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Abstract: This paper formally highlights how the multirate sampled data equivalent model can
be exploited for prediction in an MPC formulation in order to mitigate the possible instability
arising from an MPC design while ensuring prefixed boundedness of the control amplitude. This
last aspect is in particular addressed and solved with reference to the class of systems which
admit, under feedback, a computable sampled model.
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1. INTRODUCTION

Model Predictive Control (MPC) has become a widely
investigated research area in linear and nonlinear control
and their applications (e.g., Boucher and Dumur (1996);
Camacho and Alba (2013); Borrelli et al. (2017); Kwon
et al. (1982)). Roughly speaking the control action is
designed by solving a constrained optimization problem
subject to the system dynamics and possibly additional
requirements and bounds.
The simplest way to design and implement the resulting
control law makes use of a sampled data model of the plant
for prediction that is exploited for solving the optimization
problem over a finite prediction horizon of length np. In
this context, one implicitly assumes the dependence of the
predicted future values of the output over nc future con-
trols actions, generally referred to as the control horizon.
Driving the output trajectory to a desired reference at
the sampling instants via discrete time model predictive
control while preserving stability in closed loop may induce
difficulties especially when the plant (and the model used
for prediction) is not minimum phase. In that case, the
choice of the prediction and control horizons plays a key
role. In fact, typically, one sets nc much smaller than np to
address this fact as well as minimizing the computations
required (Clarke et al. (1987)).
As proven in Monaco and Normand-Cyrot (1988), single-
rate (or standard) sampling generally induces unstable
and extra zero-dynamics so that minimum-phaseness is
lost independently of the continuous-time plant proper-
ties; to overcome such a pathology, a multirate sampling
procedure has been properly introduced to preserve the
continuous-time internal properties. With this in mind, it
is proposed and shown in the sequel that the use of a mul-
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tirate (MR) sampled equivalent model at the prediction
and implementation level overcomes the aforementioned
problems in an MPC control scheme.
Recalling moreover the peculiar properties of MR sam-
pling when applied to nonholonomic systems (Monaco and
Normand-Cyrot (1992)), it is shown that a MR based
MPC control scheme can be fruitfully employed to limit
the amplitude and increase the robustness of MR solution
to the steering problem. This result relies on the fact that
MPC restitutes the MR steering solution.
The work is organised as follows. In Section 2 recalls on
single and multi-rate sampling are given and the problem
under investigation is stated. Section 3 is devoted to the
proposed MR-MPC control scheme and prove its effective-
ness. Section 4 investigates the relation between MPC and
MR controllers in the sampled data context with reference
to the steering control of nonholonomic dynamics; the
example of the unicycle dynamics is used to verify the
effectiveness of the proposed control scheme. Concluding
remarks end the paper.

2. RECALLS AND STATEMENT OF THE PROBLEM

2.1 Notation and definitions

All functions and vector fields defining the dynamics
are assumed smooth and complete over the respective
definition spaces. MU (resp. M I

U ) denotes the space of
measurable and locally bounded functions u : R → U
(u : I → U , I ⊂ R) with U ⊆ R. Uδ ⊆ MU denotes the
set of piecewise constant functions over time intervals of
fixed length δ ∈]0, T ∗[; i.e. Uδ = {u ∈ MU s.t. u(t) =
uk,∀t ∈ [kδ, (k + 1)δ[; k ≥ 0}. When u(t) ∈ Rm then

ujk, (uk)j , u
(j)
k are the jth component of u for t ∈ [kδ, (k +

1)δ[; k ≥ 0}, uk raised to the power j and the jth derivative
respectively. Given a vector field f , Lf denotes the Lie



derivative operator, Lf =
∑n
i=1 fi(·)∇xi

with ∇xi
:= ∂

∂xi

while ∇ = (∇x1
, . . . ,∇xn

). The Lie exponential operator

is denoted as eLf and defined as eLf := I +
∑
i≥1

Li
f

i! .

