 = 0.0173 

wR2 = 0.0416 

R1 = 0.0253 

wR2 = 0.0515 

R indices (all 

data) 

R1 = 0.0766 

wR2 = 0.0787 

R1 = 0.0788 

wR2 = 0.0972 

R1 = 0.0234 

wR2 = 0.0442 

R1 = 0.0394 

wR2 = 0.0562 

Flack parameter -0.002(13)    

Largest diff. peak  

and hole (e.Å
-3

) 

0.851 ; -0.634  0.527 ; -0.631 1.396 ; -0.320  1.075 ; -0.522 

 

Powder diffraction  

X-ray powder diffraction was performed on Bruker D8 Advance diffractometer (LynxEye 

detector) in a Bragg-Brentano - mode using Cu-K radiation. Each powder pattern was 

recorded within an angular range of 5-70° in 2, with steps of 0.02° and counting time of 0.5s 

per step. 



 

Infrared spectroscopy 

Infrared spectroscopy was performed with a PerkinElmer Spectrum Two spectrometer 

equipped with a single reflection attenuated total reflectance (ATR), between 4000-400cm
-1

 

with a 1 cm
-1

 resolution.   

 

Thermal analysis 

Thorium based compounds, thermal analysis was performed on a thermoanalyser 92 

SETARAM TGA up to 900°C under air condition with a heating rate of 5°C.min
-1

.  

 

 

Results and discussion 
 

Structural description  

 

Crystal structure of (1) 

Compound (1) [Th(TEDGA)2(C2O4)][NO3]2[H2C2O4].6H2O crystallizes in the tetragonal non-

centrosymmetric space group P42212 (n°94) with a = b = 18.7140(12) Å and c = 12.9212(9) 

Å. The thorium (IV) ions are surrounded by ten oxygen atoms which form a bicapped square 

antiprism (Figure 2a). Six oxygen atoms are provided by the coordination of two tridentate 

TEDGA ligands and four oxygen atoms come from two bidentate oxalate ligands leading to 

structural building units (SBU) of formula [Th(TEDGA)2(C2O4)2]. The TEDGA ligands are 

planar and possess two ethyl groups in a syn-syn conformation and two ethyl groups in a syn-

anti conformation (Figure 2b). The Th-O distances range between 2.421(6) and 2.648(6) Å. 

The longest Th-O distances are representative of the Th-Oether bonds while the shortest lengths 

are attributed to the Th-Ocarbonyl ones. The Th-Ooxalate distances have intermediate values close 

to the Th-Ocarbonyl (Table 2). Due to symmetry consideration (4-fold axe) the oxalate ligands 

are twisted of 90° on both sides of the SBU.  

The SBU share their bis-bidentate oxalate ligands, 2-
2
:

2
, to form cationic chains, 

[Th(TEDGA)2(C2O4)]
2+

∞, running along the c axis (Figures 2c and 2d). The distance Th-Th 

through the oxalate ligands is equal to 6.490 Å and is similar to the one encountered in the 

literature for most of the ten-fold coordinated Thorium(IV) compounds connected by a bis-

bidentate 2-oxalate.
21,22

 In (1), the [Th(TEDGA)2(C2O4)]
2+

∞ chains are linear with successive 

Th-Th-Th atoms forming an angle equal to 180°, close to the one found in 

(NH4)4Th(C2O4)4·4H2O,
23

 while in compounds M4[An(C2O4)4].nH2O (An = Th, M=K, N2H5, 

n=4 ; M=C(NH3)2, n=2 ; M=Na, n=5.5 – An = U,
22

 M=K, n=4 ; M=C(NH3)2, n=2 and 

An=Np, Pu, M= C(NH3)2, n=2) the [An(C2O4)4]
4+

∞ chains are corrugated with a An-An-An 

angle close to 158°. 
23–26

 

Four nitrates, found along the (110) and (-110) directions, are found in the environment of one 

out of two [Th(TEDGA)2(C2O4)2] SBU. These nitrate anions are involved in a H-bonding 

network along with the oxalic acid molecules, found on the 2 fold axes parallel to c axis, and 

the water molecules. Only the water molecules bond the [Th(TEDGA)(C2O4)]
2+

∞ chains, 

which could explain the low stability of compound (1) in air (Figure 2d). 



