Ismaël Bailleul 
email: ismael.bailleul@univ-rennes1.fr
  
Rémi Catellier 
email: remi.catellier@unice.fr
  
François Delarue 
email: francois.delarue@unice.fr
  
† F Delarue 
  
  
  
  
  
  
  
  
Propagation of chaos for mean field rough differential equations

Keywords: MSC 2010 subject classifications: Primary 60H10, 60G99 random rough differential equations, particle system, mean field interaction, propagation of chaos, convergence rate

We address propagation of chaos for large systems of rough differential equations associated with random rough differential equations of mean field type

 for solving mean field rough differential equations and in particular upon a corresponding version of the Itô-Lyons continuity theorem. The rate of convergence is obtained by a coupling argument developed first by Sznitman for particle systems with Brownian inputs.

Introduction

The study of mean field stochastic dynamics and interacting diffusions / Markov processes finds its roots in Kac's simplified approach to kinetic theory [START_REF] Kac | Foundations of kinetic theory[END_REF] and McKean's work [START_REF] Mckean | A class of markov processes associated with nonlinear parabolic equations[END_REF] on nonlinear parabolic equations. It provides the description of evolutions pµ t q tě0 in the space of probability measures under the form of a pathspace random dynamics dX t pωq "V `Xt pωq, µ t ˘dt `F`X t pωq, µ t ˘dW t pωq, µ t :"LpX t q,

(1.1)

where LpAq stands for the law of a random variable A over a probability space pΩ, F , Pq containing ω and relates it to the empirical behaviour of large systems of interacting dynamics. The main emphasis of subsequent works has been on proving propagation of chaos and other limit theorems, and giving stochastic representations of solutions to nonlinear parabolic equations under more and more general settings; see for instance [START_REF] Sznitman | Topics in propagation of chaos[END_REF][START_REF] Tanaka | Probabilistic treatment of the Boltzman equation of Maxwellian molecules[END_REF][START_REF] Gärtner | On the McKean-Vlasov limit for interacting diffusions[END_REF][START_REF] Dawson | Large deviations from the McKean-Vtasov limit for weakly interacting diffusions[END_REF][START_REF] Dawson | Stochastic McKean-Vlasov equations[END_REF][START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, Probabilistic models for nonlinear partial differential equations[END_REF][START_REF] Jourdain | Propagation of chaos and fluctuations for a moderate model with smooth initial data[END_REF][START_REF] Budhiraja | Large deviation properties of weakly interacting processes via weak convergence methods[END_REF][START_REF] Budhiraja | Moderate Deviation Principles for Weakly Interacting Particle Systems[END_REF]. Classical stochastic calculus makes sense of equation (1.1) only when the process W is a semi-martingale under P, for some filtration, and the integrand is predictable. However, this setting happens to be too restrictive in a number of situations, especially when the diffusivity is random. This prompted several authors to address equation (1.1) by means of rough paths theory. Indeed, one may understand rough paths theory as a natural framework for providing probabilistic models of interacting populations, beyond the realm of Itô calculus. Cass and Lyons [START_REF] Cass | Evolving communities with individual preferences[END_REF] did the first study of mean field random rough differential equations and proved the well-posed character of equation (1.1), and propagation of chaos for an associated system of interacting particles, under the crucial assumption that there is no mean field interaction in the diffusivity, i.e. Fpx, µq " Fpxq, and that the drift depends linearly on the mean field interaction. Bailleul extended partly these results in [START_REF] Bailleul | Flows driven by rough paths[END_REF] by proving well-posedness of the mean field rough differential equation (1.1) in the case where the drift depends nonlinearly on the interaction term and the diffusivity is still independent of the interaction, and by proving an existence result when the diffusivity depends on the interaction. Another breakthrough came with our earlier arXiv deposit [START_REF] Bailleul | Mean field rough differential equations[END_REF], in which we explained how to handle the case when F truly depends on the interaction term by making a systematic use of Lions' approach to differential calculus on Wasserstein space. To make the content more accessible, we eventually decided to split [START_REF] Bailleul | Mean field rough differential equations[END_REF] into two parts: While the current work is mainly inspired from the second half of [START_REF] Bailleul | Mean field rough differential equations[END_REF], our companion article [START_REF] Bailleul | Solving mean field rough differential equations[END_REF] corresponds to the first half of [START_REF] Bailleul | Mean field rough differential equations[END_REF]; Therein, we address the well-posedness of the mean field rough equation (1.1) for a genuinely nonlinear F. In fact, as explained in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF], the general case may be easily reduced to the study of the simpler equation dX t pωq " F `Xt pωq, LpX t q ˘dW t pωq,

which is precisely the version we address in this paper. To make it clear, the purpose of the present article is to prove that, under suitable assumptions, the solution of (1.2) coincides with the limit (in a convenient sense), as n tends to 8, of the n-particle system X i t pωq " X i 0 pωq `ż t 0 F ˆXi s pωq,

1 n n ÿ j"1 δ X j s pωq ˙dW i s pωq, t ě 0, (1.3) 
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for 1 ď i ď n, where `Xi 0 p¨q, W i p¨q ˘1ďiďn is a collection of independent and identically distributed variables with the same distribution as pX 0 p¨q, W p¨qq, the first component being regarded as a random variable with values in R d and the second one as a random variable with values in the space of continuous functions. Of course, equation (1.3) must be understood as a rough differential equation driven by the signal pW1 pωq, ¨¨¨, W n pωqq with pX 1 pωq, ¨¨¨, X n pωqq as output. As it is well-known, this requires to lift pW 1 pωq, ¨¨¨, W n pωqq into an enhanced rough path W pnq pωq and henceforth to define the various iterated integrals. Asking the paths W pωq, ω P Ω, to have a finite p-variation for 2 ď p ă 3, this prompts us to assume that, instead of `pX 1 0 p¨q, W 1 p¨qq, ¨¨¨, pX n 0 , W n p¨qq ˘,

we have in fact n independent copies pX i 0 p¨q, W i p¨q, W i p¨qq 1ďiďn of the triple pX 0 p¨q, W p¨q, Wp¨qq, where Wpωq is the iterated integral of W pωq and W i pωq is the iterated integral of W i pωq. Of course, it is also needed to define the iterated integrals of W j pωq with respect to W i pωq, for j " i. Not only we assume below that such iterated integrals do indeed exist, but we make the additional assumption that there is a measurable map I giving W i,j pωq from W i pωq and W j pωq, that is W i,j pωq " I `W i pωq, W j pωq ˘, i " j.

(1.4)

In words, (1.4) says that there exists a measurable way to construct the iterated integral of two independent copies of the signal in the limiting equation (1.2). Hence, (1.4) should be really regarded as an intrinsic property of (1.2) and not as a specific feature of the particle system (1.3).

More generally, it is in fact a key point in the subsequent analysis to draw a parallel between the underlying rough path used to give a meaning to (1.3) and the notion of extended 1 rough set-up used in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF] to address (1.2). We provide a reminder of the latter notion in Section 2. Basically, it says that, in order to solve (1.2), we must not only lift, for a given ω P Ω, the trajectory W pωq into an enhanced rough path pW pωq, Wpωqq, but we must in fact lift the whole trajectory pW pωq, W p¨qq, the second component being seen as a path with values in some L q pΩ, F , P; R m q space, where m is the dimension of the signal. Then, we call extended rough path set-up the enhancement of pW pωq, W p¨qq.

The striking fact of our analysis is then based upon an observation noticed first by Tanaka in his seminal work [START_REF] Tanaka | Limit theorems for certain diffusion processes with interaction[END_REF] on limit theorems for mean field type diffusions, and used crucially by Cass and Lyons in their seminal work [START_REF] Cass | Evolving communities with individual preferences[END_REF]. We refer to it as Tanaka's trick. It says that, for a given ω P Ω, the particle system (1.3) itself may be interpreted as a mean field equation, but with respect to the empirical measure of the driving noise. Transposed to the rough paths theory, it says that, for any fixed ω P Ω, the path W pnq pωq " ´`W i pωq ˘1ďiďn , `Wi,j pωq ˘1ďi,jďn ¯": ´W pnq pωq, W pnq pωq ¯, which underpins the rough structure used to solve (1.3), may be seen as an extended rough set-up on its own -below, we just say a rough set-up) but defined on the finite probability space ˆ 1, ¨¨¨, n ( , P ` 1, ¨¨¨, n (˘, 1

n n ÿ i"1 δ i ˙,
where Ppt1, ¨¨¨, nuq denotes the collection of subsets of t1, ¨¨¨, nu, instead of the former probability space pΩ, F , Pq. We call this set-up the empirical rough set-up, and we make its construction entirely clear in the sequel of the paper. For sure, given the iterated integrals of the signal pW 1 pωq, ¨¨¨, W n pωqq, the rough integral (1.3) should be interpreted in the usual sense, as given by standard Lyons' rough paths theory. In short, this requires to expand locally the integrand in (1.3), which in turns requires to have a convenient notion of derivative with respect to the measure argument. In this regard, a crucial fact in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF] is to use Lions' approach [START_REF] Lions | Théorie des jeux à champs moyen et applications[END_REF][START_REF] Cardaliaguet | Notes on mean field games[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF] to differential calculus on the space P 2 pR d q of probability measures on R d with a finite square moment, the so-called d-dimensional Wasserstein space, d denoting here and throughout the dimension of the output in (1.2). The core of our analysis in Section 4 is that, whenever Wasserstein derivatives on P 2 pR d q are projected, through empirical measures, into classical derivatives on pR d q n , as it is needed to differentiate the integrand in (1.3), the resulting solution for (1.3), as given by standard rough paths theory, coincides with the solution obtained by interpreting (1.3) as a mean field rough equation driven by the aforementioned empirical rough set-up -see Section 3 for reminders on solvability results for mean field rough equations. In this way, the convergence of solutions of (1.3) to solutions of (1.2) as n tends to 8 is reduced to a form of continuity of the solutions to mean field rough differential equations with respect to the underlying rough set-up. We called the latter continuity of the Itô-Lyons solution map, see Theorem 5.4 of our companion work [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]. Our first main result, Theorem 4.3, shows that, for a sufficiently large class of input signals, propagation of chaos is in fact a consequence of the continuity of the Itô-Lyons solution map for mean field rough differential equations. At this stage, it is worth mentioning that it is precisely in the requirements of the continuity of the Itô-Lyons map that the structure condition (1.4) about the cross-iterated integrals comes in. In [START_REF] Bailleul | Solving mean field rough differential equations[END_REF], a rough set-up that satisfies (1.4) is said to be strong.

While the proofs of both our first main result and the underlying continuity property of the Itô-Lyons solution map are mostly based on compactness arguments, our second main result is to elucidate, under slightly stronger assumptions the convergence rate in the propagation of chaos; see Theorem 5.1 in Section 5. The strategy is directly inspired from original Sznitman's coupling argument for mean field systems driven by Brownian signals, see [START_REF] Sznitman | Topics in propagation of chaos[END_REF]. Although the proof is much more involved than in the Brownian setting, we recover the same rate of convergence: It coincides with the rate of convergence (in Wasserstein metric) of the empirical measure of an n-sample of (sufficiently integrable) i.i.d. variables to their common distribution. In particular, the speed decays with the dimension.

imsart-generic ver. 2014/10/16 file: MeanField2.tex date: [START_REF] Rosenthal | On the span in L p of sequences of independent random variables[END_REF] As in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF], our analysis holds for continuous rough paths whose p-variation, for some p P r2, 3q, is finite and has sub-exponential tails and for which the so-called local accumulated variation -that counts the increments of the signal of a given size over a bounded interval-has super-exponential tails, see [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]Theorem 1.1]. Among others, our results apply to continuous centred Gaussian signals defined over some time interval r0, T s that have independent components and whose covariance function has finite ρ-two dimensional variation, for some ρ P r1, 3{2q.