A function R(x, δ) = O(δp) is said to be of order δp

(p ≥ 1) if whenever it is defined can be written as

R(x, δ) = δp−1R̃(x, δ) and there exist function θ ∈ K∞
and δ∗ > 0 such that ∀δ ≤ δ∗, |R̃(x, δ)| ≤ θ(δ∗).

2.2 Sampled data systems and multirate sampling

The following recalls on sampled-data systems are given
(see Monaco and Normand-Cyrot (2001) and the refer-
ences therein). Given a SISO system

ẋ = f(x) + g(x)u, y = h(x) (1)

and considering u(t) ∈ Uδ and y(t) = y(kδ) for t ∈ [kδ, (k+
1)δ[ (δ the sampling period), the dynamics of (1) at the
sampling instants is described by the single-rate sampled-
data equivalent model

xk+1 = F δ(xk, uk), yk =h(xk) (2)

with xk := x(kδ), yk := y(kδ), uk := u(kδ). The mapping
F δ(·, u) : Rn × R → Rn gets the form of formal series
expansion in powers of δ that is (dropping the time
subscript for clarity)

F δ(x, u) = eδ(Lf+uLg)x = x+
∑
i>0

δi

i!
(Lf + uLg)

ix. (3)

It is a matter of computations to verify that if (1) has
well defined relative degree r ≤ n, the relative degree of
the sampled-data equivalent (2) always falls to rd = 1;
namely, one has

yk+1 =

r∑
i=0

δi

i!
Lifh(x)

∣∣
xk

+
δr

r!
ukLgL

r
fh(x)

∣∣
xk

+O(δr+1)

so that ∇uk
yk+1 = δr

r! LgL
r
fh(x)

∣∣
xk

+ O(δr+1) 6= 0. As

a consequence, whenever r > 1, the sampling process
induces a further zero-dynamics of dimension r−1 (the so-
called sampling zero-dynamics) that is in general unstable
for small values of δ when r > 1. As a consequence,
dynamics-inverting controllers via single-rate sampling do
not guarantee internal stability.
Multirate sampling has been developed in a nonlinear
context to overcome those issues. Namely, by setting
u(t) = uik for t ∈ [(k+ i− 1)δ̄, (k+ i)δ̄[ for i = 1, . . . , r and
y(t) = yk for t ∈ [kδ, (k + 1)δ[, the multirate equivalent
model of order r of (1) gets the form

xk+1 =F δ̄m(xk, uk), Yk = H(xk) (4)

with δ̄ = δ
r , u ∈ Rr =

(
u1 . . . ur

)>
, a dummy output

vector H(x) =
(
h(x) Lfh(x) . . . Lr−1

f h(x)
)>

and

F δ̄m(xk, uk) =eδ̄(Lf+u1
kLg) . . . eδ̄(Lf+ur

kLg)x
∣∣
xk

=

F δ̄m(·, urk) ◦ · · · ◦ F δ̄(xk, u1
k).

One gets so far a MIMO system possessing vector relative
degree rδ = (1, . . . , 1) and zero dynamics which inherits
the zero-dynamics stability properties of (1).
It must be recalled that exact computation of the sampled
data equivalent model cannot in general be achieved,
so that approximated models are usually computed by

truncation in different ways of the expansion (3). Related
to the properties of (3), the notion of exact and finite
computability of the sampled data model, possibly under
preliminary feedback, has also been introduced in Monaco
and Normand-Cyrot (1992).

