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Abstract: We address propagation of chaos for large systems of rough
differential equations associated with random rough differential equations
of mean field type

dXt =V (X, L(X¢))dt + F (X, L(Xt))dWr,

where W is a random rough path and £(X¢) is the law of X;. We prove
propagation of chaos, and provide also an explicit optimal convergence rate.
The analysis is based upon the tools we developed in our companion paper
(1] for solving mean field rough differential equations and in particular upon
a corresponding version of the Ité-Lyons continuity theorem. The rate of
convergence is obtained by a coupling argument developed first by Sznitman
for particle systems with Brownian inputs.

MSC 2010 subject classifications: Primary 60H10, 60G99.
Keywords and phrases: random rough differential equations, particle
system, mean field interaction, propagation of chaos, convergence rate.

1. Introduction

The study of mean field stochastic dynamics and interacting diffusions / Markov
processes finds its roots in Kac’s simplified approach to kinetic theory [25] and
McKean’s work [29] on nonlinear parabolic equations. It provides the description
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written there. Partial support from the ANR-16-CE40-0020-01.
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of evolutions (u;):=>0 in the space of probability measures under the form of a
pathspace random dynamics

dXi(w) =V (Xi(w), pe)dt + F (X (w), pr) dWy (w),

v =L, (1.1)

where £(A) stands for the law of a random variable A over a probability space
(Q, F,P) containing w and relates it to the empirical behaviour of large systems
of interacting dynamics. The main emphasis of subsequent works has been on
proving propagation of chaos and other limit theorems, and giving stochastic
representations of solutions to nonlinear parabolic equations under more and
more general settings; see for instance [32, 33, 22, 15, 16, 30, 24, 5, 6]. Classical
stochastic calculus makes sense of equation (1.1) only when the process W is a
semi-martingale under P, for some filtration, and the integrand is predictable.
However, this setting happens to be too restrictive in a number of situations,
especially when the diffusivity is random. This prompted several authors to
address equation (1.1) by means of rough paths theory. Indeed, one may un-
derstand rough paths theory as a natural framework for providing probabilistic
models of interacting populations, beyond the realm of It6 calculus. Cass and
Lyons [12] did the first study of mean field random rough differential equations
and proved the well-posed character of equation (1.1), and propagation of chaos
for an associated system of interacting particles, under the crucial assumption
that there is no mean field interaction in the diffusivity, i.e. F(z, u) = F(z), and
that the drift depends linearly on the mean field interaction. Bailleul extended
partly these results in [3] by proving well-posedness of the mean field rough
differential equation (1.1) in the case where the drift depends nonlinearly on
the interaction term and the diffusivity is still independent of the interaction,
and by proving an existence result when the diffusivity depends on the inter-
action. Another breakthrough came with our earlier arXiv deposit [2], in which
we explained how to handle the case when F truly depends on the interaction
term by making a systematic use of Lions’ approach to differential calculus on
Wasserstein space. To make the content more accessible, we eventually decided
to split [2] into two parts: While the current work is mainly inspired from the
second half of [2], our companion article [1] corresponds to the first half of [2];
Therein, we address the well-posedness of the mean field rough equation (1.1)
for a genuinely nonlinear F.

In fact, as explained in [1], the general case may be easily reduced to the
study of the simpler equation

dXi(w) = F(Xi(w), L(X¢))dWy (w), (12)

which is precisely the version we address in this paper. To make it clear, the
purpose of the present article is to prove that, under suitable assumptions, the
solution of (1.2) coincides with the limit (in a convenient sense), as n tends to
00, of the n-particle system

t

Xi(w) = Xjw) + |

) 1 & .
) F(X;(w), - > 6Xg(w)>dW;(w), t>0, (1.3)
j=1
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for 1 < i < n, where (X§(-),W'(-)),_,, is a collection of independent and
identically distributed variables with the same distribution as (Xo(-), W(-)), the
first component being regarded as a random variable with values in R? and
the second one as a random variable with values in the space of continuous
functions. Of course, equation (1.3) must be understood as a rough differential
equation driven by the signal (W?(w), -+, W™ (w)) with (X' (w),---, X"(w)) as
output. As it is well-known, this requires to lift (W?!(w), -+, Wm"(w)) into an
enhanced rough path W™ (w) and henceforth to define the various iterated in-
tegrals. Asking the paths W (w), w € €, to have a finite p-variation for 2 < p < 3,
this prompts us to assume that, instead of ((Xg(-),W?*(-)), -+, (X§ W"()),
we have in fact n independent copies (Xi(-),W*(-),W'(-))1<i<n of the triple
(Xo(-), W(-),W(+)), where W(w) is the iterated integral of W (w) and W'(w) is
the iterated integral of W¢(w). Of course, it is also needed to define the iter-
ated integrals of W7 (w) with respect to W#(w), for j = i. Not only we assume
below that such iterated integrals do indeed exist, but we make the additional
assumption that there is a measurable map Z giving W% (w) from W¥(w) and
Wi (w), that is

W () = Z(WH(w), W/ (w)), i=j. (1.4)
In words, (1.4) says that there exists a measurable way to construct the iterated
integral of two independent copies of the signal in the limiting equation (1.2).
Hence, (1.4) should be really regarded as an intrinsic property of (1.2) and not
as a specific feature of the particle system (1.3).

More generally, it is in fact a key point in the subsequent analysis to draw a
parallel between the underlying rough path used to give a meaning to (1.3) and
the notion of extended' rough set-up used in [1] to address (1.2). We provide
a reminder of the latter notion in Section 2. Basically, it says that, in order
to solve (1.2), we must not only lift, for a given w € Q, the trajectory W (w)
into an enhanced rough path (W (w), W(w)), but we must in fact lift the whole
trajectory (W (w), W(-)), the second component being seen as a path with values
in some L%(Q, F,P; R™) space, where m is the dimension of the signal. Then,
we call extended rough path set-up the enhancement of (W (w), W(-)).

The striking fact of our analysis is then based upon an observation noticed
first by Tanaka in his seminal work [34] on limit theorems for mean field type
diffusions, and used crucially by Cass and Lyons in their seminal work [12]. We
refer to it as Tanaka'’s trick. It says that, for a given w € €1, the particle system
(1.3) itself may be interpreted as a mean field equation, but with respect to the
empirical measure of the driving noise. Transposed to the rough paths theory,
it says that, for any fixed w € 2, the path

W @) = (W), cz W @), ) = (W), W (@),

which underpins the rough structure used to solve (1.3), may be seen as an
extended rough set-up on its own — below, we just say a rough set-up) but

Hn fact, the term ertended does not appear in [1], but it is here of a convenient use to
distinguish from the standard rough set-up used to solve the particle system (1.3).
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defined on the finite probability space

(0 op Pl ) 5 25)

where P({1,---,n}) denotes the collection of subsets of {1,---,n}, instead of
the former probability space (£2, F,P). We call this set-up the empirical rough
set-up, and we make its construction entirely clear in the sequel of the pa-
per. For sure, given the iterated integrals of the signal (W!(w),---, W"(w)),
the rough integral (1.3) should be interpreted in the usual sense, as given by
standard Lyons’ rough paths theory. In short, this requires to expand locally
the integrand in (1.3), which in turns requires to have a convenient notion of
derivative with respect to the measure argument. In this regard, a crucial fact
in [1] is to use Lions’ approach [27, 7, 9] to differential calculus on the space
Po(R?) of probability measures on R? with a finite square moment, the so-called
d-dimensional Wasserstein space, d denoting here and throughout the dimension
of the output in (1.2). The core of our analysis in Section 4 is that, whenever
Wasserstein derivatives on Py(R?) are projected, through empirical measures,
into classical derivatives on (R%)", as it is needed to differentiate the integrand
in (1.3), the resulting solution for (1.3), as given by standard rough paths theory,
coincides with the solution obtained by interpreting (1.3) as a mean field rough
equation driven by the aforementioned empirical rough set-up — see Section 3
for reminders on solvability results for mean field rough equations. In this way,
the convergence of solutions of (1.3) to solutions of (1.2) as n tends to oo is
reduced to a form of continuity of the solutions to mean field rough differential
equations with respect to the underlying rough set-up. We called the latter con-
tinuity of the Ito-Lyons solution map, see Theorem 5.4 of our companion work
[1]. Our first main result, Theorem 4.3, shows that, for a sufficiently large class
of input signals, propagation of chaos is in fact a consequence of the continuity
of the Ité-Lyons solution map for mean field rough differential equations. At
this stage, it is worth mentioning that it is precisely in the requirements of the
continuity of the Ité-Lyons map that the structure condition (1.4) about the
cross-iterated integrals comes in. In [1], a rough set-up that satisfies (1.4) is said
to be strong.

While the proofs of both our first main result and the underlying continu-
ity property of the Ité-Lyons solution map are mostly based on compactness
arguments, our second main result is to elucidate, under slightly stronger as-
sumptions the convergence rate in the propagation of chaos; see Theorem 5.1
in Section 5. The strategy is directly inspired from original Sznitman’s coupling
argument for mean field systems driven by Brownian signals, see [32]. Although
the proof is much more involved than in the Brownian setting, we recover the
same rate of convergence: It coincides with the rate of convergence (in Wasser-
stein metric) of the empirical measure of an n-sample of (sufficiently integrable)
i.i.d. variables to their common distribution. In particular, the speed decays
with the dimension.
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As in [1], our analysis holds for continuous rough paths whose p-variation, for
some p € [2,3), is finite and has sub-exponential tails and for which the so-called
local accumulated variation —that counts the increments of the signal of a given
size over a bounded interval- has super-exponential tails, see [1, Theorem 1.1].
Among others, our results apply to continuous centred Gaussian signals defined
over some time interval [0,7] that have independent components and whose
covariance function has finite p-two dimensional variation, for some p € [1,3/2).

The present work leaves wide open the question of refining the strong law
of large numbers given by the propagation of chaos result stated in Theorem
4.3. A central limit theorem for the fluctuations of the empirical measure of the
particle system is expected to hold under reasonable conditions on the com-
mon law of the rough drivers. Large and moderate deviation results would also
be most welcome. In a different direction, it would be interesting to investi-
gate the propagation of chaos phenomenon for systems of interacting rough
dynamics subject to a common noise. Very interesting things happen in the
It setting in relation with mean field games [8, 26]. Also, one would get a
more realistic model of natural phenomena by working with systems of parti-
cles driven by non-independent noises. Individuals with close initial conditions
could have drivers strongly correlated while individuals started far apart could
have (almost-)independent drivers. Limit mean field dynamics are likely to be
different from the results obtained here — see [14] for a result in this direction
in the It6 setting. We invite the reader to make her/his own mind about these
problems.

The paper is organized as follows. We recall in Section 2 the construction of
a rough set-up, as introduced in [1]. We provide in Section 3 a sketchy presen-
tation of related solvability results for equation (1.2), including a review of the
main assumptions that we need on the diffusivity F. Convergence of the particle
system (1.3) is established in Section 4. The convergence rate is addressed in
Section 5, under additional regularity assumptions on F and integrability as-
sumptions on the signal. Proofs of some technical results are given in Appendix
A.1 and A.2.

Notations. We gather here a number of notations that will be used throughout
the text.

o We set S :={(s,t) € [0,00)? : s < t}, and 87 := {(s,t) € [0,T]*: s < t}.

e We denote by (€2, F, P) an atomless Polish probability space, F standing for
the completion of the Borel o-field under P, and denote by {-) the expectation
operator, by ()., for r € [1, +o0], the L"-norm on (9, F,P) and by {-) and (-},
the expectation operator and the L."-norm on (QQ, F®2, [P®2). When r is finite,
L"(Q, F,P;R) is separable as Q is Polish.

o As for processes Xo = (X¢)ter, defined on a time interval I, we often write
X for X,.
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2. From Probabilistic Rough Structures to Rough Integrals
2.1. Overview on Probabilistic Rough Structure

We here provide a brief reminder of the content of Section 2 in [1]. We refer the
reader to the paper for a complete review. Throughout the section, we work on
a finite time horizon [0, T], for a given T > 0.

The first level of the rough path structure used to give a meaning to (1.2) is
defined as an w-indexed pair of paths

(Wi (w), Wt('))ogth’ (2.1)

where (Wt('))o <i<r 18 @ collection of g-integrable R™-valued random variables
on (Q, F,P), which we regard as a deterministic L%(£2, F,P; R™)-valued path,
for some exponent ¢ > 8, and (Wt (w)) o<t<T stands for the realizations of these
random variables along the outcome w € ; so the pair (2.1) takes values in

R™ x L4(Q, F,P;R™). The second level has the form of an w-dependent two-
index path with values in (IR’" x L9(Q, F,P; |R’"))®2 and is encoded in matrix

form as @) L)
Wei(w) Wi (w,- )
’ ; ; 2.2
( Wh(ow) WhC) )iy 22)
where
o W,y (w) is in (R™)®2 ~ Rm*m,
e Wh(w, ) isin R"®LY(Q, F,P;R™) ~ L9(Q, F,P; R™*™),
o WL,(w)is in L9(Q,F,P;R™) @ R™ ~ L9(Q, F, P;R™*™m),
o Wi () is in L9(Q®2, FO2 PO, Rm>m) the realizations of which read

in the form Q% 3 (w,w’) — Wﬁt(w,w’) e R™*™ and the two sections
of which are precisely given by Wf)}((d, N:Qs5W - Wé%t(wvw/), and
Wﬁt(ww) 3w — Wi%t(w’,w), for we Q.

A convenient form of Chen’s relations is required, for any w € €,
Wrt(w) = Wrs(w) + Wep(w) + Wrs(w) ® Wse(w),
Wi{_t('a Wil,_s('vw) +le,_t('7w) +Wr,s(')®ws,t(w)v
Wi%t(w, ) = Wi&s(w, )+ Wi‘t(w, )+ Wy (w) @ Wi o (+),
wi{_t('v )= W7J‘|,_s('7 )+ wﬁ:t('a )+ Wes(5) @ Wi i (),

for any 0 < r < s <t < T, with notation f, s := fs — f;, for a function f from
[0,0) into a vector space. In (2.3), we denoted by X(-) ® Y (-), for any two X
and Y in L9(Q, F,P;R™), the random variable (w,w’) — (Xi(w)Yj(w’))lgi’jgm
defined on Q2. It is in L9 (QQ, F®2 p®2 IR’”X’"). The notation 1L in W is used
to indicate that Wit(-, -) should be thought of as the random variable

w) =

(2.3)

(o) > f (W, () ~ Wa(w)) @ a1t ()
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Since Q2 3 (w,w’) — (W(w))i=o and Q? 3 (w,w’) — (Wi(w'))i=0 are inde-
pendent under P®2, we then understand Wf:t as an iterated integral for two
independent copies of the noise. We refer to Examples 2.3 and 2.5 in [1]. In the
end, we denote by W (w) the so-called rough set-up specified by the w-dependent
collection of maps given by (2.1) and (2.2).

2.2. Regularity of the Rough Set-Up

Following [1], we use the notion of p-variation to handle the regularity of the
various trajectories in hand. Throughout, the exponent p is taken in the interval
[2,3). For a continuous function G from the simplex S into some RY, we set,
for any p’ > 1,

n
/
HGH[O T, v = 0 sup Z |Gti—17ti|p )

=to<ty-<tn=T i=1

and define for any function g from [0, 7] into R, |g|? [0.7]p—v ° = |G| [0.7],p—v
the p-variation semi-norm of its associated two index function G, := g — gs.
Similarly, for a random variable G(-) on Q with values in C(S7;R?), and p’ > 1
we define its p’-variation in ¢ as

<G(')>§;[0,T]7p/_v = sup - ;<@ti,1,ti(')>§ ) (2.4)

O=to<ti--<tn=

and define for a random variable G(-) on Q, with values in C([0, T]; R),

<G(')>Z;[07T],p/*v = <G(')>Z;[01T]yp’*\/’

as the p/-variation semi-norm in LY of its associated two-index function S
(s,t) — Gs() = Gi(-) — G4(). Lastly, for a random variable G(-,-) from
(92, F9?) into C(ST;RY), we set

n

(OC W=, s DGl @5)

O=to<ty--<tn,=T i=1
Given these definitions, we require from the rough set-up W that

e For any w € Q, the path W(w) is in the space C([0,T]; R™), and the map
W: Q3w W(w)eC([0,T];R™) is Borel-measurable and g-integrable.

e For any w € ), the two-index path W(w) is in C(SF; R™*™), and the map
W: Q35w W(w) e C(ST; R™*™) is Borel-measurable and g-integrable.

e For any (w,w’) € 02, the two-index path W(w,w’) is an element of
C(ST; Rm*™) and the map WL : Q2 5 (w,w’) — W(w,w’) € C(ST; Rm™*™)
is Borel-measurable and ¢-integrable.
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Moreover, we may set, for some fixed p € [2,3) and for all 0 < s < ¢ < T and
w e Q,

v(s, t,w) = HW(w)Hﬁ)t])p_v +{W (") z;[s,t],p—v
/2 /2
+ Hw(w)Hl[)s,t],p/27v + <Wl(w’ .)>Z;[s,t],p/27v (26)

/2 /2
+ <WL(.’w)>Z;[s,t],p/27v + <<WJL(’ .)»Z;[s,t],p/QfV’

and we assume that, for any positive finite time T and any w € 2, the quantity
v(0, T, w) is finite. Importantly, w — (v(s,t,w))(s,esr 1s a random variable with
values in C(SY; R, ) and is super-additive, namely, for any 0 < r < s <t < T,
and w € (),

v(r,t,w) = v(r, s,w) +v(s, t,w).
We then assume (v(0,7),-)), < 00, which implies, by Lebesgue’s dominated
convergence theorem, that the function S 3 (s,t) — (v(s,t,-)), is continuous.
We assume that it is of bounded variation on [0,T], i.e.