The present work leaves wide open the question of refining the strong law of large numbers given by the propagation of chaos result stated in Theorem 4.3. A central limit theorem for the fluctuations of the empirical measure of the particle system is expected to hold under reasonable conditions on the common law of the rough drivers. Large and moderate deviation results would also be most welcome. In a different direction, it would be interesting to investigate the propagation of chaos phenomenon for systems of interacting rough dynamics subject to a common noise. Very interesting things happen in the Itô setting in relation with mean field games [START_REF] Carmona | Forward-backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics[END_REF][START_REF] Kolokoltsov | On the mean field games with common noise and the McKean-Vlasov SPDEs[END_REF]. Also, one would get a more realistic model of natural phenomena by working with systems of particles driven by non-independent noises. Individuals with close initial conditions could have drivers strongly correlated while individuals started far apart could have (almost-)independent drivers. Limit mean field dynamics are likely to be different from the results obtained here -see [START_REF] Coghi | Propagation of chaos for interacting particles subject to environmental noise[END_REF] for a result in this direction in the Itô setting. We invite the reader to make her/his own mind about these problems.

The paper is organized as follows. We recall in Section 2 the construction of a rough set-up, as introduced in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]. We provide in Section 3 a sketchy presentation of related solvability results for equation (1.2), including a review of the main assumptions that we need on the diffusivity F. Convergence of the particle system (1.3) is established in Section 4. The convergence rate is addressed in Section 5, under additional regularity assumptions on F and integrability assumptions on the signal. Proofs of some technical results are given in Appendix A.1 and A.2.

Notations. We gather here a number of notations that will be used throughout the text.

' We set S 2 :" ps, tq P r0, 8q 2 : s ď t ( , and S T 2 :" ps, tq P r0, T s 2 : s ď t ( . ' We denote by pΩ, F , Pq an atomless Polish probability space, F standing for the completion of the Borel σ-field under P, and denote by x¨y the expectation operator, by x¨y r , for r P r1, `8s, the L r -norm on pΩ, F , Pq and by ⟪¨⟫ and ⟪¨⟫ r the expectation operator and the L r -norm on `Ω2 , F b2 , P b2 ˘. When r is finite, L r pΩ, F , P; Rq is separable as Ω is Polish.

' As for processes X ' " pX t q tPI , defined on a time interval I, we often write X for X ' . We here provide a brief reminder of the content of Section 2 in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]. We refer the reader to the paper for a complete review. Throughout the section, we work on a finite time horizon r0, T s, for a given T ą 0.

The first level of the rough path structure used to give a meaning to (1.2) is defined as an ω-indexed pair of paths `Wt pωq, W t p¨q ˘0ďtďT ,

where `Wt p¨q ˘0ďtďT is a collection of q-integrable R m -valued random variables on pΩ, F , Pq, which we regard as a deterministic L q pΩ, F , P; R m q-valued path, for some exponent q ě 8, and `Wt pωq ˘0ďtďT stands for the realizations of these random variables along the outcome ω P Ω; so the pair (2.1) takes values in R m ˆLq pΩ, F , P; R m q. The second level has the form of an ω-dependent twoindex path with values in `Rm ˆLq pΩ, F , P; R m q ˘b2 and is encoded in matrix form as ˆWs,t pωq

W K K s,t pω, ¨q W K K s,t p¨, ωq W K K s,t p¨, ¨q ˙0ďsďtďT , (2.2) 
where

• W s,t pωq is in pR m q b2 » R mˆm , • W K K s,t pω, ¨q is in R m b L q `Ω, F , P; R m ˘» L q `Ω, F , P; R mˆm ˘, • W K K s,t p¨, ωq is in L q `Ω, F , P; R m ˘b R m » L q `Ω, F , P; R mˆm ˘,
• W K K s,t p¨, ¨q is in L q `Ωb2 , F b2 , P b2 ; R mˆm ˘, the realizations of which read in the form Ω 2 Q pω, ω 1 q Þ Ñ W K K s,t pω, ω 1 q P R mˆm and the two sections of which are precisely given by W K K s,t pω, ¨q

: Ω Q ω 1 Þ Ñ W K K s,t pω, ω 1 q, and W K K s,t p¨, ωq Q ω 1 Þ Ñ W K K s,t pω 1
, ωq, for ω P Ω. A convenient form of Chen's relations is required, for any ω P Ω, W r,t pωq " W r,s pωq `Ws,t pωq `Wr,s pωq b W s,t pωq,

W K K r,t p¨, ωq " W K K r,s p¨, ωq `WK K s,t p¨, ωq `Wr,s p¨q b W s,t pωq, W K K r,t pω, ¨q " W K K r,s pω, ¨q `WK K s,t pω, ¨q `Wr,s pωq b W s,t p¨q, W K K r,t p¨, ¨q " W K K r,s p¨, ¨q `WK K s,t p¨, ¨q `Wr,s p¨q b W s,t p¨q, (2.3) 
for any 0 ď r ď s ď t ď T , with notation f r,s :" f s ´fr , for a function f from r0, 8q into a vector space. In (2.3), we denoted by Xp¨q b Y p¨q, for any two X and Y in L q pΩ, F , P; R m q, the random variable `ω, Since Ω 2 Q pω, ω 1 q Þ Ñ pW t pωqq tě0 and Ω 2 Q pω, ω 1 q Þ Ñ pW t pω 1 qq tě0 are independent under P b2 , we then understand W K K s,t as an iterated integral for two independent copies of the noise. We refer to Examples 2.3 and 2.5 in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]. In the end, we denote by W pωq the so-called rough set-up specified by the ω-dependent collection of maps given by (2.1) and (2.2).

ω 1 q Þ Ñ `Xi pωqY j pω 1 q ˘1ďi,jďm defined on Ω 2 . It is in L q `Ω2 , F b2 , P b2 ; R mˆm ˘. The notation K K in W K K is used to indicate that W K K s,t

Regularity of the Rough Set-Up

Following [START_REF] Bailleul | Solving mean field rough differential equations[END_REF], we use the notion of p-variation to handle the regularity of the various trajectories in hand. Throughout, the exponent p is taken in the interval r2, 3q. For a continuous function G from the simplex S T 2 into some R ℓ , we set, for any p 1 ě 1,

}G} p 1 r0,T s,p 1 ´v :" sup 0"t0ăt1¨¨¨ătn"T n ÿ i"1 |G ti´1,ti | p 1 ,
and define for any function g from r0, T s into R ℓ , }g} p r0,T s,p´v :" }G} p r0,T s,p´v as the p-variation semi-norm of its associated two index function G s,t :" g t ´gs .

Similarly, for a random variable Gp¨q on Ω with values in CpS T 2 ; R ℓ q, and p 1 ě 1, we define its p 1 -variation in L q as xGp¨qy p 1 q;r0,T s,p 1 ´v :" sup

0"t0ăt1¨¨¨ătn"T n ÿ i"1 @ G ti´1,ti p¨q D p 1 q , (2.4) 
and define for a random variable Gp¨q on Ω, with values in Cpr0, T s; R ℓ q, @ Gp¨q D p 1 q;r0,T s,p 1 ´v :" @ Gp¨q D p 1 q;r0,T s,p 1 ´v, as the p 1 -variation semi-norm in L q of its associated two-index function S T 2 Q ps, tq Þ Ñ G s,t p¨q " G t p¨q ´Gs p¨q. Lastly, for a random variable Gp¨, ¨q from pΩ 2 , F b2 q into CpS T 2 ; R ℓ q, we set ⟪Gp¨, ¨q⟫

p 1 {2 q;r0,T s,p 1 {2´v :" sup 0"t0ăt1¨¨¨ătn"T n ÿ i"1
⟪G ti´1,ti p¨, ¨q⟫

p 1 {2 q . ( 2.5) 
Given these definitions, we require from the rough set-up W that

• For any ω P Ω, the path W pωq is in the space Cpr0, T s; R m q, and the map W : Ω Q ω Þ Ñ W pωq P Cpr0, T s; R m q is Borel-measurable and q-integrable. • For any ω P Ω, the two-index path Wpωq is in CpS T 2 ; R mˆm q, and the map W : Ω Q ω Þ Ñ Wpωq P CpS T 2 ; R mˆm q is Borel-measurable and q-integrable. • For any pω, ω 1 q P Ω 2 , the two-index path W K K pω, ω 1 q is an element of CpS T 2 ; R mˆm q, and the map W K K : Ω 2 Q pω, ω 1 q Þ Ñ W K K pω, ω 1 q P CpS T 2 ; R mˆm q is Borel-measurable and q-integrable. Moreover, we may set, for some fixed p P r2, 3q and for all 0 ď s ď t ď T and ω P Ω, vps, t, ωq :" › › W pωq › › p rs,ts,p´v `@W p¨q D p q;rs,ts,p´v

`› › Wpωq › › p{2 rs,ts,p{2´v `@W K K pω, ¨qD p{2 
q;rs,ts,p{2´v

`@W K K p¨, ωq D p{2 q;rs,ts,p{2´v `⟪W K K p¨, ¨q⟫ p{2 q;rs,ts,p{2´v ,

and we assume that, for any positive finite time T and any ω P Ω, the quantity vp0, T, ωq is finite. Importantly, ω Þ Ñ pvps, t, ωqq ps,tqPS T 2 is a random variable with values in CpS T 2 ; R `q and is super-additive, namely, for any 0 ď r ď s ď t ď T , and ω P Ω, vpr, t, ωq ě vpr, s, ωq `vps, t, ωq.

We then assume xvp0, T, ¨qy q ă 8, which implies, by Lebesgue's dominated convergence theorem, that the function S T 2 Q ps, tq Þ Ñ xvps, t, ¨qy q is continuous. We assume that it is of bounded variation on r0, T s, i.e. xvp¨qy q;rs,ts,1´v :" sup

0ďt1㨨¨ătK ďT K ÿ i"1 xvpt i´1 , t i , ¨qy q ă 8. (2.7) 
We then call a control any family of random variables pω Þ Ñ wps, t, ωqq ps,tqPS T 2 that is jointly continuous in ps, tq and that satisfies, wps, t, ωq ě vps, t, ωq `xvp¨qy q;rs,ts,1´v ,

together with xwps, t, ¨qy q ď 2 wps, t, ωq, wpr, t, ωq ě wpr, s, ωq `wps, t, ωq, r ď s ď t.

(2.9)

A typical choice to get (2.10) and (2.9) is to choose wps, t, ωq :" vps, t, ωq `xvp¨qy q;rs,ts,1´v .

(2.10)

Controlled Trajectories

With a rough set-up at hands on a given finite time interval r0, T s, we define an associated notion of controlled path and rough integral in the spirit of Gubinelli [START_REF] Gubinelli | Controlling rough paths[END_REF]. Again, we refer to [START_REF] Bailleul | Solving mean field rough differential equations[END_REF] for details, see Definition 3.1 therein. where `δx X t pωq ˘0ďtďT belongs to C `r0, T s; R dˆm ˘and `δµ X t pω, ¨q˘0 ďtďT to C `r0, T s; L 4{3 pΩ, F , P; R dˆm q ˘, `RX s,t pωq ˘s,tPS T 2 is in the space CpS T 2 ; R d q, and ~Xpωq~‹ ,r0,T s,w,p :" |X 0 pωq| `ˇδ x X 0 pωq ˇˇ`@δ µ X 0 pω, ¨qD We then define the notion of random controlled trajectory, which consists of a collection of ω-controlled trajectories indexed by the elements of Ω. Definition 2.2. A family of ω-controlled paths pXpωqq ωPΩ such that X, δ x X, δ µ X and R X are measurable from Ω into C `r0, T s; R d ˘, C `r0, T s; R dˆm ˘, C `r0, T s; L 4{3 pΩ, F , P; R dˆm q ȃnd C `ST 2 ; R d ˘, and satisfy @ X 0 p¨q D 2 `@~Xp¨q~r 0,T s,w,p

D 8 ă 8 (2.12)
is called a random controlled path on r0, T s.