2.3 Multirate digital steering of chained forms

Multirate sampling has been shown to be of interest
in the digital design of nonholonomic and under actu-
ated mechanical systems (see Monaco and Normand-Cyrot
(1992)). Under preliminary continuous-time feedback, a
nonholonomic mechanical system admits the so-called sin-
gle chained dynamics

ξ̇1 = u1, ξ̇2 = u2, ξ̇i = ξi−1u1 i = 3, . . . , n (5)

admitting a finitely computable sampled dynamics; more-
over, the one-step ahead dynamics can be easily inverted
with respect to the control input to deduce a multirate
feedback ensuring exact deadbeat steering. For, consider
(5) and (ξ

0
, ξ
f
) then there exists a multirate control of

order (n − 1) on u2 and 1 on u1 (i.e. δ̄ = δ
n−1 ) such

that system (5) is exactly steered in one step δ from ξ
0

to ξ
f
. The feedback ensuring exact steering for (5) can

be easily deduced by inverting the multirate sampled data
equivalent model of (5) provided by

ξ1,k+1 = ξ1,k + δu1,k, ξ2,k+1 = ξ2,k + δ̄
∑
i

ui2,k

ξ3,k+1 = ξ3,k + δu1,kξ2,k + η1(δ̄2, u1,k)u2,k (6)

...

ξn,k+1 = ξn,k +G(δ, ξk, u1,k) + ηn−2(δ̄n−1, u1,k)u2,k

with η1(·), G(·) and ηn(·) being

η1(u1,k) =
1

2!

[
c11u1,k c

2
1u1,k . . . c

n−1
1 u1,k

]
G(δ, ξi,k, u1,k) = ξn,k + δu1,kξn−1,k +

δ2

2!
(u1,k)2ξn−2,k

+ . . .+
δn−2

(n− 2)!
(u1,k)n−2ξ2,k

ηn−2(u1,k) =
1

(n− 1)!

[
c1n−2u1,k c

2
n−2u1,k . . . c

n−1
n−2u1,k

]
with some suitable constants cji .
For all fixed ξ0 = ξ[kδ], ξf = ξ[kδ+ δ], directly solving the
above system in the unknowns (u1,k, u2,k), one gets

u1,k =
1

δ
(ξ1,k+1)− ξ1,k)

u2,k = η−1(ξ
k+1
−G(·))

(7)

with η(·), G(·) and ξ(·) being the compact forms of the
corresponding elements in (6). Taking into account the
preliminary feedback, steering is achieved under piecewise
continuous control designed on the basis of the multirate
sampled model. Roughly speaking, the multirate sampling
is used as a trajectory planner.
A key thing to note on the control solution above is
that, while it does steer the system to the desired final
state, it is indeed an inverting controller and the control
effort might grow unboundedly so making the feedback not
implementable in practice. To overcome this issue, we shall
improve such a feedback via MPC.



2.4 Problem statement

Consider the continuous-time system (1) under sampling,
with relative degree r ≤ n being minimum phase . Here-
inafter we shall address the problem of driving the output
trajectory, to a desired reference ν(t) at the sampling
instants t = kδ, k ≥ 0 via discrete time MPC (Camacho
and Alba (2013)) while preserving stability in closed loop;
that is yk = νk, k ≥ k∗ with νk = ν(kδ) by minimizing the
cost functional

J =

np∑
i=1

(
‖ek+i‖2Q + ‖uk+i−1‖2R

)
=

np∑
i=1

L(xk+i, νk+i, uk+i−1)

(8)

with Q > 0, R ≥ 0 being appropriate penalizing weights
on the tracking error and input magnitude and np being
the prediction horizon; moreover, e is a suitably defined
error map, such that ek = 0 iff yk = νk.
MPC induces a constrained optimization problem subject
to the dynamics (4) and possibly additional requirements
and bounds. To solve this problem several methods are
available, the simplest to implement of which is the so
called direct single shooting (Hicks and Ray (1971)) by
plugging (4) into (8) so getting

J =

np∑
i=1

L(·, uk+i−1) ◦ (F δ̄m(·, uk+i−1) ◦ . . . ◦ (F δ̄m(xk, uk)).