K
(g 1y == sup D 0(tio1,ti,))g < 0. (2.7)

ost1<-<tg<T i=1

We then call a control any family of random variables (w — w(s,t,w)) (s esr
that is jointly continuous in (s,t) and that satisfies,

w(s, t,w) = v(s,t,w) + V()Dg[s,,1-v (2.8)

together with

(w(s,t,))g < 2w(s, t,w), (2.9)
w(r,t,w) = w(r, s,w) + w(s, t,w), r<s<t. '
A typical choice to get (2.10) and (2.9) is to choose
w(s,t,w) = ’U(S,t,W) + <U(')>q§[s,t],1—V' (210)

2.3. Controlled Trajectories

With a rough set-up at hands on a given finite time interval [0, T], we define an
associated notion of controlled path and rough integral in the spirit of Gubinelli
[23]. Again, we refer to [1] for details, see Definition 3.1 therein.

Definition 2.1. An w-dependent continuous R¥-valued path (Xi(w))o<i<T 15
called an w-controlled path on [0,T] if its increments can be decomposed as

X t(w) = 62 Xs (W)Wt (w) + E[0,Xs(w, )Wer(-)] + Ry (w), (2.11)
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where (59”Xt(w))0<t<:r belongs to C ([0, T]; R¥*™) and (6, X (w,-))
(R (w)) esT U8 in the space C(ST;RY), and
, 5,teS]

o<t<T 10 C([O, T): LY3(Q, F, P; [Rdxm)),

X @), 0,71,0, 1= 1Ko (@)] + |82 X0 (@)] + (8, Xo0(w,)) s
+ 1 X (@), 17,0, < 0
where
X @)lo, 11,0, = X (@)lo,11,0.p + 102X (@)l 10,770,
+ (6, X (w, ')>[0,T],w,p,4/3 + | R (@) ljo,77,0,p/2:
with

| X 1(w)] .
HX(W)H[O,Tme = @Z(SSB.IZC)[O - W, and snnllarly for 81X

OpXoa(w,),
0, X (w,- = NN L}
(0, X (w, )>[07T],w,p,4/3 g:(ss,glc)[o,T] w(s, t,w)1/P

R (w)]
BX (w . sup |L
125 )0 700 972 @=(s.t)cfo,1] W(s, t,w)?/P

3

We call 0, X (w) and 6, X (w,-) in (2.11) the derivatives of X (w).

We then define the notion of random controlled trajectory, which consists of
a collection of w-controlled trajectories indexed by the elements of Q.

Definition 2.2. A family of w-controlled paths (X (w))weq such that X, §, X,
§,X and RX are measurable from Q into C([O, T]; [Rd), C([O, T]; [Rdxm), C([O, T); LY3(Q, F,P; [Rdxm))
and C(SQT; [Rd), and satisfy

(Xo())y + X Ol o) wp)g < © (2.12)

is called a random controlled path on [0,T].
It is proven in [1, Lemma 3.3] that a random controlled trajectory induces a
continuous path ¢ — X,(+) from [0, 7] to L*(Q, F,P;R?).

2.4. Rough Integral

As for the construction, of the rough integral, we recall the following statement
from [1, Theorem 3.4].

Theorem 2.3. There exists a universal constant ¢y and, for any w € €1, there
exists a continuous linear map

cam () Xoulw) ® aw.)

(s,t)eST
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from the space of w-controlled trajectories equipped with the norm || -

T].p
onto the space of continuous functions from Si into RT ®@ R™ with finite norm
|- [lf0,77,w,p/2> with w in the latter norm being evaluated along the realization w,
that satisfies for any 0 <r < s <t < 7T the identity

t
f Xy () @ AW (0)
f X (w) ® AW o f Xya() @ AW o () + Xy (0) ® Wi (),
together with the estimate

s u(W) @ AW (W) — 62X (w)Wo i (w) — E[0, X s(w, )Wy (-, w) ]

< co | X (@) {0,770 w (s, t,w) 2. (2.13)

Above, 6, X(w) Ws ¢(w) is the product of a d x m matrix and an m x m ma-

trix, so it gives back a d x m matrix, with components (51X5(w)wsyt(w))ij =

Zzlzl(éwX;'(w))k(Ws)t(w))kj, for i € {1,---,d} and j € {1,--- ,m}, and simi-
larly for E[0,X,(w,)Wa(-,w)]. As usual, the above construction allows us to
define an additive process setting

fX ) ® AW, ( szu ) Q@AW y(w) + X (w) @ Wy i (w),

for 0 < ¢ < T'. We can thus consider the integral process (Sé X (w)®AW 4 (w))
as an w-controlled trajectory with values in R*™, with

(6] [ - ®dWs(°")D<i,j>,k — (X)) B

forie{l,---,d}and j,k € {1,--- ,m}, where ¢, » stands for the usual Kronecker
symbol, and with null u-derivative.
When the trajectory X (w) takes in values in R? ® R™ rather than R?, the

1ntegra1 So ) ® dW 4(w) belongs to R? ® R™ ® R™. We then set for i €

()
([ X)W () = i( [ xweaw.w)

and consider Sé X (w)dW 4(w) as an element of R%.

0<t<T

imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019



1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equationdl
2.5. Stability of Controlled Paths under Nonlinear Maps

A key fact in [1] is to use regularity properties of functions defined on Wasserstein
space through a lifting procedure to an L? space standing above the probability
space. We refer the reader to Lions’ lectures [27], to the lecture notes [7] of
Cardaliaguet or to Carmona and Delarue’s monograph [9, Chapter 5] for basics
on the subject.

e Recall (Q, F,P) stands for an atomless probability space, with  a Polish
space and F its Borel o-algebra. Fix a finite dimensional space £ = R* and
denote, for r > 1, by L" : = L"(Q, F,P; E) the space of E-valued random
variables on  with finite 7 moment. We equip the space Pr(E) := {L(Z); Z €
L’”} with the r-Wasserstein distance

d (1, pi2) o= inf {120 = Zal s £(21) = o, £022) = o} (214)

When 7 = 2, an RF-valued function u defined on Py(E) is canonically extended
into L? by setting, for any Z € L?, U(Z) := u(L(Z)).

e The function w is then said to be differentiable at p € Pa(E) if its canonical
lift is Fréchet differentiable at some point Z such that £(Z) = u; we denote by
VzU € (L?)* the gradient of U at Z. The function U is then differentiable at
any other point Z’ € L? such that £(Z') = p, and the laws of VzU and V7 U
are equal, for any such Z’.

o The function u is said to be of class C" if its canonical lift is of class C*.
If u is of class C' on P2(E), then VzU is o(Z)-measurable and given by an
L(Z)-dependent function Du from E to E* such that

V.U = (Du)(2). (2.15)

In order to emphasize the fact that Du depends upon L(Z), we shall write
D,u(£(Z))(-) instead of Du(-). Importantly, this representation is independent
of the choice of the probability space (2, F,P) and can be easily transported
from one probability space to another.

Throughout the paper, we regard the function F in (1.2) as a map from
R? x L2(Q, F,P;R?) into the space L(R™,R?) =~ R? ® R™ of linear mappings
from R™ to R?. Intuitively, we identify the coefficient driving equation (1.2)
with its lift F. Following [1, Subsection 3.3], we require F to satisfy the following
regularity assumptions.

Regularity assumptions 1 — Assume that F is continuously differentiable in
the joint variable (x,Z), that 0, F is also continuously differentiable in (x,Z)
and that there is some positive finite constant A such that |F(x, )|, |0-F(x, u)],
|02F (2, p)|, |V2F (2, Z)|2 and [0:V zF(z,Z)|2 are bounded by A, for any = €
RY, pe Po(RY) and Z € 1L.2(Q, F,P;RY). Assume moreover that, for any x € RY,
the mapping Z > V zF(x, Z) is a A-Lipschitz function of Z € L2(Q, F,P; R?).
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We recall below that, for an w-controlled path X (w) and for an Re-valued
random controlled path Y (-), F(X(w),Y (")) := (F(Xt(w),Y}(-)))O<t<T may be
also expanded in the form of an w-controlled trajectory. As explained in [1,

(3.8)], it suffices for our purpose to provide the form of the expansion when
0uX(w)=0and0,Y(-) =0.

Proposition 2.4. Let X(w) be an w-controlled path and Y (-) be an R%-valued
random controlled path. Assume that §,X(w) = 0 and 6,Y(-) = 0 and that
supo<i<r (102Xt (W) v {(0:Y: (")) < 0. Then, F(X (w),Y(+)) is an w-controlled
path with

3, (F(X(w), Y(-)))t — 0,F (X1 (w), Vi () 0: X (w),

o d i L
which is understood as (3;_; 02, F"7 (X¢(w), Y2 () (51Xf(w))k)i,j,k’ with i,k €
{1,---,d} and j € {1, - ,m}, and (with a similar interpretation for the product)

5u(F(X (@), Y () = DuF (Xe(w), £00)) (X:()) 8.3 1)

t

2.6. Local Accumulation

In order to proceed with the analysis of (1.3), we make use of the notion of local
accumulation. Following [1], we define it as follows. Given a a nondecreasing?
continuous positive valued function @ on Ss, a non-negative parameter s and a
positive threshold «, we define inductively a sequence of times setting 79 (s, ) :=
s, and

T (s, ) i= inf{u >717(s,0) : w(t7(s,0),u) = a}, (2.16)
with the understanding that inf ¢f := +00. For ¢t > s, set
N ([s,t], ) := sup{n eN : 77(s,a) < t}. (2.17)

We call N the local accumulation of w (of size « if we specify the value of
the threshold): N5 ([s,t], @) is the largest number of disjoint open sub-intervals
(a,b) of [s,t] on which w(a,b) is greater than or equal to o. When w(s,t) =
w(s,t,w)"P with w a control satisfying (2.8) and (2.9) and when the framework
makes it clear, we just write N([s,t],w,«) for Ng([s,t],«). Similarly, we also
write 7,(s,w,a) for 77 (s,a) when w(s,t) = w(s,t,w). We will also use the
convenient notation
T2 (8,8, 0) =12 (s,0) At

3. Analysis of the Mean Field Rough Differential Equation
3.1. Solving the Equation

The following notion of solution to (1.2) is taken from [1, Definition 4.1].

2In the sense that w(a,b) = w(a’,b’) if (a’,b') < (a,b).
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Definition 3.1. Let W together with its enhancement W' satisfy the assumption
of Section 2.2 on a finite interval [0, T]. A solution to (1.2) on the time interval
[0, T], with initial condition Xo(-) € L*(Q, F,P;R%), is a random controlled path
X (:), such that for P-a.e. w the paths X (w) and Xo(w)+§, F(Xs(w), Ys(-))dW s(w)

coincide.

We formulate here the regularity assumptions on F(x, 1) used in [1], in addi-
tion to Regularity assumptions 1, to show the well-posed character of Equation
(1.2). Below, we denote by (Q,]:, [P) a copy of (2, F,P), and given a random

variable Z on (Q, F,P), write Z for its copy on ((NZ,]T", [ﬁ)

Regularity assumptions 2.

o The function 0, F is differentiable in (x, ).

o For each (x,p) € RY x Po(R?), there exists a version of D,F(x,u)(-) €
Li([Rd; RIQR™) such that the map (z, p, z) — D,F(z, pn)(2) from R? x Py(R?) x
R to RT@R™ @R? is of class C*, the derivative in the direction p being un-
derstood as before.

o The function (:C,Z) — agF(x,E(Z)) from R x 1L2(Q, F,P;RY) to R1®
R™ @ R ® R is bounded by A and A-Lipschitz continuous.

o The three derivative functions (x,Z) — 0xD,F(x,L(Z))(Z(")), (z,Z) —
Do, F (x, L(2))(Z(")), (z, Z) — 0.D,F(x,L(Z2))(Z(-)) are bounded by A and
A-Lipschitz continuous from R? x L2 (Q, F,P; [Rd) to .2 (Q, F,P:RIQR"®R®
RY),.

o For each i € Py(R?), we denote by D2F (x, p)(z, ), the derivative of D, F(x, p)(z)
with respect to u — which is indeed given by a function. For 2’ € R, DZF(w, w)(z,2)
is an element of REQR™ ®RIRQRE. We assume that

(z,Z) — D2F(x,£(2)) (Z(-), Z(")),

from R% x L2(Q, F,P; RY) to [I_Q(Q X Q,f@ﬁ,?@ﬁ;ﬂ%dcgwm@w@u%d), is
bounded by A and A-Lipschitz continuous.

The two functions F(z, ) = § f(z,y)u(dy) and F(z, u) = g(z, §yu(dy)), for
functions f,g € C; (meaning that f and g are bounded and have bounded
derivatives of order 1, 2 and 3), satisfy the Regularity assumptions 1 and 2.
The following property is taken from [1, Proposition 4.3 and (4.21)].

Proposition 3.2. Let F satisfy Regularity assumptions 1 and 2 and w be
a control satisfying (2.8) and (2.9). Consider two w-controlled paths X (w) and
X'(w) with possibly different initial conditions (Xo(w), 6z Xo(w)) and (X{(w), 0z X{(w)),
defined on a time interval [0,T], together with two random controlled paths
Y () and Y'(-), with possibly different initial conditions (Yp(w),d,Yo(w)) and
(Yg(w), 02 Y5 (w)), all of them satisfying 6, X (w) = 6,X'(w) = 0 and 6,Y(-) =
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0,Y'(:) = 0 together with

02X ()] v 6. X" ()| v (8.Y (1)), v (8Y'(-)) <A, (3.1)
and the size estimates

Y Ollorrwsys < Lor Y Ollor1wpys < Lo, (3.2)

|HX |H[tg 9., lw,p < Lo, |HX |H [¢9,¢9, ,],w,p < Lo, (3:3)

for i € {0,---,N°}, for some Ly > 1, and N° = N([0,T],w,1/(4Lo)) given
by (2.17), and for the sequence (t? = 7;,(0,T,w,1/(4Ly)))
(2.16).

Then, we can find a constant v depending on Lo and A such that, for any
partition (t;)io,... n included in (t2)i—o.... nyo and satisfying w(ti,tHl,w)l/p <
1/(4L) for some L = Lo, we have

i—0.... No41 Jiven by

| (PO @0.009) = PG, Y1) )aw ()

i

[tistis1],w,p

¥ (!AXo(w)! + ’(SmAXo(w)’) +(AYy (), + (8. AY5()),
+7w(0, wl/p(\\lAX liopp + NAY Ollioz15)
2 (18X @) 0y + DAY Ollior100)5):

where AX(w) = X¢(w) — X[ (w), AY;(-) :=Y:(-) = Y/(-), te][0,T].

In [1], Proposition 3.2 is used to prove the following existence and uniqueness
result, see Theorems 1.1 and 4.4 therein, to which we add the final estimate in
the statement.