It is proven in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]Lemma 3.3] that a random controlled trajectory induces a continuous path t Þ Ñ X t p¨q from r0, T s to L2 pΩ, F , P; R d q.

Rough Integral

As for the construction, of the rough integral, we recall the following statement from [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]Theorem 3.4].

Theorem 2.3. There exists a universal constant c 0 and, for any ω P Ω, there exists a continuous linear map

`Xt pωq ˘0ďtďT Þ Ñ ˆż t s X s,u pωq b dW u pωq ˙ps,tqPS T
from the space of ω-controlled trajectories equipped with the norm ~¨~‹ ,r0,T s,p , onto the space of continuous functions from S T 2 into R d b R m with finite norm } ¨}r0,T s,w,p{2 , with w in the latter norm being evaluated along the realization ω, that satisfies for any 0 ď r ď s ď t ď T the identity 

ż t r X r

Stability of Controlled Paths under Nonlinear Maps

A key fact in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF] is to use regularity properties of functions defined on Wasserstein space through a lifting procedure to an L 2 space standing above the probability space. We refer the reader to Lions' lectures [START_REF] Lions | Théorie des jeux à champs moyen et applications[END_REF], to the lecture notes [START_REF] Cardaliaguet | Notes on mean field games[END_REF] of Cardaliaguet or to Carmona and Delarue's monograph [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]Chapter 5] for basics on the subject.

' Recall pΩ, F , Pq stands for an atomless probability space, with Ω a Polish space and F its Borel σ-algebra. Fix a finite dimensional space E " R k and denote, for r ě 1, by L r : " L r pΩ, F , P; Eq the space of E-valued random variables on Ω with finite r moment. We equip the space P r pEq :" LpZq ; Z P L r ( with the r-Wasserstein distance

d r pµ 1 , µ 2 q :" inf ! }Z 1 ´Z2 } r ; LpZ 1 q " µ 1 , LpZ 2 q " µ 2 ) . (2.14) 
When r " 2, an R k -valued function u defined on P 2 pEq is canonically extended into L 2 by setting, for any Z P L 2 , U pZq :" u `LpZq ˘.

' The function u is then said to be differentiable at µ P P 2 pEq if its canonical lift is Fréchet differentiable at some point Z such that LpZq " µ; we denote by ∇ Z U P pL 2 q k the gradient of U at Z. The function U is then differentiable at any other point Z 1 P L 2 such that LpZ 1 q " µ, and the laws of ∇ Z U and ∇ Z 1 U are equal, for any such Z 1 .

' The function u is said to be of class C 1 if its canonical lift is of class C 1 . If u is of class C 1 on P 2 pEq, then ∇ Z U is σpZq-measurable and given by an LpZq-dependent function Du from E to E k such that ∇ Z U " pDuqpZq.

(2.15)

In order to emphasize the fact that Du depends upon LpZq, we shall write D µ u `LpZq ˘p¨q instead of Dup¨q. Importantly, this representation is independent of the choice of the probability space pΩ, F , Pq and can be easily transported from one probability space to another. Throughout the paper, we regard the function F in (1.2) as a map from R d ˆL2 pΩ, F , P; R d q into the space LpR m , R d q -R d b R m of linear mappings from R m to R d . Intuitively, we identify the coefficient driving equation (1.2) with its lift p F. Following [1, Subsection 3.3], we require F to satisfy the following regularity assumptions.

Regularity assumptions 1 -Assume that F is continuously differentiable in the joint variable px, Zq, that B x F is also continuously differentiable in px, Zq and that there is some positive finite constant Λ such that |Fpx, µq|, |B x Fpx, µq|, |B 2

x Fpx, µq|, }∇ Z Fpx, Zq} 2 and }B x ∇ Z Fpx, Zq} 2 are bounded by Λ, for any x P R d , µ P P 2 pR d q and Z P L 2 pΩ, F , P; R d q. Assume moreover that, for any x P R d , the mapping Z Þ Ñ ∇ Z Fpx, Zq is a Λ-Lipschitz function of Z P L 2 pΩ, F , P; R d q.

imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019

We recall below that, for an ω-controlled path Xpωq and for an R d -valued random controlled path Y p¨q, FpXpωq, Y p¨qq :" `FpX t pωq, Y t p¨qq ˘0ďtďT may be also expanded in the form of an ω-controlled trajectory. As explained in [1, (3.8)], it suffices for our purpose to provide the form of the expansion when δ µ Xpωq " 0 and δ µ Y p¨q " 0. Proposition 2.4. Let Xpωq be an ω-controlled path and Y p¨q be an R d -valued random controlled path. Assume that δ µ Xpωq " 0 and δ µ Y p¨q " 0 and that sup 0ďtďT `|δ x X t pωq|_ xδ x Y t p¨qy 8 ˘ă 8. Then, F `Xpωq, Y p¨q ˘is an ω-controlled path with

δ x ´F`X pωq, Y p¨q ˘¯t " B x F `Xt pωq, Y t p¨q ˘δx X t pωq,
which is understood as

`řd ℓ"1 B x ℓ F i,j `Xt pωq, Y t p¨q ˘`δ x X ℓ t pωq
˘k˘i ,j,k , with i, k P t1, ¨¨¨, du and j P t1, ¨¨¨, mu, and (with a similar interpretation for the product)

δ µ ´F`X pωq, Y p¨q ˘¯t " D µ F `Xt pωq, LpY t q ˘`X t p¨q ˘δx Y t p¨q.

Local Accumulation

In order to proceed with the analysis of (1.3), we make use of the notion of local accumulation. Following [START_REF] Bailleul | Solving mean field rough differential equations[END_REF], we define it as follows. Given a a nondecreasing2 continuous positive valued function ̟ on S 2 , a non-negative parameter s and a positive threshold α, we define inductively a sequence of times setting τ 0 ps, αq :" s, and τ ̟ n`1 ps, αq :" inf

! u ě τ ̟ n ps, αq : ̟ `τ ̟ n ps, αq, u ˘ě α ) , (2.16) 
with the understanding that inf H :" `8. For t ě s, set N ̟ `rs, ts, α ˘:" sup

! n P N : τ ̟ n ps, αq ď t ) .
(2.17)

We call N ̟ the local accumulation of ̟ (of size α if we specify the value of the threshold): N ̟ prs, ts, αq is the largest number of disjoint open sub-intervals pa, bq of rs, ts on which ̟pa, bq is greater than or equal to α. When ̟ps, tq " wps, t, ωq 1{p with w a control satisfying (2.8) and (2.9) and when the framework makes it clear, we just write N prs, ts, ω, αq for N ̟ prs, ts, αq. Similarly, we also write τ n ps, ω, αq for τ ̟ n ps, αq when ̟ps, tq " wps, t, ωq. We will also use the convenient notation τ ̟ n ps, t, αq :" τ ̟ n ps, αq ^t.

Analysis of the Mean Field Rough Differential Equation

Solving the Equation

The following notion of solution to (1.2) is taken from [1, Definition 4.1].

Definition 3.1. Let W together with its enhancement W satisfy the assumption of Section 2.2 on a finite interval r0, T s. A solution to (1.2) on the time interval r0, T s, with initial condition X 0 p¨q P L 2 pΩ, F , P; R d q, is a random controlled path Xp¨q, such that for P-a.e. ω the paths Xpωq and X 0 pωq`ş 0 F `Xs pωq, Y s p¨q ˘dW s pωq coincide.

We formulate here the regularity assumptions on Fpx, µq used in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF], in addition to Regularity assumptions 1, to show the well-posed character of Equation (1.2). Below, we denote by `r Ω, r F , r P ˘a copy of pΩ, F , Pq, and given a random variable Z on pΩ, F , Pq, write r Z for its copy on `r Ω, r F , r P ˘.

Regularity assumptions 2.

' The function B x F is differentiable in px, µq.

' For each px, µq P R d ˆP2 pR d q, there exists a version of

D µ Fpx, µqp¨q P L 2 µ pR d ; R d b R m q such that the map px, µ, zq Þ Ñ D µ Fpx, µqpzq from R d ˆP2 pR d qR d to R d b R m b R d is of class C 1 ,
the derivative in the direction µ being understood as before.

' The function `x, Z ˘Þ Ñ B 2 x F `x, LpZq ˘from R d ˆL2 pΩ, F , P; R d q to R d b R m b R d b R d is bounded by Λ and Λ-Lipschitz continuous. ' The three derivative functions px, Zq Þ Ñ B x D µ F `x, LpZq ˘pZp¨qq, px, Zq Þ Ñ D µ B x F `x, LpZq ˘pZp¨qq, px, Zq Þ Ñ B z D µ F `x, LpZq ˘pZp¨qq are bounded by Λ and Λ-Lipschitz continuous from R d ˆL2 `Ω, F , P; R d ˘to L 2 `Ω, F , P; R d b R m b R d b R d ˘,.
' For each µ P P 2 pR d q, we denote by D 2 µ Fpx, µqpz, ¨q, the derivative of D µ Fpx, µqpzq with respect to µ -which is indeed given by a function. For

z 1 P R d , D 2 µ Fpx, µqpz, z 1 q is an element of R d b R m b R d b R d . We assume that px, Zq Þ Ñ D 2 µ F `x, LpZq ˘`Zp¨q, r Zp¨q ˘, from R d ˆL2 pΩ, F , P; R d q to L 2 ´Ω ˆr Ω, F b r F , P b r P; R d b R m b R d b R d ¯, is bounded by Λ and Λ-Lipschitz continuous.
The two functions Fpx, µq " ş f px, yqµpdyq and Fpx, µq " g `x, ş yµpdyq ˘, for functions f, g P C 3 b (meaning that f and g are bounded and have bounded derivatives of order 1, 2 and 3), satisfy the Regularity assumptions 1 and 2. The following property is taken from [1, Proposition 4.3 and (4.21)]. Proposition 3.2. Let F satisfy Regularity assumptions 1 and 2 and w be a control satisfying (2.8) and (2.9). Consider two ω-controlled paths Xpωq and X 1 pωq with possibly different initial conditions pX 0 pωq, δ x X 0 pωqq and pX 1 0 pωq, δ x X 1 0 pωqq, defined on a time interval r0, T s, together with two random controlled paths Y p¨q and Y 1 p¨q, with possibly different initial conditions pY 0 pωq, δ x Y 0 pωqq and pY 1 0 pωq, δ x Y 1 0 pωqq, all of them satisfying δ µ Xpωq " δ µ X 1 pωq " 0 and δ µ Y p¨q " 

δ µ Y 1 p¨q " 0 together with ˇˇδ x Xpωq ˇˇ_ ˇˇδ x X 1 pωq ˇˇ_ @ δ x Y p¨q D 8 _ @ δ x Y 1 p¨q D 8 ď Λ, (3.1) 
and the size estimates

@ ~Y p¨q~r 0,T s,w,p D 2 8 ď L 0 , @ ~Y 1 p¨q~r 0,T s,w,p D 2 8 ď L 0 , (3.2) 
Xpωq

2 rt 0 i ,t 0 i`1 s,w,p ď L 0 , X 1 pωq 2 rt 0 i ,t 0 i`1 s,w,p ď L 0 , (3.3) 
for i P t0, ¨¨¨, N 0 u, for some L 0 ě 1, and N 0 " N `r0, T s, ω, 1{p4L 0 q ˘given by (2.17), and for the sequence `t0 i " τ i p0, T, ω, 1{p4L 0 qq ˘i"0,¨¨¨,N 0 `1 given by (2.16).