Hence, an optimal solution ue =
(
uk . . . uk+nc−1

)>
is

computed by solving ∇ueJ = 0 with nc being the so-called
control horizon.
For our purposes it is interesting to note that in its usual
implementation MPC makes use of a single-rate sampled
data model of the plant of the form (2) for prediction.
This induces the loss of the minimum-phaseness, so forcing
the designer to set nc < np to recover internal stability
(or using terminal penalties and/or constraints sets) while
also defining a dynamical controller (in the sense of using
feedback on the states and also on the previous controls)
to ensure off-set free tracking. In the approach we are
proposing, the use of multirate sampled data model will
provide a static feedback overcoming both issues.

3. PREDICTIVE MULTIRATE DIGITAL CONTROL
OF NONLINEAR SYSTEMS

With reference to the problem statement in the previous
section, and the augmented output vector, we set out to
state our main result, however to do so one needs the
following assumption;

Assumption 1. Measures of ν and its derivatives ν(i) for
i = 1 . . . r − 1 are available at all t = kδ, k ≥ 0.

For the sake of compactness, we shall define the extended
output vector dynamics for np = nc future values as

Yek+1
= AeYk +Be(xk)uek + Θ(xk, uek)

with Yek+1
=
(
Yk+1 Yk+2 . . . Yk+np

)>
and uek =(

uk uk+1 . . . uk+nc−1

)>

Be(·) = LgL
r−1
f h(·)


B 0 . . . 0
AB B . . . 0

...
Anp−1B Anp−2B . . . B

 ,
B = D∆(r) D = diag(δ̄r/r!, . . . , δ̄)

∆(r + j) =

(r + j)r+j − (r + j − 1)r+j . . . (j + 1)r+j − (j)r+j

. . .

(r + j)j − (r + j − 1)j . . . (j + 1)j − (j)j



A =

1 δ . . . δr−1/(r − 1)!
. . .

0 0 . . . 1

 Ae =


A
A2

...
Anp


with j ≥ 0 and Θ(·) containing all higher order terms in
O(δ̄r+1) (?). The next result shows that the problem in
Section 2.4 is always solvable with np = nc > 1 under
multirate feedback, provided the relative degree is well
defined.

Theorem 2. Let (1) possess relative degree r ≤ n, and (4)
be its multirate equivalent model of order r. Consider the
MPC problem with cost functional (8) and ek = Yk − νk
with νk =

(
νk . . . ν

(r−1)
k

)>
. Then, there exists δ∗ > 0

such that for all δ ∈ [0, δ∗[, the MPC problem is solvable
with internal stability for all np = nc ≥ 1. The feedback is
defined as the unique solution to the equality

(K(x, ue)QeBe(x) +Re)ue =

Be(·)(νe −AeY −Θ(x, ue))
(9)

with Qe = I ⊗Q, Re = I ⊗R
K(x, ue) = (B>e (x) +∇ueΘ(x, ue))

νek =
(
νk+1 . . . νk+np

)
.

Sketch of proof. To prove that (9) is optimal, we
first rewrite (8) as J = ‖Yek+1

− νek‖Qe + ‖uek‖Re

whose jacobian is clearly annihilated by the solution to
(9). Existence of a feedback solution can be deduced by
rewriting (9) a formal series expansion in powers of δ
and applying the implicit function theorem. Indeed, the
term (D−1K(x, ue)QeBe(x) + Re) is invertible as δ →
0 (Monaco and Normand-Cyrot (2001); Mattioni et al.
(2017)). Internal stability is ensured by the minimum
phaseness of the continuous-time plant which is conse-
quently preserved under multirate sampling (Monaco and
Normand-Cyrot (1988)).

Remark 3. The solution obtained in Theorem 2 is im-
plicitly defined by the above equality and is a formal
series in powers of δ̄. Such a solution cannot be generally
exactly computed in practice although several procedures
are available for deducing approximation up to any de-
sired order so to guarantee the required performances (see
Monaco and Normand-Cyrot (2001) for further details).