(3.4)

Theorem 3.3. Let F satisfy Regularity assumptions 1 and 2 and w be a
control satisfying (2.8) and (2.9). Assume there exists a positive time horizon T
such that the random variables w(0,T,-) and (N([O, T], -, a))a>0 have sub and
super exponential tails respectively, in the sense that

P(w(0,T,-) > t) < ¢y exp(—t'),

P(N([0,T],-a) > t) < ca) exp(—t-+e2(), (3.5)

for some positive constants c¢; and €1, and possibly a-dependent positive con-
stants ca(a) and e2(c). Then, for any d-dimensional square-integrable random
variable Xo, the mean field rough differential equation (1.2) has a unique solu-
tion defined on the whole interval [0, T]. Moreover, there exist four positive real
numbers 7, Lo, L and n (with v,n > 1), only depending on A and T, such that,
for any subinterval [S1, S2] < [0,T] for which

(N([$1,82].1/(4L0)) ) < 1.

8
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and N([S1,82],-1/(4L)
(o wtag) S
32
it holds, for any w €

2N ([0,T],w,1/(4L))
H|X(W)H|[Sl,s2],mp < [C(l + w(07T,w)l/P)] 7

for a constant C depending only on A and T.

Proof. We just address the derivation of the last inequality since the latter
is not given in [1, Theorem 4.4]. The key point is to sum over n > 1 in [1,
(4.30)], replacing [0, S] therein by [Si,S2], which is indeed licit provided that
{N([S1,52],, 1/(4L0))>8 < 1, see for instance [1, (4.23)], and <[7(1 +w(0,T, -)1/7”)]N([SI’SZ]"’l/(4L))>32 <7
for n small enough, see [1, (4.29)]. O

3.2. Strong Rough Set-Ups and Continuity of the Ité-Lyons
solution Map

Uniqueness in law of the solutions to (1.2) is proven in [1, Theorem 5.3] under
the additional assumption that the set-up satisfies the following definition.

Definition 3.4. A rough set-up is called strong if there exists a measurable
mapping T from C([0,T7; I]?m)2 into C(S7;R™ @ R™) such that

pe? ({(w,w’) e 0?: Whw,w') = I(W(w), W(w’))}) -1 (3.6)

For our prospect, the following continuity theorem is of crucial interest; see
[1, Theorem 5.4].

Theorem 3.5. Let F satisfy the same assumptions as in Theorem 3.3. Given a
time interval [0, T| and a sequence of probability spaces (Qy,, Fn,Pr), indezed by
neN, let, for anyn, XJ(-) := (X3 (wn))w,eq, be an R%-valued square-integrable
wnitial condition and

n

W) = (W wn) W ), W wnse))

Wn7w/ne n
be an m-dimensional rough set-up with corresponding control w™, as given by
(2.10), and local accumulated variation N™, for fized values of p € [2,3) and
q > 8. Assume that

o the collection (P, o (|X61(~)|2)71)n20

o for positive constants €1,¢1 and (e2(a),ca(@))a>0, the tail assumption
(3.5) hold for w™ and N™, for all n = 0;

o associating v™ with each W"(-) as in (2.6), the functions (S5 3 (s,t) —
™ (s, t, -)>2q)n20 are uniformly Lipschitz continuous.

is uniformly integrable;

Assume also that
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o there exist, on another probability space (Q, F,P), a square integrable ini-
tial condition Xo(-) with values in R and a strong rough set-up

W() = (W(w),ww),wl(w,w/))
w,w'eN

with values in R™, such that the law under the probability measure P92 of

the random variable

QEL 3 (wn,w;) g (X{)l(wn), W"(wn),wn(wn), W#(wn,w;)),

seen as a random wvariable with values in the space R4xC([0,T];R™) x
{c(ST;rRm® [Rm)}2, converges in the weak sense to the law of

0% > (w,w') — (Xo(w), W(w),W(wn),WJ‘(w,w/)).

Then, W (+) satisfies the requirements of Theorem 3.3 for some p’ € (p,3) and
q € [8,q), with control w therein given by (2.10). Moreover, if X™(-), resp. X(-),
is the solution of the mean field rough differential equation driven by W"(-),
resp. W (-), then X™(-) converges in law to X (-) on C([0,T];R%).

4. Particle System and Propagation of Chaos

We now have all the ingredients to write down the limiting mean field rough
differential equation (1.2) as the limit of a system of particles driven by rough
signals (1.3).

4.1. Empirical Rough Set-Up

We recall the framework used to address (1.3). The initial conditions (X{(-))1<i<n
are Re-valued variables with the same distribution as Xy (in the statement of
Theorem 3.3) and the enhanced signals (W*(-), W'()),_,_,, are R" ©@R™ @ R™-
valued with the same distribution as (W(-), W(:)) on the space of continuous
functions. Moreover, the variables (X§(-), W*(-),W'(-)),_,, are independent
and identically distributed. All of them are constructed on a single probability
space (Q, F,P). Assuming the rough set-up in Theorem 3.3 to be strong, see
Definition 3.4, we let

W (w) = Z(W'(w), W (w)), i=j, 1<ij<n

Obviously, equation (1.3) must be understood as a rough differential equa-
tion driven by an (n x m)-dimensional signal (W!(w),---,W"(w)), and with
(X'(w), -+, X"™(w)) as (n x d)-dimensional output. Our first task is to prove
that (1.3) may be also understood as a mean field rough differential equation on
a suitable rough set-up and that the two interpretations coincide. If we require

imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019



1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equationd7?

P2 ({(w,w’) : [Wh(w,w)][0,7],p/2—v < 0}) = 1 in Definition 3.4, then it is
pretty clear that, for almost every w € Q,

W (W) = ((Wi(w))lsl.@, (Wi (w))lgingr) - (W<"> (w), W (w)),

is a rough path of finite p-variation, with the convention that W¥(w) = W(w),
for i« € {1,---,n}. As explained in [1, Proposition 2.4], we may change the
definition of ((W*(w))1<i<n, (W7 (w))1<ij<n) on a P-null set so that W™ (w)
is in fact a rough path for any w e €.

As mentioned in Introduction, the striking fact of the analysis was first in-
troduced by Tanaka in [34] and used by Cass and Lyons in their seminal work
[12]. The quantity W(™(w) may be seen as a rough set-up defined on a finite
probability space for any fixed w € 2; we call it the empirical rough set-up.
To make it clear, observe that, throughout Section 2, the rough structure is
supported by the probability space (2, F,P) itself. Here, w is fixed, and we see
the probability space as

<{1,...,n},P({L...,n}),%g@), (4.1)

where P({1,---,n}) denotes the collection of subsets of {1,---,n}. The reader
may object that such a probability space is not atomless whilst we explicitly
assumed (€2, F,P) to be atomless in the introduction (see also [1, Section 2]);
actually, the reader must realize that, in [1], the atomless property is just used
to guarantee that, for any probability measure p on a given Polish space S,
the probability space (€, F,P) carries an S-valued random variable with u as
distribution. So, it is not a hindrance that {1,--- ,n} is finite.

Hence, in order to draw a parallel with (2.2), the role played by w € € is here
played by i € {1,--- ,n} and the matrix (2.2) must read

W () W (w
(8 WD )y w2
where Wi (w) is seen as {1,---,n} 35 — Wzsjt(w), Woi(w) as {1,--- ,n} 3 j
Wei(w) and W7 (w) as {1, -+ ,n} 3 (i, §) = Wi (w).
In the same spirit, the variation function v in (2.6) is
v (st w) = (W@, g ey + (V@) o
+ W (w)] Z[)s/i],p/va + (n)(wi).(w)];:;/[?s,t],pﬂfv (4.3)
O @) @V

where we used the notations

0= (3 3 wr)

1/q 1 n . 1/q
o, - (o X )

j,k=1
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the corresponding p-variation being defined as in (2.4) and (2.5). Obviously,
v="(0, T, w) is almost surely finite. Hence, in order to check that W™ (w) defines
a rough set-up, it remains to check that it satisfies (2.7). To do so, we strengthen
the assumptions on the signal and assume that, for the same parameter ¢ as in
Section 2, it holds

/2
[HW ’[0 T],(1/p)— H T Hw ’fg,TL@/p)—H]

/2
+ ES2[ WL ()[R o] <

(4.4)

where

(Wi (w) = W (w)|

HW H [s,t],(1/p)—H @:(s’s}tl’l))c[s,t] |t — S/|1/p
(We (W)
Hw(w)H[s,t],(z/p)—H sup T

G (s t)[s,4] |t — &' [2/P

and similarly for HWJ— w,w’ H i stand for the standard Holder semi-

[s.t],(2/p)—
norms of the rough path. Then, back to (4.3), we can find a universal positive

constant ¢ such that

z z /2
op" (s, 1) < {HW e, asm-n + W@l /m-n
n L] n T /2
+ ( )(HW H [s,t],(1/p)— ] + ( (Hw W |Z[)s,t],(2/p)7H]q (45)
n L] ’L /2 n e.0 /2
+ )(HW @l »(2/p)—H]q + )((HW *() P) »(2/p)—H]]q}(t — )

Taking the mean over i € {1,--- ,n} and invoking the law of large numbers (see
Lemma A.3 in Appendix A.3 for a version of the law of large numbers with
second order interactions), we deduce that, for almost every w € Q,

(")(U;’”(s, t, w)]
limsup sup ——-——24

n=1 0<s<t<T t—s
/2 1/‘1
<<HW o [0.71,(1/p)—-1 T [w(: ’pgT] (2/p)—H> (46)

(IO - »l/q)’

for a new value of the constant c. Observe that, in order to derive (4.6), the law
of large numbers can be directly applied to each of the first three terms in the
right-hand side of (4.5), since each of them can be put in the form J (W'(w)),
for a suitable form of the functional J. Differently, the last three terms in (4.5)
require a modicum of care as they lead to empirical means of the form

n

1 ; /2 1 /2
n2 Z HI(WJ )HZ[)(?T 1,(2/p)— Z HWJ HZ[)(;JT 1,(2/p)—
Gik=1,j=k =1
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with Z as in (3.6). Still, if the summands in the two sums are integrable,

the limit is <HI(W1(), WQ()) ‘|1[)(()1,/’I2’],(2/p)7H>’ see Lemma A.3 in Appendix A.3.
Hence (4.6). Now, the fact that the right-hand side of (4.6) is finite guar-
antees that the l-variation in the mean in (2.7) is uniformly controlled in
n > 1, the mean therein being understood as the mean on the probability space
({1,---,n}, P{1,--- ,n}), L 3" | 6;). Here are two examples under which (4.5)
holds true.

Example 4.1. Assume that the reqularity index q used in (2.6) satisfies the
inequality ¢ > 1/(1 — p/3), and that, for some constant Kr = 0, {v(s,t,))q <
Kr(t —s) for (s,t) € ST. Then, we get the bounds

Wy = W) ()P?) < K |t — 5|7,

(War P2y < K[t = sf®, (W ()2 ) < K3 |t — s
By Kolmogorov’s criterion for rough paths, Theorem 3.1 in [19], we deduce that
W has paths that are p' := (1 —1/q)/p > 1/3-Hoélder continuous. Similarly, W
and Wt have paths that are 2p' = 2(1 — 1/q)/p > 2/3-Hélder continuous and

(4.4) holds true with p' instead of p. So, the empirical rough set-up satisfies the
required conditions provided we replace p by p'.

Example 4.2. Assume that W := (W', ... W™) is a tuple of independent and
centred continuous Gaussian processes, defined on [0,T], for which there exists

a constant K such that, for any subinterval [s,t] < [0,T] and any k =1,--- ,m,
it holds

p
SupZ’[E[(thj+1 _thj)(WSkj+1 _Wsk])]’ <*Kv|l€_8|7 (47)

.3
the sup being over divisions (t;); and (s;); of [s,t]. Then, |W(-)|0,17,(1/p)—u has

Gaussian tail and HW(-)H[O 11.(2/p)—H 94 WA (- have exponential
tails; see Theorem 11.9 in [19].

) ')H[O,T],(Q/p)fH

Now that we have defined the empirical rough set-up, we must make clear
the meaning given to the rough differential equation (1.2) in Definition 3.1
when the rough set-up therein is precisely the empirical rough set-up. We call
the corresponding rough differential equation the empirical rough differential
equation.

For a given w € 2, the probability space that carries the empirical rough-
set up is given by (4.1). Despite the fact it is not atomless, whilst (Q, F,P) is,
Theorem 3.3 applies and guarantees existence and uniqueness of a solution to
the empirical rough differential equation. In this regard, observe that the square
integrability requirement on the initial condition here writes 2 31" | | X{ (w)‘2 <
00, which is indeed satisfied for w in a full event. The solution reads in the form
of a n-tuple X (™ (w) = (X*(w))1<i<n in C([0,T];RY)™. The coefficient driving
the equation for X*(w) reads

F (X;‘(@,Xf“”@)) . telo,T],
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where 0,,(-) : {1,--- ,n} 249~ i is the canonical random variable on {1,--- ,n}.
Here the dot in the notation Xf”(') (w) refers to the current element in {1, - -, n}.
With this notation, the law of Xf"(')(w) (on {1,---,n}) must be understood as

the empirical distribution ' (w). Moreover, each X*(w) is controlled, in standard
Gubinelli’s sense, by the enhanced rough path (W(w), Wi(w)) (the remainder
in the expansion being controlled by v*™). In particular, X*(w) may be seen as

an i-controlled path on the empirical rough set-up: If we use 53(5") and 6,3”) as
symbols for the Gubinelli derivatives in Definition 2.1 but on the empirical rough

set-up, then s X (w) identifies with the standard Gubinelli derivative in the
expansion of X(w) along the variations of (W*(w), W!(w)) and 6,([1)X' (w) = 0.

The key fact in our analysis lies in the interpretation of the two derivatives
o0 [P @), X7 O @) and o [F(X (@), X0 (w))]
in Proposition 2.4. First, it is elementary to check that

5 (F(X7(), X Ow))), = 2P (X} ), X/ @) 6 X ()

‘ . (4.8)
= %F (X} (W), 17 ()85 X} (w).
More interestingly, we have
S (F(XH(w), X (w
O (F(X (@), X0 @) (4.9)

= D,F (X (w), 1 (@) (X" (@) 6 X0 (w),

both the left- and the right-hand sides being seen as random variables on
{1,--- ,n}. The realizations of the random variable in the right-hand side may
be computed by replacing the symbol - by j € {1,--- ,n}.

So, applying (2.13) with F(X%(w), u"(w)) as integrand, the third term on the
first line of (2.13) here reads

D DLF (X (W), 1) (X (w)) 68 X7 ()W ().
j=1

S|

This shows that the integral SgF(Xsi(w),an(-)(w))dwgn) (w), as defined by
Theorem 2.3, is the limit of the compensated Riemann sums

K-1

3 (F(sz (@), X2 O W)W, (@)

k=0

+ 0 F (X, (), Xp2 O (@) F (X, (@), X0 O (@)W, 4, @)

b2 X DL (XD ). ) (X6, G (X6, 0. X0 ) Wiy, ().
j=1

(4.10)
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as the mesh of the dissection 0 = tg < --- < tx = t tends to 03. This allows to
compare the latter quantity with (1.3) if we intepret the integral with respect
to Wi(w) therein as a rough integral with respect to the enhanced setting above
(W(w), -+, Wm"(w)), and consider the leading coefficient F(X}(w), u*(w)) as

a standard Euclidean function of the tuple Xt( )( ) = (X} (w), -, X (w)).
Indeed, under the standing Regularity assumptions 1 and 2, the function

firRH 3 (2h, - a) - ( %i )

is C2 with Lipschitz derivatives and

Opi filah, - 2™) = i azF< 25 )+ DF< : %i ) (),

with §; ; = 1 if ¢ = j and 0 otherwise, see Chapter 5 in [9]. Therefore, (1.3) is
uniquely solvable in the classical sense and the above formulas for the derivatives
show that the rough integral therein may be approximated by the same Riemann
sum as in (4.10). Namely, (1.3) may be rewritten as

K-1

3 (fi(Xt1k<w>,--- XD @)W (@)

k=0

+ Z axj fZ(thk (w)v e 7ch( ))Wi;c7tk+1(w))'
j=1

This proves that the solution to (1.3), when the latter is seen as a rough dif-
ferential equation driven by the enhanced setting above (W!(w),- -, W"(w)),
coincides with the solution of the empirical version of (1.2), when the latter is
understood as a mean field rough differential equation driven by the empirical
rough set up.

4.2. Propagation of Chaos

We now have all the ingredients to prove that the empiral measure of the solution
to the particle system (1.3) converges, in some sense, to the solution of the
rough mean field equation (1.2), when the rough set-up therein is interpreted
as originally explained in Section 2. This is what we call propagation of chaos.
The statement takes the following form.