Then, we can find a constant γ depending on L 0 and Λ such that, for any partition pt i q i"0,¨¨¨,N included in pt 0 i q i"0,¨¨¨,N 0 and satisfying wpt i , t i`1 , ωq 1{p ď 1{p4Lq for some L ě L 0 , we have

ż ẗ i ´F`X r pωq, Y r p¨q ˘´F `X1 r pωq, Y 1 r p¨q ˘¯dW r pωq rti,ti`1s,w,p ď γ ´ˇ∆ X 0 pωq ˇˇ`ˇˇδ x ∆X 0 pωq ˇˇ¯`@ ∆Y 0 p¨q D 4 `@δ x ∆Y 0 p¨q D 4 `γ wp0, t i , ωq 1{p
´ ∆Xpωq r0,tis,w,p `@~∆Y p¨q~r 0,T s,w,p D

´ ∆Xpωq rti,ti`1s,w,p `@~∆Y p¨q~r 0,T s,w,p D

where ∆X t pωq :" X t pωq ´X1 t pωq, ∆Y t p¨q :" Y t p¨q ´Y 1 t p¨q, t P r0, T s. In [START_REF] Bailleul | Solving mean field rough differential equations[END_REF], Proposition 3.2 is used to prove the following existence and uniqueness result, see Theorems 1.1 and 4.4 therein, to which we add the final estimate in the statement. Theorem 3.3. Let F satisfy Regularity assumptions 1 and 2 and w be a control satisfying (2.8) and (2.9). Assume there exists a positive time horizon T such that the random variables wp0, T, ¨q and `N `r0, T s, ¨, α ˘˘αą0 have sub and super exponential tails respectively, in the sense that

P `wp0, T, ¨q ě t ˘ď c 1 exp `´t ε1 ˘, P `N pr0, T s, ¨, αq ě t ˘ď c 2 pαq exp `´t 1`ε2pαq ˘, (3.5) 
for some positive constants c 1 and ε 1 , and possibly α-dependent positive constants c 2 pαq and ε 2 pαq. Then, for any d-dimensional square-integrable random variable X 0 , the mean field rough differential equation (1.2) has a unique solution defined on the whole interval r0, T s. Moreover, there exist four positive real numbers γ, L 0 , L and η (with γ, η ą 1), only depending on Λ and T , such that, for any subinterval rS 1 , S 2 s Ă r0, T s for which 

A N `rS 1 , S 2 s, ¨, 1{p4L 0 q ˘E8 ď 1, imsart-

Strong Rough Set-Ups and Continuity of the Itô-Lyons solution Map

Uniqueness in law of the solutions to (1.2) is proven in [1, Theorem 5.3] under the additional assumption that the set-up satisfies the following definition.

Definition 3.4. A rough set-up is called strong if there exists a measurable mapping

I from C `r0, T s; R m ˘2 into C `ST 2 ; R m b R m ˘such that P b2
´ pω, ω 1 q P Ω 2 : W K K pω, ω 1 q " I `W pωq, W pω 1 q ˘(¯" 1.

(3.6)

For our prospect, the following continuity theorem is of crucial interest; see [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]Theorem 5.4].

Theorem 3.5. Let F satisfy the same assumptions as in Theorem 3.3. Given a time interval r0, T s and a sequence of probability spaces pΩ n , F n , P n q, indexed by n P N, let, for any n, X n 0 p¨q :" pX n 0 pω n qq ωnPΩn be an R d -valued square-integrable initial condition and

W n p¨q :" ´W n pω n q, W n pω n q, W n,K K pω n , ω 1 n q ¯ωn,ω 1 n PΩn
be an m-dimensional rough set-up with corresponding control w n , as given by (2.10), and local accumulated variation N n , for fixed values of p P r2, 3q and q ą 8. Assume that ' the collection `Pn ˝p|X n 0 p¨q| 2 q ´1˘n ě0 is uniformly integrable; ' for positive constants ε 1 , c 1 and pε 2 pαq, c 2 pαqq αą0 , the tail assumption (3.5) hold for w n and N n , for all n ě 0; ' associating v n with each W n p¨q as in (2.6), the functions `ST 2 Q ps, tq Þ Ñ xv n ps, t, ¨qy 2q ˘ně0 are uniformly Lipschitz continuous.

Assume also that imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 ' there exist, on another probability space pΩ, F , Pq, a square integrable initial condition X 0 p¨q with values in R d and a strong rough set-up

W p¨q :" ´W pωq, Wpωq, W K K pω, ω 1 q ¯ω,ω 1 PΩ
with values in R m , such that the law under the probability measure P b2 n of the random variable

Ω 2 n Q pω n , ω 1 n q Þ Ñ `Xn 0 pω n q, W n pω n q, W n pω n q, W K K n pω n , ω 1 n q ˘,
seen as a random variable with values in the space

R d ˆCpr0, T s; R m q ˆ CpS T 2 ; R m b R m q
( 2 , converges in the weak sense to the law of

Ω 2 Q pω, ω 1 q Þ Ñ `X0 pωq, W pωq, Wpω n q, W K K pω, ω 1 q ˘.
Then, W p¨q satisfies the requirements of Theorem 3.3 for some p 1 P pp, 3q and q 1 P r8, qq, with control w therein given by (2.10). Moreover, if X n p¨q, resp. Xp¨q, is the solution of the mean field rough differential equation driven by W n p¨q, resp. W p¨q, then X n p¨q converges in law to Xp¨q on Cpr0, T s; R d q.

Particle System and Propagation of Chaos

We now have all the ingredients to write down the limiting mean field rough differential equation (1.2) as the limit of a system of particles driven by rough signals (1.3).

Empirical Rough Set-Up

We recall the framework used to address (1.3). The initial conditions pX i 0 p¨qq 1ďiďn are R d -valued variables with the same distribution as X 0 (in the statement of Theorem 3.3) and the enhanced signals `W i p¨q, W i p¨q ˘1ďiďn are R m ' R m b R mvalued with the same distribution as pW p¨q, Wp¨qq on the space of continuous functions. Moreover, the variables pX i 0 p¨q, W i p¨q, W i p¨q ˘1ďiďn are independent and identically distributed. All of them are constructed on a single probability space pΩ, F , Pq. Assuming the rough set-up in Theorem 3.3 to be strong, see Definition 3.4, we let

W i,j pωq " I `W i pωq, W j pωq ˘, i " j, 1 ď i, j ď n.
Obviously, equation (1.3) must be understood as a rough differential equation driven by an pn ˆmq-dimensional signal `W 1 pωq, ¨¨¨, W n pωq ˘, and with `X1 pωq, ¨¨¨, X n pωq ˘as pn ˆdq-dimensional output. Our first task is to prove that (1.3) may be also understood as a mean field rough differential equation on a suitable rough set-up and that the two interpretations coincide. If we require imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 P b2 `tpω, ω 1 q : }W K K pω, ω 1 q} r0,T s,p{2´v ă 8u ˘" 1 in Definition 3.4, then it is pretty clear that, for almost every ω P Ω, W pnq pωq " ´`W i pωq ˘1ďiďn , `Wi,j pωq ˘1ďi,jďn ¯": ´W pnq pωq, W pnq pωq ¯, is a rough path of finite p-variation, with the convention that W i,i pωq " W i pωq, for i P t1, ¨¨¨, nu. As explained in [1, Proposition 2.4], we may change the definition of `pW i pωqq 1ďiďn , pW i,j pωqq 1ďi,jďn ˘on a P-null set so that W pnq pωq is in fact a rough path for any ω P Ω.

As mentioned in Introduction, the striking fact of the analysis was first introduced by Tanaka in [START_REF] Tanaka | Limit theorems for certain diffusion processes with interaction[END_REF] and used by Cass and Lyons in their seminal work [START_REF] Cass | Evolving communities with individual preferences[END_REF]. The quantity W pnq pωq may be seen as a rough set-up defined on a finite probability space for any fixed ω P Ω; we call it the empirical rough set-up. To make it clear, observe that, throughout Section 2, the rough structure is supported by the probability space pΩ, F , Pq itself. Here, ω is fixed, and we see the probability space as

ˆ 1, ¨¨¨, n ( , P ` 1, ¨¨¨, n (˘, 1 n n ÿ i"1 δ i ˙, (4.1) 
where Ppt1, ¨¨¨, nuq denotes the collection of subsets of t1, ¨¨¨, nu. The reader may object that such a probability space is not atomless whilst we explicitly assumed pΩ, F , Pq to be atomless in the introduction (see also [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]Section 2]); actually, the reader must realize that, in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF], the atomless property is just used to guarantee that, for any probability measure µ on a given Polish space S, the probability space pΩ, F , Pq carries an S-valued random variable with µ as distribution. So, it is not a hindrance that t1, ¨¨¨, nu is finite. Hence, in order to draw a parallel with (2.2), the role played by ω P Ω is here played by i P t1, ¨¨¨, nu and the matrix (2.2) must read ˆWi,i

s,t pωq W i,' s,t pωq W ',i s,t pωq W ',' s,t pωq ˙0ďsďtďT , (4.2) 
where W i,' s,t pωq is seen as t1, ¨¨¨, nu

Q j Þ Ñ W i,j s,t pωq, W ',i s,t pωq as t1, ¨¨¨, nu Q j Þ Ñ W j,i s,t pωq and W ',' s,t pωq as t1, ¨¨¨, nu Q pi, jq Þ Ñ W i,j s,t pωq. In the same spirit, the variation function v in (2.6) is v i,n ps, t, ωq :" › › W i pωq › › p rs,ts,p´v `pnq v W ' pωq w p q;rs,ts,p´v `› › W i pωq › › p{2 rs,ts,p{2´v
`pnq v W i,' pωq w p{2 q;rs,ts,p{2´v

`pnq v W ',i pωq w p{2 q;rs,ts,p{2´v

`pnq vv W ',' pωq ww p{2 q;rs,ts,p{2´v ,

where we used the notations the corresponding p-variation being defined as in (2.4) and (2.5). Obviously, v i,n p0, T, ωq is almost surely finite. Hence, in order to check that W pnq pωq defines a rough set-up, it remains to check that it satisfies (2.7). To do so, we strengthen the assumptions on the signal and assume that, for the same parameter q as in Section 2, it holds

pnq pX ' q q " ˆ1 n n ÿ j"1 |X j | q ˙1{q , pnq ppX ',' qq q " ˆ1 n 2 n ÿ j,k"1 |X j,k | q ˙1{q , imsart-
E " › › W p¨q › › pq r0,T s,p1{pq´H `› › Wp¨q › › pq{2 r0,T s,p2{pq´H ı `Eb2 " › › W K K p¨, ¨q› › pq{2 r0,T s,p2{pq´H ı ă 8, (4.4) 
where

› › W pωq › › rs,ts,p1{pq´H " sup H "ps 1 ,t 1 qĂrs,ts |W t 1 pωq ´Ws 1 pωq| |t 1 ´s1 | 1{p › › Wpωq › › rs,ts,p2{pq´H " sup H "ps 1 ,t 1 qĂrs,ts |W s 1 ,t 1 pωq| |t 1 ´s1 | 2{p ,
and similarly for › › W K K pω, ω 1 q › › rs,ts,p2{pq´H , stand for the standard Hölder seminorms of the rough path. Then, back to (4.3), we can find a universal positive constant c such that

v i,n p ps, t, ωq ď c ! › › W i pωq › › p rs,ts,p1{pq´H `› › W i pωq › › p{2 rs,ts,p2{pq´H `pnq v› › W ' pωq › › p rs,ts,p1{pq´H w q `pnq v› › W i,' pωq › › p{2 rs,ts,p2{pq´H w q `pnq v› › W ',i pωq › › p{2 rs,ts,p2{pq´H w q `pnq vv› › W ',' pωq › › p{2
rs,ts,p2{pq´H ww q ) pt ´sq. 

w q t ´s ď c ´A› › W p¨q › › pq r0,T s,p1{pq´H `› › Wp¨q › › pq{2 r0,T s,p2{pq´H E 1{q (4.6) `⟪› › W K K p¨, ¨q› › pq{2 r0,T s,p2{pq´H ⟫ 1{q ¯,
for a new value of the constant c. Observe that, in order to derive (4.6), the law of large numbers can be directly applied to each of the first three terms in the right-hand side of (4.5), since each of them can be put in the form J `W i pωq ˘, for a suitable form of the functional J . Differently, the last three terms in (4.5) require a modicum of care as they lead to empirical means of the form (4.6). Now, the fact that the right-hand side of (4.6) is finite guarantees that the 1-variation in the mean in (2.7) is uniformly controlled in n ě 1, the mean therein being understood as the mean on the probability space `t1, ¨¨¨, nu, Ppt1, ¨¨¨, nuq,

1 n 2 n ÿ j,k"1,j "k › › I `W j pωq, W k pωq ˘› › pq{2 r0,T s,p2{pq´H `1 n 2 n ÿ j"1 › › W j pωq › › pq{2 r0,T s,
1 n ř n i"1 δ i ˘.
Here are two examples under which (4.5) holds true.