Remark 4. As R → 0, the feedback defined by (9) coin-
cides with the deadbeat inverting control that steers the
output to the desired ν in one step of length δ. Such a
feedback comes with an effort that is in general, inversely
proportional to δ, thus by suitably setting R one can re-
duce the effort while still guaranteeing off-set free tracking
in finite time.

Remark 5. It is rather straightforward to show that when
(1) is linear (i.e. f(x) = Fx, g(x) = G and h(x) =



Cx) one recovers the known output trajectory predic-
tion of the discrete time model with Ad = eFδ, Bd =

[Āδ̄(r−1)B̄ . . . B̄], Ā = eF δ̄, B̄ =
∫ δ̄

0
eFsdsG and Cd = C;

i.e,

Y ek+1
=


CdAd
CdA

2
d

...
CdA

np

d

xk+


CdBd 0 . . . 0
CdAdBd CdBd . . . 0

...

CdA
np−1
d Bd CdA

np−2
d Bd . . . CdA

np−nc

d Bd

uek
which in compact form can be written as Yek+1

= Aexk +
Beuek . Along the lines of Borrelli et al. (2017), the opti-
mal control is u∗e = (B>e QeBe + Re)

−1B>e Qe(νe − Aex).
When implementing the above optimal control trajectory
a receding horizon algorithm (i.e. selecting the first m
components of ue[k] and discarding the rest and repeating
at each sampling instant) one has

u?k = (Im 0 . . . 0) (B>e QeBe +Re)
−1B>e Qe(νe −Aex).

Thus, when np = nc, Qe = I and Re = 0 the MR-MPC
feedback reduces to u?k = (CdBd)

−1(ν − CdAdx), which is
the classical dynamics inverting feedback.

Roughly speaking, with reference to a minimum-phase
plant, Theorem 2 suggests the use of MR-MPC control
law of order equal to the relative degree. In what follows,
we explicitly define this solution for nonholonomic systems
that are feedback-equivalent to chained forms (Brockett
et al. (1983)). In doing so, we formally show that as
R → 0 one recovers the standard deadbeat control. As
a byproduct, we also provide an extension of Theorem 2
to the case of MIMO systems for which the relative degree
might not be defined.

4. PREDICTIVE MULTIRATE STEERING FOR
CHAINED FORMS

For illustrative purposes, the following discussion will
consider the chained form (5) with n = 3 albeit the
arguments extend to the general case as highlighted. For,
suppose one wants the state of the system to converge to
a desired trajectory ν ∈ Rn. Considering u2(t) = ui2,k =

u2(kδ + (i − 1)δ̄) for i = 1, 2, one can write the output
prediction over np = 1 as[

x1,k+1

xk+1

]
=

[
1 0
0 A2

m(·)

] [
x1,k

xk

]
+

[
1 0
0 Rm(·)

] [
u1,k

u2,k

]
(10)

with u2 = (u1
2 u

2
2)> and

Am(·) =

[
1 0

δ̄u1,k 1

]
, b =

 δ̄
δ̄2

2!
u1,k

 , Rm(·) = [Am(·)b b]

which compactly rewrites as Y = F (δ, u1)X+G(δ, u1, u2)u2.
One can then proceed in a similar fashion to the previous
section, using the cost index (8) with e = col(e1, e2, e3) =(
x1 x

>)> − ν and setting ∇uJ = 0, so getting (when
Q = I) that the optimal control u = u? is solution to
(dropping time subscript for clarity)

u1 =
−2δe1 − e3(3δ̄2u1

2 + δ̄2u2
2 + 4δ̄x2)

2δ2 + (3δ̄2u1
2 + δ̄2u2

2 + 4δ̄x2)

u1
2 = −2δ̄(e2 + δ̄u2

2)− 3δ̄2u1(e3 + 2δ̄u1x2 − 0.5δ̄2u1u
2
2)

2δ̄2 + 4.5δ̄4u2
1

u2
2 = −2δ̄(e2 + δ̄u1

2)− δ̄2u1(e3 − 2δ̄u1x2 − 1.5δ̄2u1u
1
2)

2δ̄2 − 0.5δ̄4u2
1

(11)
with ui2 (i = 1, 2) being the two controls resulting from
multirate of order 2 over u2 and νi, i = 1, 2, 3 being the
reference values over the single step prediction horizon.
To show that the solution to this system of equations
coincides with that of the multirate inverting controller, it
is sufficient to show that the multirate inverting solution,
is indeed a solution of this system of equations.