Theorem 4.3. We make the following assumptions.

(a) Let F satisfy Regularity assumptions 1 and 2.

3In the second line, 0,F(Xi(w), X xon ()(w)) F(Xi(w), X xon O(w))\Wé ¢(w)) is understood
as (Lf_y Xhey 0, FUI (Xi(w), X7 ”(w))(F“(X% ), X g @) (W) @)y

and similarly for the term on the thlrd line.

imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019



1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equation22

(b) Letw be a control satisfying (2.8) and (2.9). Assume there exists a positive
time horizon T such that the random variables w(0,T,-) and (N([O, T, a))
see (2.17), have sub and super exponential tails, see (3.5).

(c) Assume that the rough set-up W is strong.

(d) Assume also that there exists a positive constant €1 such that

[eXP(HW H[OT 1,(1/p)— )] +[E[GXP(HW HES/CI%] (2/p)— H)]

a>0’

(4.11)
+ B2 exp (IWH ()0 oy ) | <
Then, for almost every w € 2,
1 n
- Z 5Xi,(n)(w) g E(X()), (412)
s

where XM (w) = (X*(M(w))iz1.... m is the solution to (1.3) and X (-) is the
solution to (1.2), the convergence being the convergence in law on C([O, T; [Rd).
Moreover, for any fized k > 1, the law of (Xl*(”)(-), e ,Xk*(”)(-)) converges to

L(x()%".

Following [1, Theorem 2.6], the above assumptions hold true for Gaussian
rough paths subject to the classical conditions of Friz-Victoir [21], see Example
4.2, and the related Example 2.5 in [1].

Proof. The key tool for passing to the limit is the continuity Theorem 3.5, but
with p therein replaced by some p’ € (p, 3). The main difficulty is in controlling
the accumulated local variation of the empirical rough set-up. To make the
notations clear, we write XS’(n) for X¢, Wo() for Wi, Wo(™) for Wi and Wi (™)
for WhJ.

Step 1. As a starting point, we want to prove that, for almost every w € €,
for any « > 0, there exists a constant €5 > 0 such that, for all n > 1,

sup — Zexp(]\”"(() T w oz)1+52) < 0, (4.13)

n=1 n

where N“"(0,T,w, «) is defined as the local accumulation
N“™([0,T],w, @) := No([0,T], ), (4.14)

when w(s, t) = U;’,"(s, t,w)V?' | see (2.17). Following (A.1) in appendix (see also
the longer discussion in the introduction of the appendix in [1]), it suffices to
prove (4.13) when w in the definition of N*" is equal to each of the terms in
the right-hand side of (4.3).

When @ (s, £) = [Wi(w) |, ., orw(s,t) = [Wiw)|

e the resulting
variables (N*"([0,T],w ))izl ., in (4.14) are 1ndependent and identically
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distributed, their common law being independent of n. Then, (4.13) follows
from assumption (b) in the statement and from the law of large numbers.

If w(s,t) = (n)[W.(W)]q;[s,t]vp’fv or w(s,t) = (n)[[w.ﬁ.(w)Dtll;/[iyt]v:D'/?*V’ the
resulting variables (Ni’"([O,T],w,a))i:h_‘yn in (4.14) only depend on n. We
may denote them by N"([0,T],w,«). Then, it suffices to prove that, for any
a > 0, limsup,_,,, N*([0,T],w, «) is almost surely finite. By (4.5), we may
easily control N™([0,T],w, «) from above by noticing that

a? N™([0,T], w, a)

(W @y 1701y + U Oy 71,2 -0),)-

for a constant ¢ that is independent of n and w. Proceeding as in (4.6), the

result follows again from the law of large of numbers and from assumption (b).
. n) (.o 1/2

In fact, the most difficult cases are w(s, t) = (W (w)]q;[s,t],p//%v

(")[W"i(w)];@ R By symmetry, it suffices to treat the first one. And, by

an obvious change of parameter, we may just focus on w(s,t) = (")[WZ *(w ))
Then,

(it ()7 = % Z( WEL )| = (WE (. ))1) + (Wi, )i (4.15)

orw(s,t) =

g[s,t],p'/2—v"

Now, Rosenthal’s inequality (see [31]) together with (4.11) say that, for any
a>2and any i € {1,--- ,n},

IS i i
J E Z (|Ws),]t(w)|q - <Ws) >q>
Q j=1
for a constant C; depending on a and on the upper bound for the left-hand

side in (4.11), but independent of ¢ and n. Letting (t,(c") = kT/n)k=o,... n and
allowing the constant C, to vary from line to line, we deduce that

t<"> t<”)( w)|" =W, t(n) t<"> >q)

<C n_“/2|t S|2‘1Q/P,

<C n3— a/2

1<k<t<ni=1

Choosing a large enough, we deduce from Markov inequality and from Borel-
Cantelli lemma that, for P-almost every w € €1, for n large enough,

Ly a - (4.16)
ﬁ Z ( t(n) t(n) ‘ <Wt(n) t(n) >q)’ <n 1/4.

By assumption (d) in the statement, we recall that, for any 6 > 0,

> (‘W Ifo.77.c1/m)—1 + [W*I

n=11<,j<n

o211 = ) < 0.
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Therefore, for any § > 0, for P-almost every w € 2, for n large enough,

sup (HW )0 77,a1/p)—m + [WH( )H[O,T],(2/p)fH) <n’, (4.17)

1<ij<n
which implies

sup  sup ]W I ( w)| < nd=2p,
1<ij<n |s—t|<1/n

. . (4.18)
sup sup (‘W;t(w)HWSJ/ o (w)]) <n’VP,
1<4,5<n min(|s—t|,|s'—t'|)<1/n ’
Similarly, we have for P-almost every w € €2, for n large enough,
i, JL 5
sup [KWOHw, ), oy, (ay)-m < (4.19)
which implies
sup  sup <Wi’f‘(w, . < nd=2/p,
1<i<n [s—t|<l/n e
(4.20)

sup sup (|W§t(w)| <st,t’(')>q> <nd VP,

1<i<n min(|s—t|,|s’—t'|)<1/n
Choosing 0 < 1/(2p), combining (4.16) with (4.18) and (4.20), and using Chen’s
relations (2.3) to write W4 = —W;’JL + W;’SJ}#} + W;’g}’t W, ®W, {t} .=
W{ 1s ® Wj{t} (with {s} := |ns/T|T/n), and similarly for (W (w, >q, we
can find a constant ¢, only depending on ¢ such that, for almost every w € €,
for n large enough,

1 7 i,JL

Z Z (|W 7] | _ <ws , >q>
j=1

Meanwhile, we also have, for P-almost every w € €2,

1 Z (|ww | - <Wi’j}(w’ )>Z>

J 1

sup  sup < cqn/Ana/CR), (4.21)

i=1, n (s,t)eST| T

s S (”W’j(w)“([zo,T],@/p)—H+ H<W’l(w")>q”fo,TL<2/p>—H>(t_S)Qq/p'

1<i,j<n

By (4.17) and (4.19), we deduce that, for P-almost every w € , for n large
enough, for all (s,t) € ST,

3 Bl - )| <

Taking the power 1—p/p’ in (4.21) and the power p/p’ in (4.22), cross-multiplying
both of them and then choosing § small enough, we get, for P-almost every w € (,
for n large enough, for all (s,t) € ST,

L (W - it ;)| <

J

(t—s)%". (4.22)

2q/p
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where ¢ only depends on p, p’ and ¢. Back to (4.15), we deduce that, for P-almost
every w € §2, for n large enough,

(77,) [wi7.

Svt(w)Jq;[s,t],p’/va <Mt — ) 4 (Wik(w, )

a[s:t]p/2—v"

Since the variables (Wi’l)pl are independent, the local accumulation associ-
ated with the second term in the right-hand side may be handled like the local
accumulation associated to w(s,t) = |W* (w)H[S — The local accumulation
associated with the first term is easily handled.

Step 2. Now, from the law of large numbers (see Lemma A.3 for the law of
large numbers with second order interaction terms) and from [4, Theorem 2.3,
Problem 3.1], we deduce that there exists a full subset E < Q (the definition of
which may vary from line to line in the rest of the proof as long as P(F) remains
equal to 1) such that, for any w € E,

1 n
Fn(w) = (ﬁ Z 5(X(§,(”7')(w))Wi,(n)(w))wi,(n)(w))wi,j,(n)(w))>n>1

ij=1

converges in the weak sense to (Xo(-), W(-),W(:), W"(-,+)) on the space R? x
([0, T];R™) x {C(ST;R™ @ R™)}*.

Step 3. Back to the statement of Theorem 3.5, the first item in the statement
is a consequence of the law of large numbers. As for the fourth item, it follows
directly from the previous step. In order to check the check the second and third
items, we now have a look at v,)"(s,t,w) in (4.3). Following (4.6), we already
know that

o.n
) (n)[vp/ (S7 t, w)]Qq
limsup sup < 0,
n=1 0<s<t<T t—s

which proves the third item in the statement of Theorem 3.5. We end up with
the proof of the second item. Following (4.5), there exists a constant ¢ such
that, for any € > 0, the quantity

sup (”)[exp ([v;}"((), T, w)]s)] (4.23)

n=1 1

is finite if

1N i ' i 'e/2
sup D D (C/HW @lfory 2y + € W (‘*’)’fof:r],@/p)—H) =%
==

€

n () /2
sup 35 exp (¢ W@y ), ) <

q
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and similarly on the second line with W*?#(w) replaced by W%*®(w). By the law
of large numbers, the first line holds true on a full event if p’e < £;. As for the
second one, we use the following trick. Notice that the function

(0,+0) 3z — exp(xa/q), (4.24)

is convex on [A,, 0), for some A, > 0. Therefore, Jensen’s inequality says that,
in order to check the third line, it suffices to prove that

1S i, 'e/2
supﬁ Z exp[(Ai/q v HW J (w)|;[DOfT],(2/p)7H)] < o0, (4.25)
ij=1

n=1

and similarly for the last line. Obviously, under the standing assumption, the
latter holds true with probability 1 provided p’e < e;1. This proves (4.23). In the
statement of Theorem 3.5, this proves the condition related to the tails of w™
by a standard application of Markov inequality.

The bound on the local accumulation in the second item of Theorem 3.5
follows from the first step of the proof.

Step 4. By Theorem 3.5, we get (4.12) on a set of full measure. By Proposition

2.2 in [32], we deduce that, for any fixed k > 1, the law of (Xl’("), e ,X’“("))
converges to E(X(-))®k. O
Remark 4.4. Recently, the authors in [13] obtained a quantified propagation of
chaos result for mean field stochastic equations with additive noise

dxy = b(:vt, E(xt))dt +dw;, 1z =C, (4.26)

for a random path w € C([O, T, [Rd) subject to mild integrability condition, and
random initial condition (. There is no need of rough paths theory to make
sense of this equation and solve it by elementary means, under proper regularity
assumptions on the drift b. Its distribution is even a Lipschitz function of the
distribution of (¢, w), in p- Wasserstein metric. Using Tanaka’s trick, this conti-
nuity result entails a propagation of chaos result. The global Lipscthiz continuity
of the solution map L(w, () — L(x) ensures in particular a quantitative conver-
gence rate for the particle system no greater than the corresponding convergence
rate for the sample empirical mean of the driving noises, which is optimal. We
get back such a sharp estimate in the present, much more complicated, setting
in the next section. Note that the global Lipschitz bound satisfied by the natu-
ral map ® giving the solution to equation (4.26) as a fized point of ® actually
allows to deal with reflected dynamics, as the bounded variation part needed for
the reflection happens to be a Lipschitz function of the non-reflected path, in
Skorokhod formulation of the problem. We do not have such a strong continuity
result for our solution map; see Theorem 3.5. See also the previous work [17] of
the authors.
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5. Rate of Convergence

The goal of this section is to elucidate the rate of convergence in the convergence
result stated in Theorem 4.3.

The analysis is based upon a variation of Sznitman’s original coupling argu-
ment, see [32]. To make its principle clear, we recall that, on the space (2, F, P),
the triples (XJ(-), W'(-),W*(-)), -, (X&(-), W"(-),W"(-)) are n independent
copies of the original triple (Xo(-), W(-),W(-)). For each i € {1,--- ,n}, the pair
(Wi(-),Wi()) is completed into a rough set-up

W' () = (W), W), W),

| | | (5.1)
Wl (w,w’) = I(W'(w), W' W), (w,w)eQ?

Here we put a bar on the symbol W' in order to distinguish it from the
finite-dimensional rough set-up W™ (w) that lies above (WHw), -, W (w)).
In comparison, the second-order level of W™ is made of (WH)1<i<n and of
(Wi = (W, W) see (4.2). To make the notations more homoge-

neous, we sometimes write W (w) for W*(w).

1<i=j<n’

With each (Xé(),WZ()), we associate the corresponding solution 71() to
the mean field equation (1.2). The 5-tuples

Q3w (Xi(w), W (@), W (w), W (,w), X' (@)

1<i<n

are independent and identically distributed, Q 3 w — (Wi’l(-,w))0<t<T being

regarded as a process with values in L4(Q, F, P; R?). Recalling that X (™ (w) =
(XL, -, X™(M (1)) is the solution to (1.3), we then let

n 1 S —n 1 S
py(w) = - Z:léxz,(n)(w), ay (w) = - Z‘i 5Yi(w)’ te[0,T], wef. (5.2)

Note the use of the d;-distance (see (2.14)) in the assumption required from F
in the statement below, di-continuity being stronger than ds-continuity.

Theorem 5.1. We make the following assumptions.

(a) Assumptions (a)-(d) in the statement of Theorem 4.3 are satisfied.

(b) The first and second deriwatives of ¥, (x,pn) — 0,F(z,pn), (z,p,2) —
(DHF(x,u)(z),OIDMF(x,u,z)), and (z,p,2,2") — DiF(m,u,z,z/), are
bounded on the whole space and are Lipschitz continuous with respect to
all the variables, the Lipschitz property in the direction p being understood
with respect to dj.

(¢) Last, for any o > 0, there exists a constant e3 > 0 such that, for any
n =1, for any p’ € (p,3), and any random variables T,v : Q@ — [0,T],
with P(t < ') = 1, we have

[E|: [(ﬁi,n(lirr,rr/]?éx}’a)>1+82:|:|
sup su ex < o0,
n}li 1<i£n P A T -7
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where N ([T, 7], w, a) is defined as the accumulation N, ([T, ], a) when
@ = ()" ()7 with
857 (o) 1 (0 5 85 )+ ) gy (),

on

wy" (s, t,w) = v;’,n(S,t,w) + (")[vp, (w)]q;[&t]’l_v, (5.3)
~in il p'/2 i, L P'/2
’UP, (S’ t’w) T <w (w’ ')>q;[s,t],p’/27v + <W (.’w)>q;[s,t],p'/27v'

Then, for any v > 1, there exists an exponent q(r) = 8 such that, if ¢ = q(r),
with q as in Section 2, and Xo(-) is in L97), then

. . 1/r 1/r
sup [E[ sup |71 - XZ’(")|T] + [E[ sup dy (u?,ﬁ?)r] < Cqn,  (54)

1<isn o<t<T o<t<T

for a constant C independent of n, and ¢, = n~ Y2 ifd =1, ¢, = n~1/2 In(1+n)
ifd=2and g, =n"Yifd>3.

Remark 5.2. Let us make a few remarks on this statement before embarking
on its proof.

o The convergence rate s, in (5.4) corresponds to the usual rate for the
convergence in the 1-Wasserstein distance of an empirical sample of in-
dependent, identically distributed, random wvariables toward the limiting
common distribution; see [18] together with Lemma A.2.

o Theorem 5.1 applies when W is a continuous centred Gaussian process
defined over some finite interval [0, T], with independent components, and
with a covariance function that is of finite two dimensional p-variation,
for some g € [1,3/2), see (4.7). The proof is given in Appendiz A.1.

o We refer to [9, Chapter 5] for examples of a function F satisfying item (a)
in the assumptions of the statement. Importantly, we recall that a function
G : P2(RY) 5 p— G(p) € R, whose derivative D,G : P2(R?) x R? >
(1, 2) = D,G(u)(2) € R is uniformly bounded on the whole P2(RY) x RY,
is Lipschitz continuous with respect to the di-Wasserstein distance. In
particular, under the assumptions of the statement, F itself is Lipschitz
continuous on R? x Py(RY), the Lipschitz property in the direction p being
understood with respect to d;.

e By inspecting the proof of Theorem 5.1, we could make explicit the value
of q(r), but we feel that it would not be so useful.