 

 
Figure 2: Crystal structure of [Th(TEDGA)2(C2O4)][NO3]2[H2C2O4].6H2O (1). The ten-fold coordination sphere 

around Th forms a bicapped square antiprism (a) which summits are occupied by oxygen atoms coming from 

two bidentate oxalates and two tridentate TEDGA molecules. Two ethyl-groups of the TEDGA ligands have a 

syn-syn conformation while the other two have a syn-anti conformation (b). One out of two structural building 

units [Th(TEDGA)2(C2O4)2] is surrounded by four nitrate groups (b). The [Th(TEDGA)2(C2O4)2] share their 

oxalate ligands and form [Th(TEDGA)2(C2O4)]
2+

∞ chains (c) running along the c axis (d). The chains are 

maintained in a three-dimensional arrangement by means of a H-bond network (blue dotted lines) involving the 

nitrate anions, oxalic acid and water molecules (d). Legend: Th
4+

 are in green, C in grey, O in red and N in blue.  

The black arrows show the orientation of the ethyl groups over the plane defined by N-C-C atoms: full line: up, 

dotted line: down. The TEDGA molecules were removed for clarity in the H-network representation. 

 

Crystal structure of (2) 

Compound (2), [Th(TEDGA)2(C2O4)2][H2C2O4]2.2H2O, crystallizes in the monoclinic space 

group P21/n (n°14) with the unit cell parameters: a = 12.246(2) Å, b = 32.253(5) Å, c = 

12.256(2) Å and  = 106.741(1)°. The ten oxygen atoms surrounding Th
4+

 form a bicapped 

square antiprism polyhedron (Figure 3a). The 10-fold coordination involves six oxygen atoms 

coming from two tridentate TEDGA ligands and four oxygen atoms provided by two 

bidentate oxalate ligands, leading to structural building units (SBU) with the same formula as 

observed in (1), [Th(TEDGA)2(C2O4)2] (Figure 3b). The Th-O distances range between 

a) c)b)

d)



2.422(6) and 2.721(6) Å, the longest Th-O distances being representative of the Th-Oether 

bonds (2.7Å) and the shortest of the Th-Ocarbonyl and Th-Ooxalate ones (2.4Å) (Table 2). 

The two TEDGA ligands show, both, a planar geometry. In TEDGA 1, the ethyl groups are in 

a syn-anti conformation. In TEDGA 2 the two conformations, syn-anti and syn-syn, are found 

since the C3 atoms half occupy two crystallographic positions leading to two orientations of 

the C3-C4 ethyl groups (Figure 3b). 

The oxalate ligands are in a bis-monodentate coordination mode leading to a 0D compound. 

The neutral SBU are assembled by hydrogen bonds which involve two oxalic acid 

uncoordinated to Th
4+

 and two water molecules (Figure 3c). The hydrogen bonds network 

between H2C2O4, H2O and [Th(TEDGA)2(C2O4)2] forms 

[Th(TEDGA)2(C2O4)2][H2C2O4]2.2H2O layers laying in the aoc plane (Figure 3c). The layers 

are stacked in b direction thanks to Van der Walls interaction between the TEDGA molecules 

(Figure 3d). The absence of strong bonding interaction between the 

[Th(TEDGA)2(C2O4)2][H2C2O4]2.2H2O layers most probably explain the lack of stability of 

compound (2) and the difficulties in reproducing its synthesis. It has also to be noted that it is 

the only compound of the series with no nitrate included in the crystal structure. 

 

   
Figure 3: Crystal structure of [Th(TEDGA)2(C2O4)2][H2C2O4]2.2H2O (2). The ten-fold coordination sphere 

around Th forms a bicapped square antiprism (a) which summits are occupied by oxygen atoms coming from 

two bidentate oxalates and two tridentate TEDGA molecules. Two ethyl-groups of the TEDGA ligands have a 

syn-syn conformation while the other two have either a syn-anti or a syn-syn conformation (b). The 

[Th(TEDGA)2(C2O4)2] SBU are maintained in a two-dimensional arrangement by means of a H-bond network 

(blue dotted lines) involving two oxalic acid and two water molecules (c). Legend: Th
4+

 are in green, C in grey, 

O in red and N in blue.  The black arrows show the orientation of the ethyl groups over the plane defined by N-

C-C atoms: full line: up, dotted line: down. The TEDGA molecules were removed for clarity in the H-network 

representation. 