Proposition 6. The multirate inverting controller (7) is
a solution of the optimal control problem with the cost
function (8) and np = nc = 1, Q = I,R = 0.

Proof: Starting from (7), one has that

u1 =
ν1 − x1

δ
, u1

2 = −ν2 − x2

2 δ̄
− x3 − ν3 + 2 δ̄ u1 x2

δ̄2 u1

u2
2 =

3 (ν2 − x2)

2 δ̄
+
x3 − ν3 + 2 δ̄ u1 x2

δ̄2 u1

solves (11). As a matter of fact, (11) admit two solutions
for (u1, u

1
2, u

2
2), one of which corresponds to the solution

u1 = 0 which is discarded 1 whereas the other one is
u1 = e1

δ and

u1
2 =
−2 δ e3 − δ̄ ν1 ν2 − 3 δ̄ ν1 x2 + δ̄ ν2 x1 + 3 δ̄ x1 x2

2 δ̄2 (ν1 − x1)

u2
2 = −−2 δ e3 − 3 δ̄ ν1 ν2 − δ̄ ν1 x2 + 3 δ̄ ν2 x1 + δ̄ x1 x2

2 δ̄2 (ν1 − x1)

clearly coinciding with the expression above from (7). /

4.1 The case of np = nc > 1

We write the prediction model for the two components of
the states vector as follows

x1,k+np
= x1,k + δ

np−1∑
i=0

u1,k+i

xk+np
= φ(k + np, k)xk+ (12)

np−1∑
i=0

φ(k + np − 1, k + i+ 1)R(·, u1,k+i)u2,k+i

where

φ(k + np, k) =

np−1∏
i=0

A(δ̄, u1,k+np−i−1) (13)

and A(·) = A2
m(·).

We can then substitute this expression of prediction in
our cost function and take the partial derivatives with
respect to each ui and, then prove that whenever np = nc
the multirate inversion control is an optimum control
with respect to our cost function. The following statement
highlights this fact.

1 Since, this solution doesn’t bring the error on the state x1 to zero.



Proposition 7. As R → 0, the control minimizing (8)
computed over the prediction model (12) reduces to the
multirate plant inversion solution (7) if np = nc andQ = I.

Proof: The proof follows from induction starting with
Proposition 6 which proves np = nc = 1. By assuming
that the statement holds for some np = N , we show it
holds for np = N + 1. Let us split the cost functional (8)
along the prediction model (12) as follows

J = J1︸︷︷︸
first N steps terms

+ J2︸︷︷︸
last step terms

J1 =

N∑
j=1

(
(ν1,k+j − x1,k − δ

j−1∑
i=0

u1,k+i)
2+

(r(k + j)− φ(k + j − 1, k)xk−
j−1∑
i=0

φ(k + j − 1, k + i)R(·, u1,k+i)u2,k+i)
2

)

J2 = (ν1,k+N+1 − x1,k − δ
N∑
i=0

u1,k+i)
2+

(r(k +N + 1)− φ(k +N + 1, k)xk−
N∑
i=0

φ(k +N + 1, k + i)R(·, u1,k+i)u2,k+i)
2.