Example 4.1. Assume that the regularity index q used in (2.6) satisfies the inequality q ą 1{p1 ´p{3q, and that, for some constant K T ě 0, xvps, t, ¨qy q ď K T pt ´sq for ps, tq P S T 2 . Then, we get the bounds @ |pW t ´Ws qp¨q| pq D ď K q T |t ´s| q , @ |W s,t p¨q| pq{2 D ď K q T |t ´s| q , ⟪|W K K s,t p¨, ¨q| pq{2 ⟫ ď K q T |t ´s| q . By Kolmogorov's criterion for rough paths, Theorem 3.1 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF], we deduce that W has paths that are p 1 :" p1 ´1{qq{p ą 1{3-Hölder continuous. Similarly, W and W K K have paths that are 2p 1 " 2p1 ´1{qq{p ą 2{3-Hölder continuous and (4.4) holds true with p 1 instead of p. So, the empirical rough set-up satisfies the required conditions provided we replace p by p 1 .

Example 4.2. Assume that W :" pW 1 , ¨¨¨, W m q is a tuple of independent and centred continuous Gaussian processes, defined on r0, T s, for which there exists a constant K such that, for any subinterval rs, ts Ă r0, T s and any k " 1, ¨¨¨, m, it holds

sup ÿ i,j ˇˇE " `W k ti`1 ´W k ti ˘`W k sj`1 ´W k sj ˘ıˇˇˇρ ď K|t ´s|, (4.7) 
the sup being over divisions pt i q i and ps j q j of rs, ts. Then, }W p¨q} r0,T s,p1{pq´H has Gaussian tail and }Wp¨q › › r0,T s,p2{pq´H and }W K K p¨, ¨q› › r0,T s,p2{pq´H have exponential tails; see Theorem 11.9 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF]. Now that we have defined the empirical rough set-up, we must make clear the meaning given to the rough differential equation (1.2) in Definition 3.1 when the rough set-up therein is precisely the empirical rough set-up. We call the corresponding rough differential equation the empirical rough differential equation.

For a given ω P Ω, the probability space that carries the empirical roughset up is given by (4.1). Despite the fact it is not atomless, whilst pΩ, F , Pq is, Theorem 3.3 applies and guarantees existence and uniqueness of a solution to the empirical rough differential equation. In this regard, observe that the square integrability requirement on the initial condition here writes where θ n p¨q : t1, ¨¨¨, nu Q i Þ Ñ i is the canonical random variable on t1, ¨¨¨, nu.

Here the dot in the notation X θnp¨q t pωq refers to the current element in t1, ¨¨¨, nu. With this notation, the law of X θnp¨q t pωq (on t1, ¨¨¨, nu) must be understood as the empirical distribution µ n t pωq. Moreover, each X i pωq is controlled, in standard Gubinelli's sense, by the enhanced rough path `W i pωq, W i pωq ˘(the remainder in the expansion being controlled by v i,n ). In particular, X i pωq may be seen as an i-controlled path on the empirical rough set-up: If we use δ pnq x and δ pnq µ as symbols for the Gubinelli derivatives in Definition 2.1 but on the empirical rough set-up, then δ pnq x X i pωq identifies with the standard Gubinelli derivative in the expansion of X i pωq along the variations of `W i pωq, W i pωq ˘and δ pnq µ X ¨pωq " 0. The key fact in our analysis lies in the interpretation of the two derivatives

δ pnq x " FpX i pωq, X θnp¨q pωqq ı and δ pnq µ " FpX i pωq, X θnp¨q pωqq ı in Proposition 2.4. First, it is elementary to check that δ pnq x ´F`X i pωq, X θnp¨q pωq ˘¯t " B x F `Xi t pωq, X θnp¨q t pωq ˘δpnq x X i t pωq " B x F `Xi t pωq, µ n t pωq ˘δpnq x X i t pωq. (4.8)
More interestingly, we have

δ pnq µ ´F`X i pωq, X θnp¨q pωq ˘¯t " D µ F `Xi t pωq, µ n t pωq ˘`X θnp¨q t pωq ˘δpnq x X θnp¨q t pωq, (4.9) 
both the left-and the right-hand sides being seen as random variables on t1, ¨¨¨, nu. The realizations of the random variable in the right-hand side may be computed by replacing the symbol ¨by j P t1, ¨¨¨, nu. So, applying (2.13) with FpX i pωq, µ n pωqq as integrand, the third term on the first line of (2.13) here reads

1 n n ÿ j"1 D µ F `Xj t pωq, µ n t ˘`X j t pωq ˘δpnq x X j t pωqW j,i t pωq.
This shows that the integral ş t 0 F ´Xi s pωq, X θnp¨q s pωq ¯dW pnq s pωq, as defined by Theorem 2.3, is the limit of the compensated Riemann sums as the mesh of the dissection 0 " t 0 ă ¨¨¨ă t K " t tends to 0 3 . This allows to compare the latter quantity with (1.3) if we intepret the integral with respect to W i pωq therein as a rough integral with respect to the enhanced setting above pW 1 pωq, ¨¨¨, W n pωqq, and consider the leading coefficient FpX i t pωq, µ n t pωqq as a standard Euclidean function of the tuple X pnq t pωq " `X1 t pωq, ¨¨¨, X n t pωq ˘.

K´1 ÿ k"0 ˆF`X i t k pωq, X θnp¨q t k pωq ˘W i t k ,t k`1 pωq `Bx F `Xi t k pωq, X θnp¨q t k pωq ˘F`X i t k pωq, X θnp¨q t k pωq ˘Wi t k ,t k`1 pωq `1 n n ÿ j"1 D µ F `Xj t k pωq, µ n t pωq ˘pX j t k pωqqF `Xj t k pωq, X θnp¨q t k pωq ˘Wj,i t k ,t k`1 pωq ˙, (4.10 
Indeed, under the standing Regularity assumptions 1 and 2, the function

f i : pR d q n Q `x1 , ¨¨¨, x n ˘Þ Ñ F ˆxi , 1 n n ÿ k"1 δ x k is C 2
with Lipschitz derivatives and

B x j f i `x1 , ¨¨¨, x n ˘" δ i,j B x F ˆxi , 1 n n ÿ k"1 δ x k ˙`1 n D µ F ˆxi , 1 n n ÿ k"1 δ x k ˙px i q,
with δ i,j " 1 if i " j and 0 otherwise, see Chapter 5 in [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF]. Therefore, (1.3) is uniquely solvable in the classical sense and the above formulas for the derivatives show that the rough integral therein may be approximated by the same Riemann sum as in (4.10). Namely, (1.3) may be rewritten as

K´1 ÿ k"0 ˆf i `X1 t k pωq, ¨¨¨, X n t k pωq ˘W i t k ,t k`1 pωq `n ÿ j"1 B xj f i `X1 t k pωq, ¨¨¨, X n t k pωq ˘Wj,i t k ,t k`1 pωq ˙.
This proves that the solution to (1.3), when the latter is seen as a rough differential equation driven by the enhanced setting above pW 1 pωq, ¨¨¨, W n pωqq, coincides with the solution of the empirical version of (1.2), when the latter is understood as a mean field rough differential equation driven by the empirical rough set up.

Propagation of Chaos

We now have all the ingredients to prove that the empiral measure of the solution to the particle system (1.3) converges, in some sense, to the solution of the rough mean field equation (1.2), when the rough set-up therein is interpreted as originally explained in Section 2. This is what we call propagation of chaos.

The statement takes the following form.

Theorem 4.3. We make the following assumptions.

(a) Let F satisfy Regularity assumptions 1 and 2. Then, for almost every ω P Ω,

1 n n ÿ i"1 δ X i,pnq pωq Ñ L `Xp¨q ˘, (4.12) 
where X pnq pωq " pX i,pnq pωqq i"1,¨¨¨,n is the solution to (1.3) and Xp¨q is the solution to (1.2), the convergence being the convergence in law on C `r0, T s; R d ˘.

Moreover, for any fixed k ě 1, the law of `X1,pnq p¨q, ¨¨¨, X k,pnq p¨q ˘converges to L `Xp¨q ˘bk .

Following [1, Theorem 2.6], the above assumptions hold true for Gaussian rough paths subject to the classical conditions of Friz-Victoir [START_REF] Friz | Differential equations driven by Gaussian signals[END_REF], see Example 4.2, and the related Example 2.5 in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF].

Proof. The key tool for passing to the limit is the continuity Theorem 3.5, but with p therein replaced by some p 1 P pp, 3q. The main difficulty is in controlling the accumulated local variation of the empirical rough set-up. To make the notations clear, we write X i,pnq 0 for X i , W i,pnq for W i , W i,pnq for W i and W i,j,pnq for W i,j .

Step 1. As a starting point, we want to prove that, for almost every ω P Ω, for any α ą 0, there exists a constant ε 2 ą 0 such that, for all n ě 1,

sup ně1 1 n n ÿ i"1 exp ´N i,n p0, T, ω, αq 1`ε2 ¯ă 8, (4.13) 
where N i,n p0, T, ω, αq is defined as the local accumulation

N i,n pr0, T s, ω, αq :" N ̟ pr0, T s, αq, (4.14) 
when ̟ps, tq " v i,n p 1 ps, t, ωq 1{p 1 , see (2.17). Following (A.1) in appendix (see also the longer discussion in the introduction of the appendix in [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]), it suffices to prove (4.13) when ̟ in the definition of N i,n is equal to each of the terms in the right-hand side of (4.3).

When ̟ps, tq " › › W i pωq › › rs,ts,p 1 ´v or ̟ps, tq "

› › W i pωq › › 1{2
rs,ts,p 1 {2´v , the resulting variables `N i,n pr0, T s, ω, αq ˘i"1,¨¨¨,n in (4.14) are independent and identically imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 distributed, their common law being independent of n. Then, (4.13) follows from assumption (b) in the statement and from the law of large numbers.

If ̟ps, tq " pnq v W ' pωq w q;rs,ts,p 1 ´v or ̟ps, tq " pnq vv W ',' pωq ww 1{2 q;rs,ts,p 1 {2´v , the resulting variables `N i,n pr0, T s, ω, αq ˘i"1,¨¨¨,n in (4.14) only depend on n. We may denote them by N n pr0, T s, ω, αq. Then, it suffices to prove that, for any α ą 0, lim sup nÑ8 N n pr0, T s, ω, αq is almost surely finite. By (4.5), we may easily control N n pr0, T s, ω, αq from above by noticing that

α p N n pr0, T s, ω, αq ď c ´pnq v› › W ' pωq › › p r0,T s,p1{pq´H w q `pnq vv› › W ',' pωq › › p{2 r0,T s,p2{pq´H ww q ¯,
for a constant c that is independent of n and ω. Proceeding as in (4.6), the result follows again from the law of large of numbers and from assumption (b).