 



 

Crystal structure of (3) 

Compound (3), [Th(TEDGA)4][NO3]4.4H2O, crystallizes in the monoclinic space group C2/c 

(n° 15) with a = 26.5966(13) Å, b = 15.4489(7) Å, c = 18.5582(9) Å and  = 116.528(1) °. 

Th
4+

 is coordinated by four tridentate TEDGA leading to an uncommon coordination number 

of 12 (Figure 4a) instead of the 8 to 10-fold oxygen coordination usually reported.
27

 The Th-O 

distances, between 2.500(1) Å and 2.681(1) Å (table 2), are much shorter than the Th-O 

distances calculated for a 12-fold coordination (2.87 Å).
28

 Indeed, the Th-O distances are 

equivalent to those calculated for Th(DGA)3 
28

 which shows the strong interaction existing 

between the Th
4+

 cations and TEDGA molecules in compound (3).  

The dihedral angles between the planes including the amide functions of each TEDGA are 

close to 140° which indicates a strong constrain of the TEDGA ligands. Moreover, the ethyl 

groups are in a syn-anti conformation, most probably in order to reduce the steric hindrance 

(Figure 4b). 

Four nitrate anions surround the isolated entities [Th(TEDGA)]
4+

 (Figure 4c). They contribute 

to stabilize the overall structure by electrostatic interaction involving [Th(TEDGA)]
4+

 and 

hydrogen bonds involving water molecules and forming (NO3)4(H2O)4 clusters (figure 4d).  

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 4: Crystal structure of [Th(TEDGA)4][NO3]4.4H2O (3). Each of oxygen atoms of the twelve-fold 

coordinated Th (a) belongs to a tridentate TEDGA molecules. The ethyl-groups of the four TEDGA ligands have 

a) b) c)

d)



a syn-anti conformation (b). The [Th(TEDGA)4]
4+

, surrounded by four nitrate anions (c, d), are maintained in a 

three-dimensional arrangement thanks to the electrostatic interactions and the H-bond network (blue dotted lines) 

between the nitrate anions and the water molecules (d). Legend: Th
4+

 are in green, C in grey, O in red and N in 

blue.  The black arrows show the unique syn-anti orientation of the ethyl groups. The TEDGA molecules were 

removed for clarity in the H-network representation.  

 

Crystal structure of (4) 

Compound (4), [Th2(C2O4)3(TEDGA)4][NO3][HC2O4][H2C2O4]4.7H2O, crystallizes in a 

triclinic P-1 space group with a = 15.6611(7) Å, b = 17.9082(9) Å, c = 18.1814(7) Å,  = 

89.896(2) °,  = 65.549(2) ° and  = 87.623(2)°. The cationic environment is similar for the 

two independent thorium which are surrounded by ten oxygen atoms, forming a bicapped 

square antiprism (Figure 5a). As observed in compounds (1) and (2), six oxygen atoms come 

from the TEDGA ligands and four come from two oxalate ligands (Figure 5b). The Th-Ooxalate 

distances belong to 2.416(2) Å – 2.509(2) Å. The longest Th-Ooxalate distances come from the 

bridging oxalate (O7, O8 and O19, O20; dmean = 2.500 Å) and the shortest come from the 

terminal oxalate (O9, O10 and O21, O22; dmean = 2.422 Å). The Th-Ocarbonyl distances have 

values close to the Th-Ooxalate distances (dmean = 2.463 Å) while the Th-Oether bond-lengths are 

longer (dmean = 2.657 Å) (Table 2). 