Proof. Observe that, for each i € {1, -+ ,n} and any w € Q, we can define the
integral process (Sé F(YZ(w),ﬁ’;(w))dWi’(") (w))ostsT
theory, where the label i in the notation W™ (w) is here to indicate that the
integral only involves (W' (w), (W/¥(w))1<j<n). Equivalently, W™ () must
be seen as (W (w), (W/(w))1<j<n). The fact that the integral may be defined
with respect to (W#(w), (W/¥(w))1<j<n) follows from the fact that X’ (w), for

using usual rough paths
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each j € {1,---,n} and each w € Q, is controlled by the variations of the sole
Wi(w).

Step 1. The first step is to compare
¢ -t ——i t — .
f F(XL(w), £(X,) )W, (w) and f F(XL(w), @) ) aw i (w),  (5.5)

0 0

for t € [0, T]. What makes the proof non-trivial is the fact that the rough set-
ups used in the first and the second integrals are not the same. So, in order to
compare the two of them, we need to come back to the original constructions of
the two integrals. To simplify notations, and for 0 < ¢ < T, set

Fyw) = F(X). £(X), F"w)=F(Xwmw) (66
For sure, (Fi (w))0<t<T is w-controlled by w' (w), see Definition 2.1, and the

collection indexed by w € €0 is a random path controlled by Wi, see Defini-
tion 2.2 for a reminder. The corresponding Gubinelli derivatives are denoted
by (&CFz(w), 8, F (w, '))0<t<T’ see Proposition 2.4. Similarly, (F}""(w))o<t<T 18
controlled by W™ (w) and W* (™ (w) and Gubinelli derivatives are encoded

in the form of a collection (6wFti’"(w), (6MFti’j’"(w))1<j<n)0<t<T, see (4.8-4.9).
To make it clear, set
6. F3(w) = OF (X (@), £(X0)) F(Xy(w), £(X0), -

6uF(w,) i= DuF (X (w), £(X0)) (X:()) F(Xi(), £(X0)),

where X (-) is the solution to (1.2) with W (-) = (W (-),W(-),W(-,+)). We also
let

5, Fi™ (w) o= 0, F (X (w), T (@) F (X (w), TP (@),

. - - (5.8)
8 F I (w) = D, F (X (w), 1 () (X7 (@) F (X (@), By ().
For a subdivision A = {s =ty <t1 < --- < tx = t}, set
=i,A & — ,
T, (w):= Z {Ftk Wtk tkﬂ( W) + 0., (w)wék,tkﬂ(w)
k=
E[6, 7, (@, Wi, ()]},
K—1 (5.9)

iy, A RO i
IZ,t (w) := Z { tk,tkﬂ( )+ 6. F) (W)Wtk,tkﬂ(w)
—0
1 $ 7 K3
DI W @)}
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The two integrals in (5.5) should be understood as the respective limits of the
two Riemann sums right above as K tends to co0. In the sequel, we denote the

. 1,0 .
summand in the first sum by Izt(wf/w 1}(w) and the summand in the second sum

by I{i’tZ’ka}(w). By Lemma A.1 proved in Appendix A.2, we can find, for any
0 = 8, a constant C' and an exponent ¢’ > ¢ independent of n and K such that,
when Xo(-) € L, it holds for any k € {1,--- , K — 1} (provided K > 2),

=i, A’

Q20 -z O} T O -T0 0} ), < Ol ot ),

4

2

where A’ := A\{tx} and w™ (s, t,w,w’) := w(s, t,w) + |\Wl(w,w’)\|fs/7t]7p/2_v.

Formulating (4.5) and (4.6) but for the limit (instead of empirical) rough
set-up, we know that the right hand side in the above inequality is less than

1/2
Cen [<HW(')H[O,T]7(1/p)—H>pg/ + <Hw(.)H[O,T],(2/p)7H>pg/
1/2

3
+ (W, .)H[O,T],(2/p)fH>>pQ/] (ths1 — t1)*?,

but by assumption all the expectations are finite. Now we can choose tj, such that
[t+1—tr—1| < 3|t—s|/K (if not, it means that 3(t—s)(K—1)/K < Z?z_ll [trt1—

te—1| = ZkK;(tkH —tg it —tho1) =2(t—s) = (tx —tx—1+t1 —1to) <t—s,
which is a contradiction). We get

—i, A t—s ) 3/p

{rrro -z ol -{Ero-T0 o)) <cu(%

the constant C' being allowed to increase from line to line as long as it remains
independent of n and K. Letting t(") = ¢;, and applying iteratively the above
bound to a sequence of meshes of the form A\{tM}, A\{tM) )} ... and then
letting K tend to oo, we deduce that

L ; T ino =00
([ mreawio e - [ Foawo - {7 - T} )

. (5.10)
< COgu(t —s)%P.

By Lemma A.1, we also have <Izsnt}(7 - f{)jt}% < Cu(t — )17, from which we
deduce that

<f E()aw () — j Fy()AW,()) < Coult— ).

s [

Similarly, Lemma A.1 says that {[F*"(:) — Fi(~)]st>g < Ot — 8)YP, and,
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noting that

i gy (m) b . .
R @) = | B @awi ) - 2 @)

S

. . 1 & . y
+ 0 FUM(W)WE () + = Y 8, P ™ (W)W (w),
—_ — t
F'dW" —i ) =i,0
R () = f F(w)dW () — T-0(w)

+ 8T (@)W () + E[ 0, (w, W ()|,
we deduce in a similar manner, using (5.10) and Lemma A.1 once again, that

Fon gy () F W
(R, (=BG 0) <ot =5
So, fixing i € {1,--- ,n}, choosing g large enough and applying a suitable version
of Kolmogorov’s theorem (see for instance Theorem 3.1 in [19]), we can find
P’ € (p, 3) such that

t t .
[ Fir@wi — [ Faw @ <o - o,

S

[ =T [<om@e-a. 1)
]Rif AWy I <w>\ < 0 (w)(t — )77,

with <9i’"(-)>g < Oy, for a new value of the constant C.

Observe now that the empirical control associated with our empirical rough
set-up and with the exponent p’ reads (compare with (2.10))

wy" (s, t,w) 1= v (s, t,w) + (n)[v;;n(‘”)]q;[s,t],kv’

where we used the same notation as in (4.3). In fact, there is no loss of generality
in changing the definition of w;’/n into

w;’/n(s,t,w) = U;’,"(s, t,w) + (")(v;;n(w)]q;[s)t])l_v + (t—s), (5.12)

which permits to replace (£ — s)'/#" by w;’,"(s, t,w)Y?" in the inequalities (5.11).
Hence,

Step 2. We now make use of Proposition 3.2 to compare

< 0" (w).

[0,T]w)" pf

f Fim (w)dWE™) fj F () dW ()
0 0

LF(X;'W(w),u2<w>)dwi<"><w> and f F (X (@), 0 (@) AW (),
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see (5.2). To simplify the notations, we just write X* for X and W' for
W5 We then apply Proposition 3.2 with

(X(w)a Y()) = (Xl(w)a X.(W)), (X/(W), Y/()) = (Y (w)a Y (w))v (513)
the underlying set-up being understood as the empirical rough set-up for a given
realization w. The difficulty here is that the variations of these two solutions are
controlled by two different functionals w, see (2.11). This is the rationale for
introducing @, in (5.3). Obviously, @""(-,-,w) (we remove the index p’ for
simplicity) is not the natural control functional associated with W' (w), but it
is greater than w;’/n (s,t,w) and it satisfies

(")[@""(s,t,w)]q < 200" (s, t,w), (5.14)

which suffices to apply Proposition 3.2, see also [1, Proposition 4.3], with w;’,n(s, t,w)
replaced by w"" (s, t,w). The resulting semi-norm that must be used to control
the difference (X (w) — X'(w), Y (-) = Y'(+)) = (X*(w) —Yi(w), X (w)-X" (w))
on a given interval [s,t] is || - [[[s,4,57m 7 We use the corresponding local accu-
mulation, which we denote by NW([O, T],w,a).

By construction of the processes (Xi(w))izl)'_' . 8 the solution of the empir-
ical rough equation, the pair (X (w),Y(-)) = (X'(w), X*(w)) in (5.13) automat-
ically satisfies the first bound in (3.3) with w = @*" and for some large enough
deterministic Lg; implicitly, this means that we perform the same construction
as in the proof of Theorem 3.3, see [1, Theorem 4.4], using therein the empirical
rough-set up and the control functionals (13”1) . In particular, the points

(tg = Tg(O, T, w, 1/(4L0)))4:01... NO41
understood as with respect to @"™. Also, by the last part in the statement of
[1, Proposition 4.2], we know that Y'(-) = X*(w) satisfies condition (3.2) with
respect to (”)[ . ]8 if we assume that T satisfies

i=1,---.n
in the statement of Proposition 3.2 are

) (N7 ([0, 7], ,1/(4L0)) ) <o (5.15)

for a deterministic constant ¢, independent of n, Ly and T'.

In fact, using the Holder regularity of the paths, see (4.5) for a similar use,

and using the additional ¢ — s in the definition (5.3), @“" dominates (up to a
multiplicative constant) the control W' associated to w' through (2.10) (see
(5.1) for the definition of Wi; in short, the variations of W%(w) and W'(w)
are already included in v, (w), the variations of Wil(w,-) and Wit (., w) are
precisely included in the definition of 17;’," (w) and, using the Holder regularity

of the paths, the variations of W(-) and W (-,-) (in L?) are dominated by the
additional ¢ — s). Moreover, we have

(@7 (s,1,)), < Ot = 5) < CB™" (5,1, 0),
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for a constant C' independent of i, n, s and ¢. Although C > 2 (compare with
(2.8)), this permits to use @""(s,t,-) as control functional when working with

the rough set-up w' and, in particular, when invoking the solvability Theorem

3.3 — the proof would be the same. This is an important point: the path X (w),
defined right after (5.1), is the solution of a mean-field rough equation driven by

a signal that is controlled by @""(-). Hence, X'(w) = X (w) in (5.13) satisfies
the second bound in (3.3) with w = @*". Also, invoking the first line in [1,
Proposition 4.2, (4.4)] for each i € {1,---,n}, we deduce that Y'(-) = X" (w)
satisfies condition (3.2) with respect to (")[-]8 provided (5.15) holds true. Due to
the form of the constant in the right-hand side of [1, Proposition 4.2, (4.4)], this
may require to work with a larger value of the threshold Lg in the statement of
Proposition 3.2, but, as made clear in the statement of Proposition 3.2, this is
not a hindrance. Then, by Proposition 3.2, we obtain, for a given L > Ly,

| Pt @ @)awie) - | FELw), @) Wi

[t trs1],0Bm,p!

< FYw 0 g, w 1/;0 <|H( . ) w)”‘[07tk]7ﬁ}i,n)p/
+ (n)[ Il (= - 7.)(w)|”[o,T],u3-v",p’] 8)
Y i
2 (1 =X @y
+ (n)( ’H (X. - Y.) (w)”‘ [tk,tkﬂ]ﬂf}""xP/J 8> 7

where @™ (g, tps1,w) /P < 1/(4L) aslong as k < 2N ([0, T],w, 1/(4L)) (since
the sequence (t;); must refine the sequence (£9);, we may assume that the col-
lection (£;); counts 2N*"([0,T],w,1/(4L)) + 2 points, including ty = 0) and
where we dropped the leading coefficient (1 + 1/(4L)) in the main equality of
Proposition 3.2 (which is always possible by modifying v accordingly, v here
depending on Ly). The point now is to insert the conclusion of the first step
(replacing for free w"™ by @"" therein). We get

(X" = X)(w |H[tk,tk+1],m,n,p/

-t

<A @0, th )V (m(;c X))

llio,t43,0.m 7

+ <n>[ (x* - X (w)\H[O,T]@-,n,p/) 8) + 65" (w)
(1 =T

+ <n>[ I(x* - %) (W)H|[tk,tk+11,@-vnm’] 8) .
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If v/(4L) < 1/2, we get

1

(X7 = X))

H|[tkwtk+1] whnp!

1 ~i,n
<2y (g + 0000 ) (JI6 =Ty 516)
O =T gen ) ) + 270,

and, allowing the value of the constant ¢ below to increase from line to line, as
long as it remains independent of n, L and T' (but ¢ now possibly depending on
Ly since v does), we get (see for instance [1, footnote 7] for the concatenation
of two intervals)

H| (Xl - 7l) (w)m [0,tkt1] 0% p
S C(‘H (Xl - 71)(w)|”[07tk]7@i’"7p' + |H (XZ - 71) (W H|[tk,tk+1]1ﬁ1iv”7pl)
e+ G X = )l em

+ CCT ")[ ’H (X' 7.) (w) + " (w),

o0
with C%"(w) =1+ w;’,n(O,T,w)l/p/. So, by induction,

k

i —1 zn E
foxwmmmww<4z e(1+ ¢ @)]")

< (Grem(flee wamﬂmwh+wwﬁ

In the end,
(X" =X (w) H‘[O,T]ﬂfﬁ’",p/
in 2N>™([0,T],w,1/(4L))+1
< c[c(l + ¢ (w))] (5.17)

(6@ DI =T Mg gmm) , + 076 ).

Hence, using the shorten notation ]\A]}n(w) for N“*([0,T],w,1/(4L)) and as-
suming ¢ > 1, we obtain

(n)( flCx= ~ Y.)(“’)M[O,T]@-vn,p’) 8
<O([E @+ @] G W)

X (n)[| H|[01T]7ﬁ}0,n1p/J g

£ O([ (14 GO )

8

(5.18)

(X'—X )(w)
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Step 3. The key quantity of interest in (5.18) is the multiplicative factor in
the second line, which we denote by

W) = [ 1+ GO G W)

In particular, letting

o) = ([ 1L+ G @) O e w)

we rewrite (5.18) in the form

(n)[ (G 7')@)\\\[01]@-,«#) 8

- (5.19)

< 03 @) O [(X* =XV @) lg 17,000 ) , + OF ).
Here comes the key point. The variable w being frozen, we can choose deter-
ministicall the time horizon T' small enough, depending on w, and L > L large
enough, such that ¥%.(w) < 1/2 and (5.15) holds true. The proof is made clear
below. Take it for granted for a while and deduce that

O =TV 71,00 ) < 208,

The above inequality sounds really close to the desired result, but it is on a
small interval [0, T] only. The purpose is thus to iterate it in order to cover any
given time interval.

Step 4. In order to iterate in a proper way, we change our notation. While we
keep the notation T for the deterministic time horizon given in the statement,
we use the latter T instead of 7" in the previous analysis. Put differently, T will
stand for the random time horizon such that W is small enough. More precisely,
we let 19 = T and then consider a possibly random dissection 0 = 19 < 71 <
-+ <1y =T of the interval [0,T] into M subintervals. The goal of this step is
to clarify the construction of the dissection in order to iterate the previous steps
to any interval [Tte, Te41], £=0,--+ M — 1.

To do so, we need to revisit the statement of Proposition 3.2. Assume indeed
that we have a bound for

1

gin(w) = (1420, T,0)) (X' - X')

(‘*’)m[o,w]@i,n,p/’

for some ¢ < M. Then, in order to duplicate the previous two steps, we must
consider a new dissection Ty = tg < t; < -+ < tg = Ty41 of the interval
[Te, Te41] with the property that K = Qﬁi’"([Tg,Tngl],w, 1/(4L)) + 1 and that
W™ (tg, ter1,w)<1/(4L) if k < K. The key point is to apply the first inequality
in (3.4) on [tg,try1] with (X (w),Y (") = (X (w), X*(+)) and (X'(w),Y'(-)) =
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(Yi(w),yi(-)), but with T, instead of 0 as initial time. Upper bounding the
second line in (3.4) by &7/ (w) + (£ (w))4, We obtain

| rE@m@avie) - [ FEe.m @)

23

[trstro1], 0%, p

< @ et {6 - TNy 00
C([ESE S I ——
A LICE 9 L] A
O - X))
rafeire + )]

provided the analogues of (3.2) and (3.3) hold true. As for (3.3), we may argue
as in the second step: It is a consequence of the proof of Theorem 3.3. As for
(3.2), it is again a consequence of the statement of [1, Proposition 4.2], provided
the analogue of (5.15) holds true, namely

(n) (N-,n([Tg,Tg+1],w, 1/(4L0))] J<e (5.20)
Then, proceeding as in the second step,

ll(x*-X7)

(w) ’H [trotigr],0%™,p

1

< C@iﬁn(Tzv Te+1, w)l/p/ { H| (XZ -X )(w)m [te,tr], wb™,p

+ (n)[ ll(x*-x )(“)H|[re,m1m-m,p/] s}
+c {Ei’e"(w) + (")(8,:/’5"@))]8 + 6""(w)}
In the end, we are in the same situation as in (5.16), but with new (%" and ]\A]}"

Here, we let (pay attention that, to be consistent with the notations ClTn and

](7%", we should use [Ty, Ty41] instead of £ as subscript below, but, for simplicity,
we prefer to use ¢ only)

i,m ~imn / ATE,m ATi,m 1
¢ (w) =" (TZ,THl,w)l/p, Ny"(w) := NY"™ | [T, Tog1)sw, — |
41
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Following (5.17), we obtain

R

H| (Xl -X )(w)m [Te,Toq1],@0m,p/

<c [c(l + Cé’n(W))]QN[ et

A @O T arnsr) 52D

+ 0" (w) + EEM 4 (M(gem (w)]s}.