In fact, the most difficult cases are ̟ps, tq " pnq v W i,' pωq w 1{2 q;rs,ts,p 1 {2´v or ̟ps, tq " pnq v W ',i pωq w 1{2 q;rs,ts,p 1 {2´v . By symmetry, it suffices to treat the first one. And, by an obvious change of parameter, we may just focus on ̟ps, tq " pnq v W i,' pωq w q q;rs,ts,p 1 {2´v . Then,

pnq v W i,' s,t pωq w q q " 1 n n ÿ j"1 ´ˇW i,j s,t pωq ˇˇq ´@W i,K K s,t pω, ¨qD q q ¯`@ W i,K K s,t pω, ¨qD q q . (4.15) 
Now, Rosenthal's inequality (see [START_REF] Rosenthal | On the span in L p of sequences of independent random variables[END_REF]) together with (4.11) say that, for any a ě 2 and any i P t1, ¨¨¨, nu, ż

Ω ˇˇˇ1 n n ÿ j"1
´ˇW i,j s,t pωq ˇˇq ´@W i,K K s,t pω, ¨qD q q ¯ˇˇˇa dPpωq ď C a n ´a{2 |t ´s| 2aq{p , for a constant C a depending on a and on the upper bound for the left-hand side in (4.11), but independent of i and n. Letting pt pnq k

" kT {nq k"0,¨¨¨,n and allowing the constant C a to vary from line to line, we deduce that

ÿ 1ďkăℓďn n ÿ i"1 ż Ω ˇˇˇ1 n n ÿ j"1 ´ˇW i,j t pnq k ,t pnq ℓ pωq ˇˇq ´@W i,K K t pnq k ,t pnq ℓ pω, ¨qD q q ¯ˇˇˇa dPpωq ď C a n 3´a{2 .
Choosing a large enough, we deduce from Markov inequality and from Borel-Cantelli lemma that, for P-almost every ω P Ω, for n large enough,

@i P t1, ¨¨¨, nu, @1 ď k ă ℓ ď n, ˇˇˇ1 n n ÿ j"1 ´ˇW i,j t pnq k ,t pnq ℓ pωq ˇˇq ´@W i,K K t pnq k ,t pnq ℓ pω, ¨qD q q ¯ˇˇˇď n ´1{4 . (4.16)
By assumption (d) in the statement, we recall that, for any δ ą 0, ÿ ně1 ÿ 1ďi,jďn

P ´› › W i } 2 r0,T s,p1{pq´H
`› › W i,j } r0,T s,p2{pq´H ě n δ ¯ă 8. 

@ W i,K K pω, ¨qD q ,
we can find a constant c q only depending on q such that, for almost every ω P Ω, for n large enough, ´ˇW i,j s,t pωq ˇˇq ´@W i,K K s,t pω, ¨qD q q ¯ˇˇˇď c q n ´r1{4^q{p2pqs . (4.21)

Meanwhile, we also have, for P-almost every ω P Ω, ˇˇˇ1

n n ÿ j"1 ´ˇW i,j s,t pωq ˇˇq ´@W i,K K s,t pω, ¨qD q q ¯ˇˇď sup 1ďi,jďn ´› › W i,j pωq} q r0,T s,p2{pq´H `› › @ W i,K K pω, ¨qD q } q r0,T s,p2{pq´H ¯pt ´sq 2q{p .
By (4.17) and (4.19), we deduce that, for P-almost every ω P Ω, for n large enough, for all ps, tq P S T 2 , ˇˇˇ1

n n ÿ j"1 ´ˇW i,j s,t pωq ˇˇq ´@W i,K K s,t pω, ¨qD q q ¯ˇˇˇď n δq pt ´sq 2q{p . (4.22)
Taking the power 1´p{p 1 in (4.21) and the power p{p 1 in (4.22), cross-multiplying both of them and then choosing δ small enough, we get, for P-almost every ω P Ω, for n large enough, for all ps, tq P S T 2 , ˇˇˇ1

n n ÿ j"1 ´ˇW i,j s,t pωq
ˇˇq ´@W i,K K s,t pω, ¨qD q q ¯ˇˇˇď cpt ´sq 2q{p where c only depends on p, p 1 and q. Back to (4.15), we deduce that, for P-almost every ω P Ω, for n large enough, pnq v W i,' s,t pωq w q;rs,ts,p 1 {2´v ď c 1{q pt ´sq 2{p 1 `@W i,K K pω, ¨qD q;rs,ts,p{2´v .

Since the variables `Wi,K K ˘iě1 are independent, the local accumulation associated with the second term in the right-hand side may be handled like the local accumulation associated to ̟ps, tq " › › W i pωq › › rs,ts,p´v . The local accumulation associated with the first term is easily handled.

Step 2. Now, from the law of large numbers (see Lemma A.3 for the law of large numbers with second order interaction terms) and from [4, Theorem 2.3, Problem 3.1], we deduce that there exists a full subset E Ă Ω (the definition of which may vary from line to line in the rest of the proof as long as PpEq remains equal to 1) such that, for any ω P E,

π n pωq " ˆ1 n 2 n ÿ i,j"1
δ `Xi,pnq 0 pωq,W i,pnq pωq,W i,pnq pωq,W i,j,pnq pωq ˘˙ně1 converges in the weak sense to `X0 p¨q, W p¨q, Wp¨q,

W K K p¨, ¨q˘o n the space R d Ĉ`r 0, T s; R m ˘ˆ CpS T 2 ; R m b R m q ( 2 .
Step 3. Back to the statement of Theorem 3.5, the first item in the statement is a consequence of the law of large numbers. As for the fourth item, it follows directly from the previous step. In order to check the check the second and third items, we now have a look at v which proves the third item in the statement of Theorem 3.5. We end up with the proof of the second item. Following (4.5), there exists a constant c 1 such that, for any ε ą 0, the quantity sup and similarly on the second line with W ',i pωq replaced by W i,' pωq. By the law of large numbers, the first line holds true on a full event if p 1 ε ă ε 1 . As for the second one, we use the following trick. Notice that the function

ně1 pnq $ % exp ´rv ',n p 1 p0, T, ωqs ε ¯, - 1 (4.23) is finite if sup ně1 1 n n ÿ i"1 exp ´c1 › › W i pωq › › p 1 ε r0,T s,p1{pq´H `c1 › › W i pωq › › p 1 ε{2 r0,T s,p2{pq´H ¯ă 8, sup ně1 1 n n ÿ i"1 exp ´c1 pnq $ % › › W ',i pωq › › p 1 {2 r0,T s,p2{pq´H
p0, `8q Q x Þ Ñ exp `xε{q ˘, (4.24) 
is convex on rA ε , 8q, for some A ε ą 0. Therefore, Jensen's inequality says that, in order to check the third line, it suffices to prove that

sup ně1 1 n 2 n ÿ i,j"1 exp "´A ε{q ε _ › › W i,j pωq › › p 1 ε{2 r0,T s,p2{pq´H ¯ı ă 8, (4.25) 
and similarly for the last line. Obviously, under the standing assumption, the latter holds true with probability 1 provided p 1 ε ă ε 1 . This proves (4.23). In the statement of Theorem 3.5, this proves the condition related to the tails of w n by a standard application of Markov inequality.

The bound on the local accumulation in the second item of Theorem 3.5 follows from the first step of the proof.

Step 4. By Theorem 3.5, we get (4.12) on a set of full measure. By Proposition 2.2 in [START_REF] Sznitman | Topics in propagation of chaos[END_REF], we deduce that, for any fixed k ě 1, the law of `X1,pnq , ¨¨¨, X k,pnq converges to L `Xp¨q ˘bk .

Remark 4.4. Recently, the authors in [START_REF] Coghi | Pathwise McKean-Vlasov theory[END_REF] 

Rate of Convergence

The goal of this section is to elucidate the rate of convergence in the convergence result stated in Theorem 4.3. The analysis is based upon a variation of Sznitman's original coupling argument, see [START_REF] Sznitman | Topics in propagation of chaos[END_REF]. To make its principle clear, we recall that, on the space pΩ, F , Pq, the triples `X1 0 p¨q, W 1 p¨q, W 1 p¨q ˘, ¨¨¨, `Xn 0 p¨q, W n p¨q, W n p¨q ˘are n independent copies of the original triple `X0 p¨q, W p¨q, Wp¨q ˘. For each i P t1, ¨¨¨, nu, the pair `W i p¨q, W i p¨q ˘is completed into a rough set-up

W i p¨q :" `W i p¨q, W i p¨q, W i,K K p¨, ¨q˘, W i,K K pω, ω 1 q " I `W i pωq, W i pω 1 q ˘, pω, ω 1 q P Ω 2 . (5.1)
Here we put a bar on the symbol W i in order to distinguish it from the finite-dimensional rough set-up W pnq pωq that lies above `W 1 pωq, ¨¨¨, W n pωq ˘.

In comparison, the second-order level of W pnq is made of pW i q 1ďiďn and of `Wi,j " IpW i , W j q ˘1ďi "jďn , see (4.2). To make the notations more homogeneous, we sometimes write W i,i pωq for W i pωq.

With each `Xi 0 p¨q, W i p¨q ˘, we associate the corresponding solution X i p¨q to the mean field equation (1.2). The 5-tuples

Ω Q ω Þ Ñ ´Xi 0 pωq, W i pωq, W i pωq, W i,K K p¨, ωq, X i pωq ¯1ďiďn
are independent and identically distributed, Ω Q ω Þ Ñ `Wi,K K t p¨, ωq ˘0ďtďT being regarded as a process with values in L q pΩ, F , P; R d q. Recalling that X pnq pωq " `X1,pnq p¨q, ¨¨¨, X n,pnq p¨q ˘is the solution to (1.3), we then let µ n t pωq "

1 n n ÿ i"1 δ X i,pnq t pωq , µ n t pωq " 1 n n ÿ i"1
δ X i t pωq , t P r0, T s, ω P Ω. (5.2)

Note the use of the d 1 -distance (see (2.14)) in the assumption required from F in the statement below, d 1 -continuity being stronger than d 2 -continuity.

Theorem 5.1. We make the following assumptions. The first and second derivatives of F, px, µq Þ Ñ B x Fpx, µq, px, µ, zq Þ Ñ `Dµ Fpx, µqpzq, B x D µ Fpx, µ, zq ˘, and px, µ, z, z 1 q Þ Ñ D 2 µ Fpx, µ, z, z 1 q, are bounded on the whole space and are Lipschitz continuous with respect to all the variables, the Lipschitz property in the direction µ being understood with respect to d 1 . (c) Last, for any α ą 0, there exists a constant ε 2 ą 0 such that, for any n ě 1, for any p 1 P pp, 3q, and any random variables τ, τ 1 : Ω Ñ r0, T s, with Ppτ ă τ 1 q " where p N i,n `rτ, τ 1 s, ω, α ˘is defined as the accumulation N ̟ `rτ, τ 1 s, α ˘when ̟ " p p w i,n p 1 pωqq 1{p 1 with p w i,n p 1 ps, t, ωq :" `wi,n p 1 `p v i,n p 1 ˘ps, t, ωq `pnq v p v ',n p 1 pωq w q;rs,ts,1´v `pt ´sq, w i,n p 1 ps, t, ωq :" v i,n p 1 ps, t, ωq `pnq v v ',n p 1 pωq w q;rs,ts,1´v , p v i,n p 1 ps, t, ωq :" @ W i,K K pω, ¨qD p 1 {2 q;rs,ts,p 1 {2´v `@W i,K K p¨, ωq D p 1 {2 q;rs,ts,p 1 {2´v .