The oxalates, Ox1, coordinate the thorium cations in a bidentate mode 
2
 while the oxalates, 

Ox2, are in a bridging bis-bidentate mode µ2-
2
:

2
 which leads to the formation of dimeric 

units [Th2(C2O4)3(TEDGA)4]
2+

 (Figures 5c, 5d). One out of two dimeric units 

[Th2(C2O4)3(TEDGA)4]
2+

 is surrounded by two nitrate anions. 

The terminal oxalates, Ox1a and Ox1b, part form the hydrogen-bond network with water 

molecules and oxalic acids (Figure 5d).  In order to respect the global neutral charge of the 

network, among the different oxalate acids, one must be partially deprotonated. According to 

the crystal structure determination (H positioning and Wickoff positions), the planar oxalate 

Ox3 is this peculiar one. Finally, seven water molecules are located in the interstices, two of 

them (O30 and O32) are involved in the hydrogen bonding with the terminal oxalate of the 

dimeric units (Ox1a and Ox1b), and the other five are involved in the hydrogen bonding with 

the uncoordinated oxalic parts, the nitrate anions and the bridging oxalate, Ox2a and Ox2b, 

thereby ensuring the stability of the network.  

 



 

 
Figure 5: Crystal structure of [Th2(C2O4)3(TEDGA)4][NO3][HC2O4][H2C2O4]4.7H2O (4). The ten-fold 

coordination sphere around Th forms a bicapped square antiprism (a) which summits are occupied by four 

oxygen atoms coming from two bidentate oxalates and by 6 oxygen atoms originating from two tridentate 

TEDGA molecules. One ethyl-group of the TEDGA ligands has a syn-syn conformation while the other three 

have a syn-anti conformation (b). One out of two dimeric units [Th2(Ox)3(TEDGA)4]
2+

 is surrounded by two 

nitrate which are included in the second coordination sphere (c). The dimeric units are maintained in a three-

dimensional arrangement by means of a H-bond network (blue dotted lines) between the nitrate anions, oxalic 

acid and water molecules (d). Legend: Th
4+

 are in green, C in grey, O in red and N in blue.  The black arrows 

show the orientation of the ethyl groups over the plane defined by N-C-C atoms: full line: up, dotted line: down. 

The TEDGA molecules were removed for clarity in the H-network representation. 

 

Thorium coordination 

Although the connectivity of the networks differs between (1), (2) and (4), the first 

coordination sphere of the thorium cation remains equivalent in these three compounds. The 

actinide is located at the center of a bicapped square antiprism (CN: 10) whose summits of the 

square faces are made of two carbonyl oxygen atoms from one TEDGA and two oxygen 

atoms coming from two different oxalate groups. The two ether oxygen atoms of the TEDGA 

ligands occupy the capping positions. Unlike in (1), (2) and (4), the actinide in compound (3) 

presents a 12-fold coordination forming an icosahedron whose summits are composed by the 

oxygen atoms of TEDGA parts, without oxalate's bonding. An overview of the literature 

indicates that 12-coordinated thorium atoms are found in thorium nitrate compounds 

[Th(NO3)6][L] with L = bypyridinium,
29–31

 oxadiazole,
32

 phosphonium,
33

 oxonium,
34

 or 

[Th(NO3)3-5][M] with M = phosphate,
35

 sulfoxide
36

 and phosphine
37

 but remain rarely 

encountered (only 26 results in the conquest database). To the best of our knowledge, it is the 

first compound presenting such coordination number without any nitrate anion belonging to 

the coordination sphere. The presence of TEDGA in the coordination sphere of each of the 

a) b) c)

Ox1a

Ox2a

Ox5a

Ox3

Ox4a

O30

O32

Ox1b

Ox2b

Ox3

Ox5bOx4b

d)



compounds shows the great complexing behavior and stability of Th(TEDGA)x complexes 

despite the presence of oxalic acid which is known to form insoluble and stable thorium 

oxalate Th(C2O4)2.nH2O.
38,39

 

The Th-Oether mean distances (2.648 to 2.719Å) are almost equivalent through the series 

despite the 4-fold TEDGA coordination of Th(IV) in (3) and the higher ionic radius expected 

for a twelve-fold coordinated Th(IV) compared to a ten-fold one (1.21Å vs 1.13Å). These Th-

Oether bond values are higher than the mean Th-Ooxalate and Th-Ocarbonyl distances (Table 2), 

while the Th-Ooxalate distances, between 2.423(7) and 2.509(2)Å, are similar to those 

encountered in the literature for 2-
2
:

2
 and 2-

2
 bridging oxalate ligands.