Hence,
Rl eEn o [O1 —
<07 () < O =XYoo T Orw),
with
Wpw) = O[E 1+ @) TG W)
CHE)

= 1 (@ G e e+ e @)

If we can choose T¢41 — T¢ such that U} (w) < 1/2, then we get

DI =)o) < 207

Eventually, returning to (5.21) and modifying the value of the constant ¢, we
deduce

[ TR
<efe(t+Gn@) O
< (G Op W) + 87w + £37 + Ve W), )
and then
41, ) < ") (G OF W) + 07 w) + 57 w) + (e @) ).
with

) . , . 2N ™ (w)+1
KW = (Lr a0, 7w ) [ gre)] T, (622)
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using the fact that ¢ > 1. By induction, we get the following global bound:

Y4
£ (W) < Y KL [c;" >®z<w>+9i’”<w>+<n>[e;;"<wng], (5.23)

k=0
with

4
Kyl (w 1‘[ (5.24)

We deduce that for any r > 8, we can find a constant ¢(r) such that

4

(e (W), < l;){m)(;gw)q(r) X (1 OG0, T, w)l/p’]qm)
< (10 e g )
x (o (@) (T)+<")[5;,;"(w))r)}-
Using the fact that

> max(1, (@ (0,7,0)"P) ) O [ (4 PN O],
we obtain a bound of the form asy1 < Zi:o Gk (b + ak), with

3
ag = "(EXM W), gre =4 x ((n)[lcl.c.;?]q(r)) , b= (n)[o.’n(w)]q(r)'

Hence,

[ J
< bz 1_[ kn knya (525)
=1

0Sk1§---<kj§kj+1zz h=1

Back to (5.24), we will use below the bound
Kii)
2(+1-k) 1_[{ (1 + @™ (0, T, )" ) [2(1 +c§’"(w))]2ﬁ;m(w)+l} (5.26)
< C4(z+1—k)+4N;1;}+l(w)(1 + @0, T, w)l/p,)l+17k+2ﬁ;1?+1(w),
with the shortened notation ]\A];?(w) = ]/\}i’"([Tk, 1], w, 1/(4L)).

Step 5. We now recall that the sequence of times 0 = 19 < T < -+ < Tps
must satisfy (5.20). A priori, the sequence may be random, but we are free to
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take it deterministic, which is what we do below. To make it clear, we let

My = (WO 1y, 0/m-n), + VORS00,

/2
+ (WMo r-n),

and we consider the events

n n L] n L] /2
47 = e W I 1y )+ OO @3 )
n .. /2
O @ ), < M+ 1)
%,m . (n X /2 n i, /2
Ay" = {W eQ: ! )[HW (w)|;[DO,T],(2/p’)—H)q + )[HW (w)|;[DO,T],(2/p’)—H]q

< (Wl ), + Wl iy, + 1)

On the event A7 N AL™ we have (compare with (4.3) and (4.5)) for s,t € [0, T2,
s <t,

v;’, (s, t,w) H

@ s W@

i /2
¥ (2 + M, + <|IW Hw, ')’fo,T],<2/p/>—H>q

+ (I o), )€ 5

Therefore, introducing the new event

A5 = {(")[<“W"l(“’ ')|f(;{;],<2/p’>—H>q] ]
+ O ')|ﬁ;{:2r],<2/p’>fH>qJ , <20 Ml)}’
we get, on AF n (ML, 43") N A5,
op™ (@) oy < (5 +4M0)(t = 5).
Recall now the definition of 3" in (5.3). We have
0 (s, w)
= (Wit (w, >Zpstp/2v+<wJL >pstp/2v

< [l i, + W Gl o 0 ] )
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And then,

" @) ypegay < < (Wi 7 ) ]q
T (n)[<HWJL Hpo/;] o) H> J q> (t —s).

Therefore, on the event A7 n (N, A5™) n A%, we have

(")(17;;”(w))q;[s,t],1_v < 2(14 My)(t—s).
Using the same notations as in (5.3), we end-up with

Wy (s,tw) < @) (s, w), (5.27)

for we AP n (i, A5™) N A, where we let

B (st w) = W (w |\[S ey + W) Hps/f L2y + (10 TM)(E = 5)
7, 2, /2
+2<W J_ >q[st]p’/2 V+2<w JL >Z,st,p/2 v

Using the notation (2.17), we also let No"([t,7],w,a) := Ny([1, 7], ), with
@ := (@, (w))"?". By (5.27),

N ([1, 7], w, @) < No*([1,7],w, ),

for w e A7 A (N2, Ai’n) N A%. The good point here is that the variables

(ﬁ;’,n) L<i<n AT€ independent whilst the variables (

whenever T and T’ are deterministic, the variables (N ([t T, - a
independent. Moreover, it is not difficult to see that

Z’ﬂ

wy )1 <i<n, are not. Similarly,

))1<i<n are

@ (s, t,w) < 205" (s,t,w) + 8(1 + M) (t — s),

from which we deduce, see for instance (A.1), that, for any o > 0,

N ([ v)wa) < N (e v]w, 5 ) + Ca

for a constant C, only depending on o and on M. In particular, we can easily
replace N" by N®™ in the third item of the assumption of the statement.
Moreover, by (4.11), we deduce that each @,," satisfies the first bound in (3.5),
uniformly in ¢ and n.

We now have all the ingredients to choose the sequence 0 = 19 < --- < Ty =
T. We may take it, independently of n, such that

<N1’"([Tz, Ter1], s 1/(4L0))>8 < 57
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for ¢ as in (5.15). Existence of the dissection follows from the third item in the
assumption of the statement as it says that the left-hand side can be bounded
by C4/T¢+1 — T¢. Importantly, the latter bound says that M can be chosen
independently of n. For sure, the index 1 in the left-hand side may be replaced
by any i € {1,--- ,n}. We then consider the family of events

Abn _ {(n)(ﬁ-,n(mnﬂ], y 1/(4L0))] < c}, 0=0, M—1.

On A7 n (N, A;") A3 A ( Zj\igl Ai’"), the upper bound (5.20) is satisfied
and then the conclusion of the fourth step holds true. Following (5.22), this
prompts us to set:

~in 2 ~i i [ 2 ~i Ly 12N @)

Ry (w) i=c (1 + " (0,T,w) /p> [c (1 + W (T, T, w) /p )] ,
and then /E;’;(w) = ]_[ﬁ: i E;n(w) Returning to the conclusion of the fourth
step, we get, for w e A" := A7 (N, A5™) n A2 ~ (N5,1 AT,

(e W),
£ 3
<O ), Y H 4 x ( (R kh)ml(w))qm)
J=10<k1<--<k;j<kjp1=Lh=1
~ 3¢
20+1 4 n)(pe,n n on
<2t (g W), o (R @)),)
The key fact here is that I%é’}w (w), for any i € {1,--- ,n}, has finite moments of

any order, independently of ¢ and n. The proof follows from (5.26), from (4.11)
and from the third item in the assumption of the statement of Theorem 5.1,

the last two properties implying that (1 + W (T, Tot 1, w)l/p/)NeY “) has finite
moments of any order, independently of ¢ and n, see for instance (5.32) below.
Hence, for a constant C', independent of n but possibly depending on M, we get

<1A" ) (ER" ><C<n) (6" r>> < GO (D) gy

where we took, without any loss of generality, ¢(r) > 2r. Taking o = ¢(r) in
(5.11), we get that, for a constant C' independent of n, but depending on r,

sup {1 ()] (X *Yi)(')‘k < Cs,. (5.28)

1<igsn

Step 6. From the law of large of numbers and from (4.11), we claim that
P((A7)") decays faster than any n—*, for s > 0. The first step of the proof is to
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notice that

P((41)")

" 1
<P (W @)y 1y, <HW Momnam-n), > 3)

n . '/2 1
+ P(“’ : )[HW (w) ’[0 T1,(2/p')— <HW fo:r 1,(2/p')— >q = §)

n ) /2 /2 1
+ P(“’ : )[[HW (W) ’fo:r 1,2/p")— <HWJL ’ po [0,77,(2/p")— H>q = g)

— n n n
=1Tiq + T2 + T3

Since the most difficult term is the last one, we just explain how to handle it.
The other two terms may be treated in the same way. Since ¢ > 1, we first
observe that

n
1,3

N 2 "yl
<P (w0 W @l s = N rn), + 37)

i /2 /2 1
S ( : 2Z(Hw J qu] (2/p")—H <HWJL qu] (2/p")— >>>@)
/2 1
e (v 5 DM o> o )

By (4.11), the last term in the right-hand side is easily handled. As for the first
one, Markov’s inequality yields, for any s > 1,

1 /2 /2 .
P<w : ﬁZ(HW 7 @) 0,77, 2y <HWJL Moy - > ) z 3‘1*1)
Jj=1

3s(q+1)
Z (HWZ)] Hl[l(z))f;’2 1.(2/p")— <le I[J(ZJ)T;’Q 1.(2/p")— H> D‘ ]

< T nE|

i=1 Lljij=i

By (4.11) again and by Rosenthal’s inequality, see [31], we deduce that the
right-hand side is less than Cn~%2, for a constant C' independent of n. This
completes the proof of our claim.

The same result holds for P(A%). Also, since (]\Nfi’"([’tg, Te1l, Q) o, are

independent for any £ = 0,--- , M — 1, we also have that [P(Af;’") decays faster
than any n=°, for any £ =0, --- ;M — 1.

We finally check that the same is true for Aé" To make it clear, we prove
that, for any s > 0, sup;_; ... ,, P((A5")") < Cn~* for a constant C independent
of n, but the result is less obvious. In fact, it suffices to upper bound the first
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term below, for which we have, as before,

n i,® /2 i /2 L
[P(w (Wi () |Z[)0T 1.2/~ <HW K Z[)O T1.(2/p)— >q " 5)
1 ; /2 i /2 !
<P<MZEZ<W” |q§:r] (2/p)—H <HWl Mio,ry, - H>)>2q+1)

Ji=
Z’L /2 n
+ [P(w LW Hqu] )t = ﬁ)

The last term in the right-hand side is easily handled. As for the penultimate one,
we proceed as before, recalling that Wi/ = Z(W? W7). By Markov’s inequality,

. 1 i qp’/2 zJL qp /2 1
F(“' E.Z_(HW 7)o 71,100 <\|\w oz <2/P’)*H>1> g ﬁ)
jij=i
2(g+1) " ; ) 7
<Zele (5 (v
j=1,j=i

(O DI ONE ) ) 1oV O)]]

We apply Rosenthal’s inequality once again, but conditional on o(W?¥(-)). As-
suming without any loss of generality that s > 2, we obtain, for a constant C
independent of n,

1 1
P0~n§]0w” I = (6 N 0, > )
Jij=
C ) s )
< —SE[E[[TV ). W @) | s | (V) ]

where j right above is any arbitrary integer in {1,--- ,n}\{i}. We easily deduce
that, for any s > 0, sup;_; ... ,, P((A5")") < Cn~* for a constant C independent
of n.

All and all, back to the definition of A™ at the end of the fifth step, see
(5.28), we deduce that, for any s > 0, [P((A") ) < Cn~*. Therefore, in order to
conclude, it suffices to prove that, for any r = 1, we can choose q( ) = 8 such
that, if ¢ = ¢(r) and Xo(-) is in L2, then

sup [E[ sup |XZ|T] < C(r), (5.29)

1<isn o<t<T

for a constant C(r) depending on r but independent of n.

The proof of (5.29) relies on the final estimate in the statement of Theorem
3.3. To make it clear, we consider a new random dissection 0 = 19 < T; < --- <
Ty = T of [0,T] (for simplicity, we use the same notation as in the previous
step, but the new dissection has in fact nothing to do with the first one; in
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particular, it is random) such that

an) (wa [Téu’t@-i-l]) = (n)[N.)n([Téanﬁ-l]?wa 1/(4‘L0))J 8 < 17
T8 (w, [0, Te41]) (5.30)

= <">[ [42 (1 + @0, T,w)l/p')]fv ""([Wﬂﬂvwvl/(“))] <1,

32
for the same constants as in the statement of Theorem 3.3. We deduce from
Theorem 3.3 that there exists a constant C' (independent of n) such that, for
any i € {1,--- ,n} and £€ {0, --- , M — 1},

. i A 12N5"™([0,T],w,1/(4L))
IX @) g eesa],aimpr < [C(l + "™ (0, T,w)l/p )] .

Observe now that, for any i € {1,--- ,n},
M—1
X} — X5l < X )l pin @7 (Te, T )
sup t ol & w [T27T2+1]7w1,n7p/w s To41, W
0<t<T =

< M[C(l + @ix"(ojT,w)l/p/>]Qﬁi’”([oyT].,w,l/(u))H'

The second factor in the right-hand side has finite moments of any order, see
(5.33) below, replacing therein N, /y/d; by N([0,T],w,1/(4L))/~/T. Moreover,
we prove below that M has sub-exponential tails, i.e., P(M > a) < cexp(—a®),
for ¢,e > 0. This suffices to prove (5.29).

We now prove that (T¢)e=o,... ar in (5.30) may be constructed in such a way
that M has sub-exponential tails. Obviously, see for instance (A.1), it suffices
to construct, for each constraint in (5.30), a subdivision (T¢)¢=o,...,m of [0,T],
for which the corresponding constraint in (5.30) (and only this one) holds true
and the number of points M has sub-exponential tails.

We start with the second constraint in (5.30). By induction, we define the
sequence (Tj)¢=o,..,m/, letting 5 := 0 and T, := inf{t > 1} : I‘én) (w, [T}, t]) =
n} A T4, with M’ := infyen{f € N : T, = T}. We claim that we may choose M =
2M'. Indeed, since the counter Nin appearing in (5.30) is the local accumulation
of a continuous function on ST, there exists 7 > 0 such that, for any ¢ € [0, T]
and any i € {1,---,n}, N*"([t,(t + 6.) A T],w,1/(4L)) = 0. (Of course, &,
depends on n and w, but this is not a problem in the rest of the proof.) Then,
for any point t € [T}, T), ), we have, by definition of T}, ,, Fé") (w, [T, t]) <.

Moreover, if |t),,; —t| < dr, then Fg") (w, [t,Ty41]) = 1 < n. Therefore, we may
choose To; = T, for £ € {0,---, M} and then |Tary1 — T 4| < dr. The sequence
(Te)e=o,... 2m satisfies the second constraint in (5.30).