(5.3)

Then, for any r ě 1, there exists an exponent qprq ě 8 such that, if q ě qprq, with q as in Section 2, and X 0 p¨q is in L qprq , then

sup 1ďiďn E " sup 0ďtďT ˇˇX i t ´Xi,pnq t ˇˇr  1{r `E " sup 0ďtďT d 1 `µn t , µ n t ˘r 1{r ď Cς n , (5.4) 
for a constant C independent of n, and

ς n " n ´1{2 if d " 1, ς n " n ´1{2 lnp1 `nq if d " 2 and ς n " n ´1{d if d ě 3.
Remark 5.2. Let us make a few remarks on this statement before embarking on its proof.

' The convergence rate ς n in (5.4) corresponds to the usual rate for the convergence in the 1-Wasserstein distance of an empirical sample of independent, identically distributed, random variables toward the limiting common distribution; see [START_REF] Fournier | On the rate of convergence in the Wasserstein distance of the empirical measure[END_REF] together with Lemma A.2. ' Theorem 5.1 applies when W is a continuous centred Gaussian process defined over some finite interval r0, T s, with independent components, and with a covariance function that is of finite two dimensional ̺-variation, for some ̺ P r1, 3{2q, see (4.7). The proof is given in Appendix A.1. ' We refer to [9, Chapter 5] for examples of a function F satisfying item (a) in the assumptions of the statement. Importantly, we recall that a function G : P 2 pR d q Q µ Þ Ñ Gpµq P R, whose derivative D µ G : P 2 pR d q ˆRd Q pµ, zq Þ Ñ D µ Gpµqpzq P R d is uniformly bounded on the whole P 2 pR d q ˆRd , is Lipschitz continuous with respect to the d 1 -Wasserstein distance. In particular, under the assumptions of the statement, F itself is Lipschitz continuous on R d ˆP2 pR d q, the Lipschitz property in the direction µ being understood with respect to d 1 . ' By inspecting the proof of Theorem 5.1, we could make explicit the value of qprq, but we feel that it would not be so useful.

Proof. Observe that, for each i P t1, ¨¨¨, nu and any ω P Ω, we can define the integral process `şt 0 F `Xi s pωq, µ n s pωq ˘dW i,pnq s pωq ˘0ďtďT using usual rough paths theory, where the label i in the notation W i,pnq pωq is here to indicate that the integral only involves `W i pωq, pW j,i pωqq 1ďjďn ˘. Equivalently, W i,pnq pωq must be seen as `W i pωq, pW j,i pωqq 1ďjďn ˘. The fact that the integral may be defined with respect to `W i pωq, pW j,i pωqq 1ďjďn ˘follows from the fact that X j pωq, for imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 each j P t1, ¨¨¨, nu and each ω P Ω, is controlled by the variations of the sole W j pωq.

Step Similarly, pF i,n t pωqq 0ďtďT is controlled by W i,pnq pωq and W ',pnq pωq and Gubinelli derivatives are encoded in the form of a collection `δx F i,n t pωq, `δµ F i,j,n t pωq ˘1ďjďn ˘0ďtďT , see (4.8-4.9). To make it clear, set

δ x F i t pωq :" B x F ´Xi t pωq, LpX t q ¯F`X i t pωq, LpX t q ˘, δ µ F i t pω, ¨q :" D µ F ´Xi t pωq, LpX t q ¯`X t p¨q ˘F`X t p¨q, LpX t q ˘, (5.7) 
where Xp¨q is the solution to (1.2) with W p¨q " `W p¨q, Wp¨q, W K K p¨, ¨q˘.

We also let

δ x F i,n t pωq :" B x F `Xi t pωq, µ n t pωq ˘F`X i t pωq, µ n t pωq ˘, δ µ F i,j,n t pωq :" D µ F `Xi t pωq, µ n t pωq ˘`X j t pωq
˘F`X j t pωq, µ n t pωq ˘.

(5.8)

For a subdivision ∆ " ts " t 0 ă t 1 ă ¨¨¨ă t K " tu, set

I i,∆ s,t pωq :" K´1 ÿ k"0 ! F i t k pωqW i t k ,t k`1 pωq `δx F i t k pωqW i t k ,t k`1 pωq `E" δ µ F i t k pω, ¨qW i,K K t k ,t k`1 p¨, ωq ‰ ) , I i,n,∆ s,t pωq :" K´1 ÿ k"0 ! F i,n t k pωqW i t k ,t k`1 pωq `δx F i,n t k pωqW i t k ,t k`1 pωq `1 n n ÿ j"1 δ µ F i,j,n t k pωqW j,i t k ,t k`1 pωq
) .

(5.9)
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The two integrals in (5.5) should be understood as the respective limits of the two Riemann sums right above as K tends to 8. In the sequel, we denote the summand in the first sum by I i,B tt k ,t k`1 u pωq and the summand in the second sum by I i,n,B tt k ,t k`1 u pωq. By Lemma A.1 proved in Appendix A.2, we can find, for any ̺ ě 8, a constant C and an exponent ̺ 1 ě q independent of n and K such that, when X 0 p¨q P L ̺ 1 , it holds for any k P t1, ¨¨¨, K ´1u

(provided K ě 2), A! I i,n,∆ s,t p¨q ´Ii,n,∆ 1 s,t p¨q ) ´!I i,∆ s,t p¨q ´Ii,∆ 1 s,t p¨q )E ̺ ď Cς n ⟪w `pt k´1 , t k`1 , ¨, ¨q⟫ 3{p ̺ 1 ,
where ∆ 1 :" ∆ztt k u and w `ps, t, ω, ω 1 q :" wps, t, ωq `}W K K pω, ω 1 q} p{2 rs,ts,p{2´v . Formulating (4.5) and (4.6) but for the limit (instead of empirical) rough set-up, we know that the right hand side in the above inequality is less than

Cς n " @ }W p¨q} r0,T s,p1{pq´H D p̺ 1 `@}Wp¨q › › r0,T s,p2{pq´H D 1{2 p̺ 1 `⟪}W K K p¨, ¨q› › r0,T s,p2{pq´H ⟫ 1{2 p̺ 1 ı 3 pt k`1 ´tk q 3{p ,
but by assumption all the expectations are finite. Now we can choose t k such that

|t k`1 ´tk´1 | ď 3|t´s|{K (if not, it means that 3pt´sqpK ´1q{K ă ř K´1 k"1 |t k`1 tk´1 | " ř K´1
k"1 pt k`1 ´tk `tk ´tk´1 q " 2pt ´sq ´pt K ´tK´1 `t1 ´t0 q ď t ´s, which is a contradiction). We get where we used the same notation as in (4.3). In fact, there is no loss of generality in changing the definition of w i,n p 1 into w i,n p 1 ps, t, ωq :" v i,n p 1 ps, t, ωq `pnq v v ',n p 1 pωq w q;rs,ts,1´v `pt ´sq, (5.12) which permits to replace pt ´sq 1{p 1 by w i,n p 1 ps, t, ωq 1{p 1 in the inequalities (5.11). Hence,

A! I i,
ż 0 F i,n r pωqdW i,pnq r ´ż 0 F i r pωqdW i r pωq r0,T s,w i,n p 1 ,p 1 ď θ i,n pωq.
Step 2. We now make use of Proposition 2). To simplify the notations, we just write X i for X i,pnq and W i for W i,pnq . We then apply Proposition 3.2 with `Xpωq, Y p¨q ˘" `Xi pωq, X ' pωq ˘, `X1 pωq, Y 1 p¨q ˘" `Xi pωq, X ' pωq ˘, (5.13) the underlying set-up being understood as the empirical rough set-up for a given realization ω. The difficulty here is that the variations of these two solutions are controlled by two different functionals w, see (2.11). This is the rationale for introducing p w i,n p 1 in (5.3). Obviously, p w i,n p¨, ¨, ωq (we remove the index p 1 for simplicity) is not the natural control functional associated with W i pωq, but it is greater than w By construction of the processes `Xi pωq ˘i"1,¨¨¨,n as the solution of the empirical rough equation, the pair `Xpωq, Y p¨q ˘" `Xi pωq, X ' pωq ˘in (5.13) automatically satisfies the first bound in (3.3) with w " p w i,n and for some large enough deterministic L 0 ; implicitly, this means that we perform the same construction as in the proof of Theorem 3.3, see [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]Theorem 4.4], using therein the empirical rough-set up and the control functionals `p w i,n

˘i"1,¨¨¨,n . In particular, the points `t0

ℓ " τ ℓ p0, T, ω, 1{p4L 0 qq ˘ℓ"0,¨¨¨,N 0 `1 in the statement of Proposition 3.2 are understood as with respect to p w i,n . Also, by the last part in the statement of [1, Proposition 4.2], we know that Y p¨q " X ' pωq satisfies condition (3.2) with respect to pnq v ¨w8 if we assume that T satisfies pnq $ % p N ',n `r0, T s, ω, 1{p4L 0 q ˘, -

8 ď c, (5.15) 
for a deterministic constant c, independent of n, L 0 and T .

In fact, using the Hölder regularity of the paths, see (4.5) for a similar use, and using the additional t ´s in the definition (5.3), p w i,n dominates (up to a multiplicative constant) the control w i associated to W i through (2.10) (see (5.1) for the definition of W i ; in short, the variations of W i pωq and W i pωq are already included in v i,n p 1 pωq, the variations of W i,K K pω, ¨q and W i,K K p¨, ωq are precisely included in the definition of p v i,n p 1 pωq and, using the Hölder regularity of the paths, the variations of W p¨q and W K K p¨, ¨q (in L q are dominated by the additional t ´s). Moreover, we have @ p w i,n ps, t, ¨qD q ď Cpt ´sq ď C p w i,n ps, t, ωq, for a constant C independent of i, n, s and t. Although C ě 2 (compare with (2.8)), this permits to use p w i,n ps, t, ¨q as control functional when working with the rough set-up W i and, in particular, when invoking the solvability Theorem 3.3 -the proof would be the same. This is an important point: the path X i pωq, defined right after (5.1), is the solution of a mean-field rough equation driven by a signal that is controlled by p w i,n p¨q. Hence, X 1 pωq " X i pωq in (5.13) satisfies the second bound in (3.3) with w " p w i,n . Also, invoking the first line in [1, Proposition 4.2, (4.4)] for each i P t1, ¨¨¨, nu, deduce that Y 1 p¨q " X ' pωq satisfies condition (3.2) with respect to pnq v ¨w8 provided (5.15) holds true. Due to the form of the constant in the right-hand side of [1, Proposition 4.2, (4.4)], this may require to work with a larger value of the threshold L 0 in the statement of Proposition 3.2, but, as made clear in the statement of Proposition 3.2, this is not a hindrance. Then, by Proposition 3.2, we obtain, for a given L ě L 0 , ż ẗ k F `Xi r pωq, µ n pωq ˘dW i r pωq ´ż

ẗ k F `Xi r pωq, µ n pωq ˘dW i r pωq rt k ,t k`1 s, p w i,n ,p 1 ď γ p w i,n p0, t k , ωq 1{p 1 ˆ `Xi ´Xi ˘pωq r0,t k s, p w i,n ,p 1 `pnq $ % `X' ´X' ˘pωq r0,T s, p w ',n ,p 1 , - 8 γ 4L ˆ `Xi ´Xi ˘pωq rt k ,t k`1 s, p w i,n ,p 1 `pnq $ % `X' ´X' ˘pωq rt k ,t k`1 s, p w ',n ,p 1 , - 8 ˙,
where p w i,n pt k , t k`1 , ωq 1{p 1 ď 1{p4Lq as long as k ď 2 p N i,n pr0, T s, ω, 1{p4Lqq (since the sequence pt i q i must refine the sequence pt 0 j q j , we may assume that the collection pt i q i counts 2 p N i,n pr0, T s, ω, 1{p4Lqq `2 points, including t 0 " 0) and where we dropped the leading coefficient p1 `1{p4Lqq in the main equality of Proposition 3.2 (which is always possible by modifying γ accordingly, γ here depending on L 0 ). The point now is to insert the conclusion of the first step (replacing for free w i,n by p w i,n therein). We get