22,40
 The Th-

Ocarbonyl bond values are close for compounds (1), (2) and (4). Their values, between 2.421(6) 

and 2.532(1)Å, lie within the same range than previously described for carbonyl derivative 

based compounds
41,42

 however the Th-Ocarbonyl bond seems affected by the ionic radius 

variation of Th(IV) since compound (3) presents a larger Th-Ocarbonyl mean distance (2.516Å) 

than compounds (1), (2) and (4) (2.427, 2.461 and 2.463Å, respectively). These values remain 

consistent with the Th-Ocarbonyl distances determined by the calculation.
28

 So far, only two 

compounds based on An(IV) have been described in the literature: 

(Pu
IV

(TMDGA)3)(NO3)3.MCN (TMDGA = tetramethyldiglycolamide ; MCN = acetonitrile) 

and (Pu
IV

(TMDGA)3)(NO3)3.ETOH.
17

 In these examples, the Pu(IV) cations are surrounded 

by nine oxygen atoms coming from the three TMDGA which form a twisted tricapped 

trigonal prism. The ether oxygen atoms occupy the capping position while the oxygen atoms 

belonging to the carbonyl function form the summits of the trigonal faces. The Pu-O distances 

show the same trend than observed in the present study in that the Pu-Oether distances are 

longer than the Pu-Ocarbonyl distances (0.18Å difference). The Pu-O distance are, on average, 

ca. 0.15-0.19Å shorter than the Th-O distances which may account for the larger ionic radius 

of Th(IV) than Pu(IV) together with the higher coordination numbers of Th(IV) in the present 

compounds than the one of Pu(IV) in the previously reported Pu
IV

(TMDGA)3)(NO3)3 

solvates. The presence of an additional TEDGA around the thorium cation in (3) may also be 

related to the larger ionic radius of Th(IV) than Pu(IV) (0.09Å difference for a same 

coordination number), thereby allowing a higher coordination number. The DFT calculations 

performed by Gong et al
28

 on the Thorium-tetramethyldiglycolamide (TMDGA) system 

showed that the structure of Th(TMDGA)4 is less stable than the one of Th(TMDGA)3 due to 

larger Th-O distances. One may note that the experimental Th-O distances, more specifically 

the Th-Oether distances experimentally determined in the present study, are shorter than the 

calculated distances.  

In (1) the angle formed by two oxalate parts coordinating Th is of 90° while it is lower in (2) 

and (4) with a mean value of about 71° and 80°, respectively (Table S6). The opposite 

TEDGA ligands coordinating Th in compounds (1), (2), (3) and (4) are turned by an angle 

varying from 31° to 69° (Table S7). No relationships could be established between the torsion 

angle of the TEDGA molecules and the dihedral angle formed by their mean planes (Table 

S8).  

 

 

  



Table 2: Minimal, maximal and mean Th-O distances in (1), (2), (3) and (4). 

 

 Th-O (min – max)  Th-O (mean) 

1 2 3 4 1 2 3 4 ref 

Th-

Oether 

(Å) 

2.648 (6) 2.717(6) 

– 

2.721(6) 

2.666(1) 

– 

2.681(1) 

2.622(2) 

– 

2.684(2) 

Th-

Oether 

(Å) 

2.648 2.719 2.674 2.657 2.69741 

2.62343,44 

Th-

Ocarbonyl 

(Å) 

2.421(6) 

– 

2.432(6) 

2.450(7) 

– 

2.475(6) 

2.500(1) 

– 

2.532(1) 

2.434(2) 

– 

2.481(2) 

Th-

Ocarbonyl 

(Å) 

2.427 2.461 2.516 2.463 2.45825 

2.41141 

Th-

Ooxalate 

(Å) 

2.487(5) 