4The reader may compare with (2.16), paying attention to the fact that, here, ¢ +>

Fé")(w, [T},t]) is not continuous.
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We now prove that M’ has sub-exponential tails (which implies that M =
2M" also has sub-exponential tails). Letting o, := 1), — T}, for any £ € N, we
have, for any A > 1 (recalling v,n > 1),

7T’Z=[P((Sg<%,f<M’—1)

<P ((n)[ [72 (1+@*"™(0,T, w)l/p’)]]v,;’"(w)/m) 1/VA y 77)

32
> n”) :

=P ((n)[['YQ (1 + ﬂ)\-,n(()’T,w)l/pf)]]vlf*”(w)/m) )

with the shorten notation ]\Afl'"(w) = ﬁ""([T}, T, 1],w,1/(4L)). We now intro-
duce the function f(z) = exp(In(z)'*¢), z > 1; it is non-decreasing on [1, %)
and convex on [e, ). By Markov inequality,

< o () [E[fG i 6[72<1 + (0, T, .)1/1”)]32@”/@)]

i=1
—(ln[n32ﬂ])1+5 l o 9 i N 32N, " /3L
<e ni;ﬂif 6[7 (1+w 0,T,-) >] ,
with e = exp(1). We prove in (5.32) below that, for ¢ small enough,

sup [E[f (6[72 (1 +@""™(0,T, -)1/’),)]32@”/\/&)] <C, (5.31)

i=1,n

for C independent of n. As a result, 7’ < Cexp(—(32 ln(n))l’LaA(Ha)/?), and
then,

P(M'>0+1) =P(61+ -+ <T,l+1<M)

: T . / ~(321m(m) gy a2
<Zn> 5i<z,z+1<M < Cle " ,
=1

which shows that M’ has sub-exponential tails.

We now check what happens when handling the first constraint in (5.30). We
may define M’ as before, that is M’ := infyen{¢ € N : T, = T} with 1 := 0
and T, := inf{t > 1) : an) (w, [T},t]) = 1} A T. Then, we can repeat the same
proof as above by using the fact that

{6g< %,€<M'—1}C {(n)[ﬁ""([’r’g,’r’e:r/lg—;w,1/(4L0))J82\/2}

and by recalling that

) [ N ([, Tyl w, 1/(4L0)) )
A0 8
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has Weibull tails with shape parameter strictly greater than 1°, uniformly in
the choice of the dissection 0 = Tg < --- < Tppr = T, which follows from the
third item in the assumption of Theorem 5.1 together with the convexity of the
function [0, +00) 3 x ~— exp(z!7), for £ > 0. This permits to provide an upper
bound for P(d, < 1/A) and then to deduce as before that M’ has sub-exponential
tails.

It now remains to prove (5.31). By (4.24) and (4.25), we can find a real
e1 > 0, independent of n, such that sup,_; .., E[exp(@""(0,T,-)**)] < C, for
C independent of n. Hence, combining with the third item in the assumption of

the statement, we get, for any n > 1,i€ {1,--- ;n}, a> 1 and K > 0,
: ANV
[P<(1+@“"(0,T,-)1/1’> o >a>
]/\\71771‘ : /
< [P(L > K) + [P(l + @0, T, )7 = al/K> (5-32)
Ve
< ce KT 4 ce_“alp//K,

for a new constant ¢ independent of n and i. Choosing K = (Ina)'/(1*+2/2) we
deduce that there exist a constant ¢ > 1 and an exponent € > 0 such that, for
any a > 0,

[P((l + (0,1, )V YNV a) < cem¢ @' (5.33)

from which we obtain (5.31). O

Appendix A: Integrability and Auxiliary Estimates

We prove in this appendix auxiliary results that we left aside in the body of
the text to keep focused on the main problems at hand. In Appendix A.1,
we show that assumption (c) in Theorem 5.1 holds true for interacting particle
system driven by Gaussian rough paths satisfying, see Example 4.2 together with
Remark 5.2. Appendix A.2 is dedicated to proving a crucial moment estimate for
some quantity of interest in the proof of the convergence rate in the propagation
of chaos result, Theorem 5.1. This is where the convergence rate s, appears. In
the last Appendix A.3, we elaborate on the versions of law of large numbers
used in the text.

A.1. Gaussian Case

Remark 5.2 asserts that the assumptions of Theorem 4.3 are satisfied in the
Gaussian framework specified in Example 4.2. Since the derivation of (4.11) is

5Recall that a positive random variable A has a Weibull tail with shape parameter 2/p if
AP has a Gaussian tail.
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already justified in the latter example, we only prove (here that we can control
the empirical local accumulation as the other requirements (c) in the statement
of Theorem 5.1. Following the proof of [1, Theorem 2.6], we may focus on the
local accumulation of each of the various terms in (5.3). To make it clear, we have
the following property: For a given threshold a > 0 and for any two continuous
functions vy : 8 — Ry and ve : 8§ — Ry, set Nj(a) := N,, ([0,T], ), for
1 <@ < 25 see (2.17) for the original definition, then

max(N1 (%),Ng(%)) > N(a). (A1)

Throughout the proof, we choose Q as the space W = C([0, T]; R?). We call
‘H the corresponding Cameron-Martin space and we regard (W, H,P) as an
abstract Wiener space. We then regard (W1,--.  W") as the canonical process
on Q" equipped with the product measure P®". We recall from [19, Theorem
10.4] that the processes (W')1<i<pn and (W*7)1<; j<n may be regarded as random
variables on Q™.

Step 1. The first step is to consider, for a given a > 0, the accumulation

Ni([O,T],w,oa) associated with HWi(w)Hfs)t])p_v + Hwi(w)’fs/i])pm_v, see (4.3),
namely o
N ([0,T],w, @) := Nw([O,T],a),
when _ ) _ p/2
W(S, t)P = HWZ(M)H[s,t],pfv + le(W)| [s,t],p/2—V’

but this follows from the proof of [1, Theorem 2.6]. The term @;’,"(s, t,w) in (5.3)
is handled by the same argument.

Step 2. We now focus on the local accumulation of the fourth and fifth terms
in (4.3). For simplicity, we just explain what happens for the fourth term. The
fiftth term may be handled in the same way.

We use the same notation as in Subsection 4.1 and proceed as in the proof of
[1, Theorem 2.6]. The Gaussian process (W?, .-, W™) has (W™, H®" P®") as
abstract Wiener space. For w = (w;)"_; € Q" and for h = @' h; € HO", we let

ThW ™ (W) = Top_ 0, W™ ()

for the translated rough path along h (see [19, (11.5)]). By [19, Lemma 11.4],
with probability 1 under P®", for all h € HO",

i, /2 ij /2 i
[ (w)|;[ns,t],(p/2)—v s¢ (H(Thw) N (‘*’)’fs,t],(p/m_v + (T ) (w)Hfs,t],p—v

V@Y @7, gy + il o+ VRS 10 )-
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Importantly, the constant c is independent of n. Below, it is allowed to increase
from line to line as long as it remains independent of n. So,

n i,® /2
(n) (HW’ (W) . )(p/g)_\,) .
n 'L. /
C{( )[H(ThW) Hps2t 1.(p/2)— Jq [H ThW H[s t],p— VJ
GOy + 8+ @ (el ) b a2

<c {(")( |](ThW)i’.(w)”Z[)O,T],u/p)—H ] q(t —s)+ HhiHZ[)SJ],Q—V

+(n>[ . WLQ_V] q},

where for any i,j € {1, -+ ,n}, we let

IW 59 (@) [ [s.01, (1) -1 = | (W, W) (w)

(1/p)—H T \/HW”

:(2/p)—H>

and similarly for [|(Tp, W)%J (w)l][O,T],(l/p)—H
The tricky term in (A.2) is the last one on the last line. The key point is to
notice that, for a given ¢ € (0,2 — p),

“ (el ) = [%Jzn] |

" 1/q
~ [s,t],g—v]
n p/(2—¢)
SR DIl S i
j=

where we used the fact that 2 — e < pg. Observe in particular that, whenever
< n=9/(rD) it holds

] (2—¢)/(pa) }p/@s)

S e e

- Ly p/(2—¢)
" [’h' [s,t],g—v) q sn ‘1[2 ,0— v]
Jj=1
<n V1 (n(2- es)/(pq))P/2 &)-1 Z |h; H e — p— 2=/ Z e

Jj=

where, in the second line, we used the fact that p/(2—e) > 1. Returning to (A.2),
we deduce that, whenever [hi[s,o-v < 1 and 37, |h; Hf;f] oy < n(2=e)/(v9)

n 7,0 /2 n i,
O (W @I g ), < {< (1w @y 1m-n J )

q
+ |7 H[s RS S Z| o v}

- (A.3)
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When the left-hand side is less than or equal to o, we can modify the constant
¢ in such a way that the inequality remains true when Hhi”[s,t],g—v > 1or

J 1 Hh H[S oy = n(2=2)/(P9)  Noticing that 2 — e > p, (A.3) remains true
n 7,0 2 : :
with () (W (@))7F ) (/2 i the lefi-hand side.
Define now N”"JL([O,T],W, a) = Nw([O, T], a), when

n i,® /2
W(S7t)p = ( )[w ' (w))5§[57t]7(p/2)_v

Then, (A.3) (together with 2 — & > p) yields

N L([0,T],w,a)a? < ¢ {W( D(ToW)"* (@) 0o y.1/m) 11 ] T

i Hh H[OT - —(2—¢)/(pq) Z Hh H 07,0 V}
<e {<n>(n<nw>iv-<w>nfm i) T+ Pl

(2—¢)/2
n—(2-)/(pa) +€/2[Z Hh H [0,17, ] }7
o—V

where we applied Holder’s inequality to handle the last term. By choosing e
small enough such that (2 —¢)/(pq) — /2 > 0 and by applying Proposition 11.2
n [19], we get, for a possibly new value of the constant c,

Ni’"’l([O,T],w,a)ap

n 7, — — (A4)
< ef (VDI ry o ) T+ BT

with [|h|3,e. = >, | hil3,- We then notice that (2—¢)/(2¢) > 1/2 since 2—¢ >
0. We deduce that T(2=9)/(2¢) < ¢T/2 for a possibly new value of the constant
c. We then apply Theorem 11.7 in [19] but on the space (W®" HO" PO"),
Importantly, we observe that

[ (UW“( @) o111/ -1 ]q]

is bounded by a constant ¢, independent of i and n, which proves that N*™1([0, T], -, &) /vT
has a Weibull distribution with shape parameter 2/(2 — ), independently of n.

Step 3. We now turn to the local accumulation of the sixth term in (4.3).

Taking the norm (™(-), in (A.2), we get, with probability 1 under P®", for all
h e HO",

O @liom-))
<c {(n)([ ﬂ(ThW)-,-(w)”fo,T],(l/p),H D q(t —5) + (n) [

P ]}
. B .
tlhe=v )4
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Following the proof of (A.3), we deduce that
n .0 /2 n e, 0
O @ <] >[[ T ) o 11,070 )) (= 9)
O S e |

at least when the left-hand side is less than or equal to of. Importantly, there
is no need to distinguish the coordinate i of h from the other coordinates j =i
7 = 1,---,n, has the same
power decay as n tends to o0. So, the context is simpler than in the previous
step and we may conclude in the same way.

Local accumulations associated to the second term in (4.3) and to (s,t) —
(")[Uéf’"(‘“)]q;[s,t],lfv and (s,t) — (n)[ﬁz:;n(w))q;[s,t],l—v in (5.3) are handled in
the same way. (As for the latter one, the reader may refer to the proof of [1,
Theorem 2.6].)

O

A.2. An Auziliary Estimate

We prove in this appendix some auxiliary estimates that were used in Step 1 of
the proof of Theorem 5.1. This is where the convergence rate g, in Theorem 5.1
appears. Recall we set ¢, = n~ 2 if d = 1, and ¢, = n~/2 In(1 +n), if d = 2,
and ¢, = n~Y? if d > 3. Recall also definitions (5.6), (5.7), (5.8) and (5.9).

Lemma A.1. Fiz o > 8. There exist an exponent ¢’ and a positive constant
C such that, if Xo(-) is o -integrable, then, for any integers 1 < i < n, and
0<r<s<t<T, one has

() =F ()], < Canflw (s, 1) )"

(T O =Tt >> < O ([t (st D)7 + (w0 (st )27,

<J ’_26 @) — E[9, Fi(w,-)WZ’,%(-7w>]\pd[P<w>>l/p

+<<6IF:""<->—m-»w;t(-»,,<c<n ot D
{0+ 2O - T O} - (T 0 + T O - Ty 0}

<Cq, <<w+(7°,t, . .)>>3//p,

4

e

where w* (r,t,w,w') == w(r, t,w) + |[W(w,w H[T /2"
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The reason the appearance of the quantity wt instead of w, in the above
upper bounds, will appear at the beginning of Step 2 in the proof.

Proof. We directly prove the last inequality in the statement; the first three
inequalities follow from the computations. Throughout the proof, we use the
following notations. For each i € {1,--- ,n}, we call @’ the control associated

with Wl() through identity (2.10). For j € {1,--- ,n}, we also let
@ (s,t,w) = [W @[ .,

We make in the course of the proof an intense use of Lemma A.2 below, giving
the convergence rate of the empirical measure of a sample of independent and
identically distributed random variables towards their common law. By The-
orem 3.3 and following (5. 33) we know that, under the standing assumption,

supg<i<r | X¢(+)] and || X (- |H[OT Jwp L€ D L*" as soon as Xo(+) is in L¥. We

then compute

4,1,0 4,1,0 4,1,0 =i,0 =1,0 =1,0
(T @) + T @) = I @)} = {T g @) + Ty @) — T @) |

= (RE" (@) = REL(@))WE (@) + (0B (@) = 0T, (@) ) Wiy (@)
( ZéF”" <wEhF;w»M%umD,
where
R (w) 1= FIM (@) = FYM (@) = 0 F @)W ()

— LS W (),
"in (A.5)

RI(w) = F() F() 5. T (@)W (w)

— |8, F (w0, ) Wr ().

Following (5.7) and (5.8), we define differentiable functions G, and G, of their
arguments setting

4

MWM:%@%Wmméﬁm:%WMM%»
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1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equation®2
Finally, we can write the whole difference in the form

{T0,9(@) + T, @) = Ty @)} = {T1r @) + Ty (@) = T )}
- (RF""@) — RE (@)W, (@)

6o (F @7 @) - 6 (X @), £0)]_ Wholw)
#2261 w) (7)) = 6o (T ), £00) (K @)]| Wik
IS @), o0 )], W) ~E[8,F (w0 Wi (L w)|.

—

Jj=

(A.6)

A key fact is that G, and G, are Lipschitz continuous in all the entries, the
Lipschitz property in p being understood with respect to d;. Moreover, similar
to F itself, they are jointly continuously differentiable in all the arguments and
the derivatives are Lipschitz continuous, the Lipschitz property in © being again
understood with respect to d;.

Step 1. Observe that
|G (F'@.7@)]
-[ 0. (T T () T (@)

. Z] D,G (K0 @) @) (T @) T @dr (4 1)

J Oz G 7‘(7‘ s)( ) ﬁ;h();« 5)(“))7i,s(w)d)‘

f [ f DG (X 0y (@), ) ) ) ( )zdx]cr 2 @i,2)

where

_n,()\

(r

“n ; X7l @) AC T ; X000 @) X))

with
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1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equations3

7

Proceeding similarly with [G (X (w), £(X))] ., we get

r,s’

|G (X (@) 7" (@) = Ga (X (), £() |

- [ (T )

0

T8

— 02Gy ( r(;\«)s)( )‘C(Xﬁ;)\()r,s)))ilyi,s(w)d)‘

J[Rm [f D G 7‘ (7‘ s)( )7 ﬁ:‘l:((::)s) (W)) (y)Zd)‘] dv::((::)s) (w; Y, Z)
N
Jﬂ??d [f D G T (7" S)( ) E(Xr;(r,s))> (y)Zd)\:| d‘c( T; (r s)? ers) (y’ Z)’

where, as before, XT()‘()T s)(w) = X, (w) + AX, s(w). Splitting the last two terms
in the above expansion into

1
—i,(\) —n,(A A
f [J DMG:E (Xr;(r,s)(w)7Mr;((r,)s)(w)> (y)Zd)\:| d_T(( ))(w Y,z )
R24 | JO

- )
A —n, (A
_ J[RM J;) D, G ( r XT( () )))(y)zd)\ dl/r;((ry)s)(w;y, 2)
1 .
% ()\ .
+ J[de J;) DHG;E( r X()‘() ))) (y)zdA dl/r;((::)s)(w; Y, 2)
o -
_J f DHGm( L(x). )))(y)zd)\ (XS Xns) (0, 2),
R2d LJO |

we get
6 (X' @) 7" (@) = G (X' @) £0)|
<o a(mi @, e )a

J RO — _
(I @y 5.0 4 % 5T @l (50 )
k=1

e |8 (w, X7 L (@)])

)

where S} (w, |Y;S(w)|) is the n-empirical mean of n variables that are domi-
nated by (|X7,(w)]).