Denoting by u∗mr the multirate inverse controller which
satisfies by assumption ∇uJ1(u∗mr) = 0, it remains to
prove that that ∇uJ2(u∗mr) = 0. For, notice that

φ(k +N + 1, k) =

 1 0

2δ̄

N∑
s=0

u1,k+s 1


and recalling that u∗mr is of the form (7), the proof proceeds
as follows; one gets that as ∇u2

J2 = 0 (for compactness
we omit the time variable k and we write i for k + i)

− 2nφ(N, i+ 1)R(·, u1,i)

(
r(N + 1)− φ(N + 1, .)x−

N−1∑
i=0

φ(N, i+ 1)R(·, u1[i])u2,i

)>
= 0

Inspecting the second equation above, namely ∇u2
J2 =

0 gives two possibilities, either the term −2nφ(N, i +
1)R(·, u1,i) = 0 or the term between the large brackets
is 0, which upon inspection is 0 exactly when we set for
i = 1 . . . N − 1

u2,i = Ξ(δ̄, u1)−1(r(i+ 1)− φ(N + 1, ·)xk)

u2,N = R(·, u1,N )−1(r(N + 1)− φ(N + 1, ·)xk)
(14)

with Ξ(δ̄, u1) collecting the product terms of φ(N, i +
1)R(·, u1,i) which coincides with the solution obtained
from (7). We then write only ∇u1,N

J2, since by assump-
tion and from the expression above for u2, ∇u1,i

J2 =
0,∇u2,j

J2 = 0 ∀i = 1 . . . N − 1, j = 1 . . . N so getting

2 δ (x1,N − ν1,N+1 + δ u1,N ) +

δ̄
(
4x2,N + 3 δ̄ u1

2,N + δ̄ u2
2,N

)
(x3,N − ν3,N+1 +

3 δ̄2 u1,N u
1
2,N

2
+
δ̄2 u1,N u

2
2,N

2
+

2 δ̄ u1,N x2,N ) = 0.

By substituting u1
2,N , u

2
2,N as in (14) one recovers

u1,N =
ν1,N+1 − x1,N

δ
which possesses the same form as in Proposition 6. /

It is rather intuitive to see that the discussion above
holds for general chained forms, and the statements can
be extended along the same lines, albeit the notations
and algebraic manipulations will get rather long and
cumbersome, the following statement summarizes this.

Theorem 8. Consider the dynamics of the form (5) admit-
ting multirate equivalent model (6). Then, the multirate
plant-inverting feedback (7) solves the MPC problem with
(8) under prediction model (6) with perfect steering, when-
ever np = nc ≥ 1, Q = I,R = 0.

5. SIMULATION RESULTS AND COMMENTS

Simulations are performed to compare the proposed con-
trol scheme (MPC-MR) with respect to the standard MPC
implementation (Figs 1,2) and the classical MR control
(Figs 3,4). In all the cases MPC-MR is implemented with
np = nc, δ = 1. Figure 1 clearly emphasises the pathology
motivating this work; the MPC may fail when np = nc
and no stability constraints are incorporated, even with
no penalty on the control. To prevent this, as suggested
in the literature, in Fig 2 MPC works with np > nc; the
comparison with the proposed MPC-MR with R > 0 in
this case shows the better performance of our solution.
A deeper comparison is proposed in Figs 3 and 4 where
the proposed MPC-MR and the standard MR solutions
are shown for steering and tracking maneuvers under the
penalty R > 0. The proposed MPC-MR scheme appears
to be the natural context to be adopted to account for the
control amplitude in standard MR.

6. CONCLUSION

We establish an intuitive interpretation of MR inverting
controllers, by highlighting the roles of the prediction and
control horizons, and their relations to the relative degree.
We then motivate the use of MPC with a MR prediction
model through penalizing the controls, and obtaining
comparable performance to the plant inversion controller,
while maintaining low control effort. Future works concern
the application of this improved MPC scheme to several
case studies as in power systems or automotive control
Giuseppi et al. (2018); Gionfra et al. (2016). Ongoing work
is addressing the extension to other classes of systems,
possibly non-minimum phase Mattioni et al. (2019).
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