– 

2.492(5) 

2.423(7) 

– 

2.468(6) 

 2.416(2) 

– 

2.509(2) 

Th-

Ooxalate 

(Å) 

2.490 2.447  2.461 2.49140 

2.48525 

 

 

Nitrate positioning 

 

In all the compounds reported herein, the nitrate anions are found in the interstices, as for 

instance in (Ln(TEDGA)3)(NO3)3.4H2O with Ln = Tb, Dy, Ho, Er, Tm, Yb, and Lu
12

, 

(Yb(tris-DGA))(NO3)3, (Yb(i-PrDGA)3)(NO3)4,
11

 (Pu
IV

(TMDGA)3)(NO3)3.MCN and 

(Pu
IV

(TMDGA)3)(NO3)3.ETOH.
17

 One may note that no solid compounds containing 

simultaneously nitrate and DGA ligands in the same coordination of the f-element was 

reported up to date and that the only mixed ligands compounds including DGA (L) are found 

only with the lightest lanthanides, La and Ce. These compounds are heteroleptic which means 

that Ln(NO3)6 polyhedra coexist in the crystal structure besides the Ln(DGA)n entities leading 

to (LaL3)(La(NO3)6) and (CeL)(Ce(NO3)6)(CH3OH)(C4H10O) formula. In the present study, 

the nitrate anions remain close to the thorium cations, but do not integrate the coordination 

sphere. They occupy either the free spaces between the two arms of TEDGA ligands in 

compounds (1) and (3) (Figures 2b and 4c) or the free spaces between the TEDGA ligands in 

compound (4) (Figure 5c). According to these structural results and to the crystal structure 

previously reported, one can assume that the presence of DGA ligands in the coordination 

sphere of the f-cations preclude the integration of nitrate in the same environment.  

 

 

Geometry of the free di- and mono-protonated oxalic acids in (1), (2) and (4) 

 

The oxalate ligands coordinating Th(IV) in compounds (1), (2) and (4) are nearly planar 

(Table S4). In these oxalate ligands, the C-O distances are slightly different in accordance 

with the bridging mode of the oxalate groups. In the µ2-
2
:

2
 oxalates, all the C-O distances 

are equivalent to 2.24-2.26Å while in the µ2-
2
 terminal oxalates the C-O distances with O 

atoms in the coordination sphere of Th(IV) tend to be slightly longer (1.25-1.28Å) than the C-

O distances with free oxygen atoms (1.22-1.26Å). The oxalic acid molecules can be planar
45

, 

as the oxalate groups, but their carboxylate plans can also display a twisted angle up to 

90°.
45,46

 In the present compounds the free di- and mono-protonated oxalic acids exhibit a 

twisted angle varying from 7 to 88° which shows that the oxalic acid can adopt different 

geometries (Figure 6, Table S9). The nomenclature introduced by Nieminen et al. uses the 



lower case letters c (cis) and t (trans) to describe the relative orientation of the O-H and C-C 

bonds and the upper letters C (Cis) or T (Trans) to define the relative orientations of the C=O 

bond.
47

 In compound (1) the oxalic acid has a conformation tTt and exhibit a torsion angle, , 

equal to 19°. In compound (2) the two oxalic acids with the same conformations tTt, Ox2 and 

Ox3, shows torsion angles of about 7-8°. In compound (4) different conformations of oxalic 

acid coexist: the tCt conformation with torsion angles equal to 7, 19 and 88° for the oxalates 

ox4a, ox4b and ox5a, respectively, and the tTt conformation for the oxalate ox5b ( equal to 

39°) (Figure 6). On the basis of these results, it is impossible to establish a relation between 

the torsion angle and the oxalic acid conformation. However, a careful examination of the C-

O distances in compounds (2) and (4), which crystal structure was solved at 100K, reveal 

undoubtedly that the C-O distances around 1.2Å can be attributed to the C=O bonds while the 

C-O distances around 1.3Å are related to the C-OH bonds. The 1.3Å distance characteristic of 

C-OH is also found in the monoprotonated oxalate ox3 of compound (4). 