=1 m ‘
conditionally independent given the realization of the path (X', W% W'). Re-
calling (2.9) and allowing the value of the constant ¢ to increase from line to

and n — 1 of which are conditionally centered and
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1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equations4

line, we obtain
62 (F' @) @) = 6o (K@), £00) | W)
! 5 ) |
d, (7™ (X d\
CL 1 (ur;(r,s) ((U), ( T;(T,s)))

. n 1/2
<[ @l + (3 Y IR @l )
x [mi(r,t,w)?’/?’ + - Z wk(r,t,w)3/P]

k=1

e[St (w. X7 @)]) | T (s t.0)27.

In order to conclude for the second term in the right-hand side of (A.6), it suffices
to recall from Rosenthal’s inequality (applied under the conditional probability

given the realization of the path (X', W W%)) that

<S73:7Sl(7 |Y’:,S(.)|)>3g/2 < Cn71/2 <H|X(')H|[OxT]7w7Pw(T7 5 .)1/p>39/2

< en 2 X Ollo 1), (0t ),

xe

where x > 1 is a universal constant whose value may change from line to line.
If p is large enough, we deduce from Lemma A.2 that

(le-F 0. 0) - X000 Wi,
<o [ {ar(moe 2 ))), ) AXOllarny,

x <w(7°,t, )>i/gp
+en 2 X () lo.17.00 p>x9 (w(r,t, - >3/p

< CSp (1 + <OESI<)T |X’U. ' |>X9)<|HX ! |H[0,T],w,p>xg <<U]+ (Ta tv Bl )>>i/:
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1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equationdb

Step 2. By the same argument, we have

[64(F'@). 7)) (F (@) = 6 (X' (@), £(X) ) (X ()
<o [ @@ 20600 )i ) 7ty

. . n 1/2
NI g0 + I g0+ (5 2 1 @ linyans) |

. ) 1 & 1/2
X [wl(r,s,w)l/p + 0 (1, 5,w) P + (E Z wk(r,s,w)z/p) ]
k=1

e[S w, [T @)]) [T s, tw) 7,

Wai(w)|

7,8

where

(S GEOD), < en™ 2 X o g 5,)77),

< en” X 0,79, 0.00x0 Cw(rs b)) VP
r,t

Observing that (@’ (s,t,)2/P)y, < {w*(r,t, )P~ this is the rationale for
introducing w™, and taking expectation, we get

(6T O () (X () = Gu(X' (LX) (X' ()| Whiw))

r,s

(f (@ (@0 LED))) ) IXO i,

< wtryt))2Y
+en 2 X om0, (0 (1))

4

R A

Taking the mean over j, we obtain for upper bound for the third term in the
right-hand side of (A.6) the quantity

<% D6 F O 0) (X () - Gu (X (), £(X)) (Yj<~>)]mwzgi<w>>

4
1
(V) ™
sc <L <d1 ('ur;(r,s)(')’ E(Xr;(r,s)))>XQdA) <H|X(')H|[01T]7W7P>XQ

x (wt (r, 1, )"
Fen X Ollo.rpm g, (' (ot )
By Lemma A.2, we get the same bound as in the first step.

Step 3. We now turn to the last term in the right-hand side of (A.6). It
reads as the empirical mean of n random variables, n — 1 of which are con-
ditionally centered and conditionally independent given the realization of the
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1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equations6

paths (Yi, W, W), namely
S G (R @), L) (K @), Wi @) — E[5,F 0, IWEE )]
j=1

Invoking Rosenthal’s inequality once agam (in a cond1t10na1 form), it suffices to

compute the L€ norm of [G,, (Y X)) (X’ (w)], SW@;( w). Doing as before
(see (A.7)), it is less than ¢ (|| X (- H|[0 Tl p>x9 (wt(rt,-, -)>>3/p. So,

xe

<% 360 (%' @), 200)) (% )], W) ~E[8,F (w, Wi w>]>

< en X O llor1mp)y, (w7 0t )),

which suffices to conclude.

Step 4. We now handle the remainders in (A.6). By expanding (A.5) and by

using similar notations for the remainders in the expansion of each (X )j:I e

we have (see for instance the proof of [1, Proposition 3.5))
RE () = 0F (K (), 72 (@) ) B, (@)
- 13 D (Ri ) ) (L) RS )
+ j |0 (T @) L (@) = 0uF (Krw), 7 (@) | Ky dr (A8)
# 2 30 [[PuF (Rl ) (R0 )
— D,F (X (). 717) (K7 (w) | Xu(w)

Expanding RfS (w) in a similar way, we have to investigate four difference terms

in order to estimate the difference R} S" (w) — R?s (w). The first difference term
corresponds to the first term in the right-hand side of (A.8)

2 (Fr @) mr @) = aF (T (), £0X)) | BE, )|
< edy (@), LX) 1K Ol gy T (7 5,0)77.

Then, we must recall that, in the first line of the right-hand side in (A.6),
the difference R[ (W) — RE _(w) is multiplied by Wi, (w), which is less than
W (s, t, w)Y?_ In other words, we must multiply both sides in the above inequality
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1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equationdT

by @' (r,t,w)"?. By Cauchy Schwarz inequality, the L2 norm of the resulting
bound is less than

(i@ (), LX), UX Ol 2190 (01 DT

The second difference term that we have to handle corresponds to the second
term in the right-hand side of (A.8). With an obvious definition for R¥(-), it
reads

i F (X @), 77 (@) (X} (@) B, (@)

— (D, (X, £06)) (X () RE ()|

Proceeding exactly as in the first step, the latter is bounded by
Cdl(ﬁ:}(w) ) ( Z|RX] ) +cSﬁ:?(w, |R§S(w)|)‘,

where 827 (w, |RTX; (w)]) is the n-empirical mean of n variables that are dom-
inated by (|RY; (w)]),

and conditionally independent given the realization of the path (Yi, W W),
Hence, the L? norm of the right-hand side, after multiplication as before by
W' (s,t,w)'P, is less than

(i@ £00) ) | +072) QX Ol w1957

As for the third term in the right-hand side of (A.8), it fits, up to the addi-

tional factor Y;S(w), the analysis in the first step. So we get as an upper bound

3 [ =

_1.., and n —1 of which are conditionally centered

for its .2 norm, after multiplication by @' (s, t,w)?, the quantity

_n,(,\,\ (AN)
(J J<d1 0. £(x00)) ng/\d)\’>
x X Oty Colrt, D2
+en 2 X Ollo gy, Colr ).

xe

Following Step 2, we get exactly a similar bound for the fourth term in the right-
hand side of (A.8). Applying once again Lemma A.2 completes the proof. O

A.3. About Law of Large Numbers

Lemma A.2. There exists a real g3 = 1 such that, for any ¢ = qq and any
probability measure i on R satisfying My(pn) = (§za |x|qu(d:v))l/q < o0, it
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1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equations8

holds
E [ (.)€ equa Myl) o,

for a constant cq q depending on q and d, where () is the empirical distribution
of n independent identically distributed random variables.

Proof. Without any loss of generality, we can assume that M,(u) = 1, see the
argument in [9, Chapter 5]. Then Theorem 2 in [18] gives us the following results.
For d > 3, we have

[P(dl (Nn(')a M) = A§n> < Cexp(—cnggAd) + Cn(nAgn)_q/z,
in which case the result easily follows. When d = 1, we have
[P<d1 (:un()v,u) = Agn) < OGXp ( — CTL§721A2) + On(nAgn)iq/a

and the result follows as well by our choice of ¢,. Finally, when d = 2,

eng2 A?
(In(2 + A=1¢, 1))2

|P<d1 (1" (), p) = Agn) < Cexp < > + Cn(nAg,)~ 2.

Assuming without any loss of generality that A > 1, we have
2+ A7) <In@2+¢,") =Inl + 2,) — In(s,),

which is less than —21In(s,) for n large enough. Given our choice of ¢,, we
have —In(s,) = In(n)/2 — In(In(1 + n)), which is less than In(n)/2. Hence,
modifying the value of the constant ¢, we get, for A > 1 and for n large enough,
independently of the value of A, we get the bound

cA%In(1 + n)?
(In(n))?

which suffices to complete the proof. O

[P(d1 (1" (), p) = A§n> < Cexp (— ) + Cn(nAg,)~ 72,

Lemma A.3. Let (X,,)n>1 be a collection of independent and identically dis-
tributed random variables with values in a Polish space S and let f be a real-
valued Borel function on S? such that E[|f(X1, X2)|] and E[|f(X1, X2)|] are
both finite. Then, with probability 1,

nh_I}c}O% DA XG) = E[f(X1, X))
ij=1

Proof. By the standard version of the law of large numbers, it suffices to prove
that, with probability 1,

. 1 “
Jl_lfc}oﬁ | le ‘f(Xian) = E[f(X1, X2)].
i,j=1,1=j
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1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equations9

Letting S, = 23",y ;—; [(Xi, Xj), for n > 1, we then define the o-field G, =
o(Sk, k = n). By independence of the variables (Xj)r>1, we have, for any (i, j) €
{1,---,n}? with i = j, E[f(Xs, X;)|Gn] = E[f(Xi, X;)|Sn]. By exchangeability,

this is also equal to E[f(X7, X2)|Sn]. We get

1 S Sn
E[f(X1, X2)[0n] = —5— >} E[f(Xi, X;)[Sn] = "
i,j=1,i=j

By Lévy’s downward theorem and by Kolmogorov zero-one law, the left-hand
side converges almost surely to E[f(X7, X2)]. O

References

[1] Bailleul, I., Catellier, R., Delarue, F., Solving mean field rough differen-
tial equations. Submitted, 2019.

[2] Bailleul, I., Catellier, R., Delarue, F., Mean field rough differential equa-
tions. arXiv:1802.05882, 2018.

[3] Bailleul, I., Flows driven by rough paths. Revista Mat. Iberoamericana,
31(3):901-934, 2015.

[4] Billingsley, P., Convergence of probability measures. Second Edition.
Wiley Series in Probability and Statistics: Probability and Statistics,
John Wiley & Sons Inc., 1999.

[5] Budhiraja, A. and Dupuis, P. and Fischer, M., Large deviation proper-
ties of weakly interacting processes via weak convergence methods. Ann.
Probab., 40(1):74-102, 2012.

[6] Budhiraja, A. and Wu, R., Moderate Deviation Principles for Weakly
Interacting Particle Systems. Probab. Th. Rel. Fields, 168(2-4):721-771,

2017.

[7] Cardaliaguet, P., Notes on  mean  field  games.
https://www.ceremade.dauphine.fr/  cardaliaguet/MFG20130420.pdf,
2013.

[8] Carmona, R. and Delarue, F., Forward-backward Stochastic Differential
Equations and Controlled McKean Vlasov Dynamics. Ann. Probab.,
44(6):3740-3803, 2016.

[9] Carmona, R. and Delarue, F. Probabilistic Theory of Mean Field Games:
vol. I, Mean Field FBSDEs, Control, and Games. Probability Theory
and Stochastic Modelling, Springer Verlag, 2018.

[10] Carmona, R. and Delarue, F. Probabilistic Theory of Mean Field Games:
vol. II, Mean Field Games with Common Noise and Master Equations.
Probability Theory and Stochastic Modelling, Springer Verlag, 2018.

[11] Cass, T., Litterer, C. and Lyons, T., Integrability and tail estimates for
Gaussian rough differential equations. Ann. Probab., 41(4):3026-3050,
2013.

[12] Cass, T. and Lyons, T., Evolving communities with individual prefer-
ences. Proc. Lond. Math. Soc. (3), 110(1):83-107, 2015.

imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019


http://arxiv.org/abs/1802.05882

1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equation§0

[13] Coghi, M., Deuschel, J.-D., Friz, P. and Maurelli, M., Pathwise McKean-
Vlasov theory. arXiv:1812.11773, 2018.

[14] Coghi, M. and Flandoli, F., Propagation of chaos for interacting particles
subject to environmental noise. Ann. Appl. Probab., 26(3):1407-1442,
2016.

[15] Dawson, D. and Gértner, J., Large deviations from the McKean-Vtasov
limit for weakly interacting diffusions. Stochastics, 20:247-308, 1987.

[16] Dawson, D. and Vaillancourt, J., Stochastic McKean-Vlasov equations.
Nonlinear Diff. Eq. Appl., 2,199-229, 1995.

[17] Deuschel, J.-D., Friz, P., Maurelliy M. and Slowik, M., The en-
hanced Sanov theorem and propagation of chaos. Stoch. Proc. Appl.,
128(7):2228-2269, 2018.

[18] Fournier, N. and Guillin, A., On the rate of convergence in the Wasser-
stein distance of the empirical measure. Probab. Theory Related Fields,
162:707-738, 2015.

[19] Friz, P. and Hairer, M., A course on rough paths, with an introduction
to regularity structures. Universitext, Springer, 2014.

[20] Friz, P. and Victoir, N., Multidimensional stochastic processes as rough
paths. Cambridge studies in advanced Mathematics, 120, 2010.

[21] Friz, P. and Victoir, N., Differential equations driven by Gaussian sig-
nals. Ann. Inst. H. Poincaré, Probab. Statist, 46(2):369-413, 2010.

[22] Gértner, J., On the McKean-Vlasov limit for interacting diffusions.
Math. Nachr., 137:197-248, 1988.

[23] Gubinelli, M., Controlling rough paths. J. Funct. Anal., 216(1):86-140,
2004.

[24] Jourdain, B., and Méléard, S., Propagation of chaos and fluctuations for
a moderate model with smooth initial data, 34 (1998), 727-766.

[25] Kac, M., Foundations of kinetic theory. Third Berkeley Symp. on Math.
Stat. and Probab., 3:171-197, 1956.

[26] Kolokoltsov, V.N., and Troeva, M., On the mean field games with com-
mon noise and the McKean-Vlasov SPDEs. arXiv:1506.04594, 2015.

[27] Lions, P.-L., Théorie des jeux & champs moyen
et  applications, Lectures at  the College de  France.
http://www.college-de-france.fr/default /EN/all/equ_der /cours_et_seminaires.htm”,
2007-2008

[28] Lyons, T., Differential equations driven by rough paths. Rev. Mat.
Iberoamericana, 14(2):215-310, 1998.

[29] McKean, H.P., A class of markov processes associated with nonlinear
parabolic equations. Prov. Nat. Acad. Sci., 56:1907-1911, 1966.

[30] Méléard, S., Asymptotic behaviour of some interacting particle systems;
McKean-Vlasov and Boltzmann models, Probabilistic models for non-
linear partial differential equations (Montecatini Terme, 1995), Lecture
Notes in Math., vol. 1627, Springer, 1996, pp. 42-95.

[31] Rosenthal, H.P., On the span in LP of sequences of independent ran-
dom wvariables. II. Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 2: Probability Theory,

imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019


http://arxiv.org/abs/1812.11773
http://arxiv.org/abs/1506.04594
http://www.college-de-france.fr/default/EN/all/equ_der/cours_et_seminaires.htm

1. Bailleul, R. Catellier, F. Delarue/Propagation of chaos for mean field rough equation$1

University of California Press, 1972, pp. 149-167.

[32] Sznitman, A.-S., Topics in propagation of chaos. Lect. Notes Math.,
1464, 1991.

[33] Tanaka, H., Probabilistic treatment of the Boltzman equation of
Maxwellian molecules. Probab. Th. Rel. Fields, 46:67-105, 1978.

[34] Tanaka, H., Limit theorems for certain diffusion processes with interac-
tion. Stochastic analysis (Katata/Kyoto, 1982):469-488, North-Holland
Math. Library, 32, North-Holland, Amsterdam, 1984.

[35] Wu, C. and Zhang, J., An elementary proof for the structure of deriva-
tives in probability measures. arXiv:1705.08046, 2017.

imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019


http://arxiv.org/abs/1705.08046

	1 Introduction
	2 From Probabilistic Rough Structures to Rough Integrals
	2.1 Overview on Probabilistic Rough Structure
	2.2 Regularity of the Rough Set-Up
	2.3 Controlled Trajectories
	2.4 Rough Integral
	2.5 Stability of Controlled Paths under Nonlinear Maps
	2.6 Local Accumulation

	3 Analysis of the Mean Field Rough Differential Equation
	3.1 Solving the Equation
	3.2 Strong Rough Set-Ups and Continuity of the Itô-Lyons solution Map

	4 Particle System and Propagation of Chaos
	4.1 Empirical Rough Set-Up
	4.2 Propagation of Chaos

	5 Rate of Convergence
	A Integrability and Auxiliary Estimates
	A.1 Gaussian Case
	A.2 An Auxiliary Estimate
	A.3 About Law of Large Numbers

	References