 

 
 

Figure 6: Oxalic acids in the crystal structure of [Th2(C2O4)3(TEDGA)4][NO3][HC2O4][H2C2O4]4.7H2O (4). 

 

Comparison of the spectroscopic data for TEDGA, (1), and (3) 

 

We were able to obtain the compound (1) and (3) as pure powders, the last by modifying the 

temperature of synthesis. The X-ray diffraction pattern and thermal decomposition of 

compounds (1) and (3) are shown in Figures S2 and S5, while IR spectra are presented in 

Figure 7. Between 4000 cm
-1

 and 2000 cm
-1

, the spectra show the three bands characteristic of 

the C-H stretching of the methylene and methyl groups. One can also notice the presence of a 

large band between 3600 cm
-1

 and 3400 cm
-1

 due to the presence of water molecules in the 

structures. In the region between 2000 cm
-1 

and 400 cm
-1

, the peak at 1639 cm
-1

 

corresponding to the carbonyl stretching of the TEDGA is shifted at 1612 cm
-1

 and 1607 cm
-1

 

in (1) and (3) spectra, respectively, because of the coordination of the TEDGA to the 

actinide.
12,48

 The C-O-C of the TEDGA exhibits two vibrational bands at 1125 cm
-1

 (as) and 

1039 cm
-1

 (s) for the free ligands.
50

 Those bands are slightly shifted due to the coordination 

ox4aox3

1,31

2,67

  7°   19°

ox1box5a

  88°

ox1aox5b

ox4b

ox3

  39°

tCt

tTt



of the ether oxygen atom. The bands at 826, 1282 and 1385 cm
-1

 correspond to the vibrational 

bands of uncoordinated nitrate anions.
49–51

 The compound (1) spectrum displays one 

additionnal band at 1730 cm
-1

 due to the presence of oxalic acid molecules in the crystal 

structure. For this compound, the band at 1607 cm
-1

 might be attributed to the combination of 

the carbonyl stretching arising from the TEDGA part or to the asymmetric stretching of the 

oxalate part.
25,52,53

 The symmetric stretching bands are observed in 1300-1350 cm
-1

 range.
25,52
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Figure 7: Infrared spectra of TEDGA (in black), [Th(TEDGA)2(C2O4)][NO3]2[H2C2O4].6H2O (1) (in blue) and 

[Th(TEDGA)4[NO3]4.4H2O (3) (in red). 

 

Conclusions 
Even if the use of diglycolamide molecules for the nuclear waste treatment has been studied 

for long time, the ability of these organic compounds for complexing the lanthanides or the 

renewable elements, plutonium or uranium, is still a hot topic and the knowledge of the 

different possible phases able to be formed during a process, a very crucial point. The pre-

complexation of the water soluble TEDGA and thorium(IV), followed by an addition of 

oxalic acid, has allowed to isolate and characterize four new compounds containing Th(IV) 

and TEDGA, by successive single-crystal to single-crystal phase transformations. Three of 

them are homoleptic mixed ligands compounds containing two TEDGA and two oxalate in 

the coordination sphere of Th(IV) while the fourth compound exhibits four TEDGA in the 

cation environment leading then to an uncommon coordination number of 12. Although the 

TEDGA 

(3) 

(1) 



mixed oxalate-TEDGA ligands compounds present the same coordination sphere, the 

dimensionality of the networks varies from linear chains to isolated entities or dimeric units. 

The TEDGA molecule shows then a great ability to complex the actinide cation (thorium in 

the present case) despite the presence of oxalic acid. The influence that TEDGA might have 

on the structural and microstructural properties of the precipitate during the next step of the 

industrial process, i.e. the oxalic precipitation, is under study by carrying out oxalic 

precipitation and crystal growth of Th(C2O4)2.6H2O and Pu(C2O4)2.6H2O in presence of 

TEDGA. 

 

 

Supporting information 
Comparison between simulated and experimental powder pattern for (1), (3) and the mixtures 

(2) + (3) and (1) + (4) can be found on figure S1-S4 in supporting information. The figure S5 

contains the thermal analysis of (3).  

The crystallographic data of (1), (2), (3) and (4) are available in CIF format. 
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