`Xi ´Xi ˘pωq rt k ,t k`1 s, p w i,n ,p 1 ď γ p w i,n p0, t k , ωq 1{p 1 ˆ `Xi ´Xi ˘pωq r0,t k s, p w i,n ,p 1 `pnq $ % `X' ´X' ˘pωq r0,T s, p w ',n ,p 1 , - 8 ˙`θ i,n pωq `γ 4L ˆ `Xi ´Xi ˘pωq rt k ,t k`1 s, p w i,n ,p 1 `pnq $ % `X' ´X' ˘pωq rt k ,t k`1 s, p w ',n ,p 1 , - If γ{p4Lq ď 1{2, we get `Xi ´Xi ˘pωq rt k ,t k`1 s, p w i,n ,p 1 ď 2γ ´1 L `p w i,n p0, t k , ωq 1{p 1 ¯ˆ `Xi ´Xi ˘pωq r0,t k s, p w i,n ,p 1 `pnq $ % `X' ´X' ˘pωq r0,T s, p w ',n ,p 1 , - 8 
˙`2θ i,n pωq, (5.16) and, allowing the value of the constant c below to increase from line to line, as long as it remains independent n, L and T (but c now possibly depending on L 0 since γ does), we get (see for instance [1, footnote 7] for the concatenation of two intervals) `Xi ´Xi ˘pωq r0,t k`1 s, p

w i,n ,p 1 ď c ´ `Xi ´Xi ˘pωq r0,t k s, p w i,n ,p 1 ` `Xi ´Xi ˘pωq rt k ,t k`1 s, p w i,n ,p 1 ď c `1 `ζi,n T pωq ˘ `Xi ´Xi ˘pωq r0,t k s, p w i,n ,p 1 `c ζ i,n T pωq pnq $ % `X' ´X' ˘pωq r0,T s, p w ',n ,p 1 , - 8 `cθ i,n pωq, with ζ i,n T pωq :" 1 L `wi,n p 1 p0, T, ωq 1{p 1 . So, by induction, `Xi ´Xi ˘pωq r0,t k`1 s, p w i,n ,p 1 ď c ´k ÿ ℓ"0 " c `1 `ζi,n T pωq ˘‰ℓ ζi,n T pωq pnq $ % `X' ´X' ˘pωq r0,T s, p w ',n ,p 1 , - 8 
`θi,n pωq ˙.

In the end, `Xi ´Xi ˘pωq r0,T s, p

w i,n ,p 1 ď c " c `1 `ζi,n T pωq ˘ı2 x N i,n pr0,T s,ω,1{p4Lqq`1 ˆˆζ i,n T pωq pnq $ % `X' ´X' ˘pωq r0,T s, p w ',n , p 1 , - 8 `θi,n pωq ˙. 
(5.17)

Hence, using the shorten notation p N i,n T pωq for p N i,n pr0, T s, ω, 1{p4Lqq and assuming c ě 1, we obtain

pnq $ % `X' ´X' ˘pωq r0,T s, p w ',n ,p 1 , - 8 ď pnq $ % " c 2 `1 `ζ',n T pωq ˘‰2 x N ',n T pωq`1 ζ ',n T pωq , - 8 ˆpnq $ % `X' ´X' ˘pωq r0,T s, p w ',n ,p 1 , - 8 `pnq $ % " c 2 `1 `ζ',n T pωq ˘‰2 x N ',n T pωq`1 θ ',n pωq , - 8 . 
(5.18)
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Step 3. The key quantity of interest in (5.18) is the multiplicative factor in the second line, which we denote by

Ψ n T pωq :" pnq $ % " c 2 `1 `ζ',n T pωq ˘‰2 x N ',n T pωq`1 ζ ',n T pωq , - 8 .
In particular, letting

Θ n T pωq :" pnq $ % " c 2 `1 `ζ',n T pωq ˘‰2 x N ',n T pωq`1 θ ',n pωq , - 8 ,
we rewrite (5.18) in the form

pnq $ % `X' ´X' ˘pωq r0,T s, p w ',n ,p 1 , - 8 ď Ψ n T pωq pnq $ % `X' ´X' ˘pωq r0,T s, p w ',n ,p 1 , - 8 
`Θn T pωq.

(

Here comes the key point. The variable ω being frozen, we can choose deterministicall the time horizon T small enough, depending on ω, and L ě L 0 large enough, such that Ψ n T pωq ď 1{2 and (5.15) holds true. The proof is made clear below. Take it for granted for a while and deduce that pnq $ % `X' ´X' ˘pωq r0,T

The above inequality sounds really close to the desired result, but it is on a small interval r0, T s only. The purpose is thus to iterate it in order to cover any given time interval.

Step 4. In order to iterate in a proper way, we change our notation. While we keep the notation T for the deterministic time horizon given in the statement, we use the latter τ instead of T in the previous analysis. Put differently, τ will stand for the random time horizon such that Ψ τ is small enough. More precisely, we let τ 0 " τ and then consider a possibly random dissection 0 " τ 0 ă τ 1 ă ¨¨¨ă τ M " T of the interval r0, T s into M subintervals. The goal of this step is to clarify the construction of the dissection in order to iterate the previous steps to any interval rτ ℓ , τ ℓ`1 s, ℓ " 0, ¨¨¨, M ´1.

To do so, we need to revisit the statement of Proposition 3.2. Assume indeed that we have a bound for

E i,n τ ℓ pωq :" ´1 `p w i,n p0, T, ωq 1{p 1 ¯ `Xi ´Xi ˘pωq r0,τ ℓ s, p w i,n ,p 1 ,
for some ℓ ď M . Then, in order to duplicate the previous two steps, we must consider a new dissection τ ℓ " t 0 ă t 1 ă ¨¨¨ă t K " τ ℓ`1 of the interval rτ ℓ , τ ℓ`1 s with the property that K " 2 p N i,n `rτ ℓ , τ ℓ`1 s, ω, 1{p4Lq ˘`1 and that p w i,n pt k , t k`1 , ωqď1{p4Lq if k ă K. The key point is to apply the first inequality in (3.4) on rt k , t k`1 s with pXpωq, Y p¨qq " pX i pωq, X i p¨qq and pX 1 pωq, Y 1 p¨qq " imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 pX i pωq, X i p¨qq, but with τ ℓ instead of 0 as initial time. Upper bounding the second line in (3.4) by E i,n τ ℓ pωq `pnq v E i,n τ ℓ pωq w 8 , we obtain ż ẗ k F `Xi r pωq, µ n r pωq ˘dW i r pωq ´ż

ẗ k F `Xi r pωq, µ n r pωq ˘dW i r pωq rt k ,t k`1 s, p w i,n ,p 1 ď γ p w i,n pτ ℓ , τ ℓ`1 , ωq 1{p 1 " `Xi ´Xi ˘pωq rτ ℓ ,t k s, p w i,n ,p 1 `pnq $ % `X' ´X' ˘pωq rτ ℓ ,τ ℓ`1 s, p w ',n ,p 1 , - 8 * `γ 4L " `Xi ´Xi ˘pωq rt k ,t k`1 s, p w i,n ,p 1 `pnq $ % `X' ´X' ˘pωq rt k ,t k`1 s, p w ',n ,p 1 , - 8 * `γ" E i,n τ ℓ pωq `pnq v E ',n τ ℓ pωq w 8  ,
provided the analogues of (3.2) and (3.3) hold true. As for (3.3), we may argue as in the second step: It is a consequence of the proof of Theorem 3.3. As for (3.2), it is again a consequence of the statement of [1, Proposition 4.2], provided the analogue of (5.15) holds true, namely

pnq $ % p N ',n `rτ ℓ , τ ℓ`1 s, ω, 1{p4L 0 q ˘, - 8 ď c. (5.20) 
Then, proceeding as in the second step,

`Xi ´Xi ˘pωq rt k ,t k`1 s, p w i,n ,p 1 ď c p w i,n pτ ℓ , τ ℓ`1 , ωq 1{p 1 " `Xi ´Xi ˘pωq rτ ℓ ,t k s, p w i,n ,p 1 `pnq $ % `X' ´X' ˘pωq rτ ℓ ,τ ℓ`1 s, p w ',n ,p 1 , - 8 * `c " E i,n τ ℓ pωq `pnq v E ',n τ ℓ pωq w 8 `θi,n pωq * .
In the end, we are in the same situation as in (5. [START_REF] Dawson | Stochastic McKean-Vlasov equations[END_REF]), but with new ζ i,n T and p N i,n T . Here, we let (pay attention that, to be consistent with the notations ζ i,n T and p N i,n T , we should use rτ ℓ , τ ℓ`1 s instead of ℓ as subscript below, but, for simplicity, we prefer to use ℓ only)

ζ i,n ℓ pωq :" p w i,n pτ ℓ , τ ℓ`1 , ωq 1{p 1 , p N i,n ℓ pωq :" p N i,n ˆrτ ℓ , τ ℓ`1 s, ω, 1 4L 
˙.
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Following (5.17), we obtain

`Xi ´Xi ˘pωq rτ ℓ ,τ ℓ`1 s, p w i,n ,p 1 ď c " c `1 `ζi,n ℓ pωq ˘‰2 x N i,n ℓ pωq`1 ˆ"ζ i,n ℓ pωq pnq $ % `X' ´X' ˘pωq rτ ℓ ,τ ℓ`1 s, p w ',n , p 1 , - 8 (5.21) 
`θi,n pωq `Ei,n

τ ℓ `pnq v E ',n τ ℓ pωq w 8 * .
Hence,

pnq $ % `X' ´X' ˘pωq rτ ℓ ,τ ℓ`1 s, p w ',n ,p 1 , - 8 ď Ψ n ℓ pωq ˆpnq $ % `X' ´X' ˘pωq rτ ℓ ,τ ℓ`1 s, p w ',n ,p 1 , - 8 `Θn ℓ pωq, with Ψ n ℓ pωq :" pnq $ % " c 2 `1 `ζ',n ℓ pωq ˘‰2 x N ',n ℓ pωq`1 ζ ',n ℓ pωq , - 8 , Θ n ℓ pωq : 
" pnq $ % " c 2 `1 `ζ',n ℓ pωq ˘‰2 x N ',n ℓ pωq`1 ´θ',n pωq `E',n τ ℓ pωq `pnq v E ',n τ ℓ pωq w 8 ¯, - 8 . 
If we can choose τ ℓ`1 ´τℓ such that Ψ n ℓ pωq ď 1{2, then we get

pnq $ % `X' ´X' ˘pωq rτ ℓ ,τ ℓ`1 s, p w ',n ,p 1 , - 8 ď 2 Θ n ℓ pωq.
Eventually, returning to (5.21) and modifying the value of the constant c, we deduce `Xi ´Xi ˘pωq rτ ℓ ,τ ℓ`1 s, p

w i,n ,p 1 ď c " c `1 `ζi,n ℓ pωq ˘‰2 x N i,n ℓ pωq`1 ˆˆζ i,n ℓ pωq Θ n ℓ pωq `θi,n pωq `Ei,n τ ℓ `pnq v E ',n τ ℓ pωq w 8 ˙,
and then

E i,n τ ℓ`1 pωq ď κ i,n ℓ pωq ˆζi,n ℓ pωq Θ n ℓ pωq `θi,n pωq `Ei,n τ ℓ pωq `pnq v E ',n τ ℓ pωq w 8 ˙, with κ i,n ℓ pωq :" c 2 ´1 `p w i,n p0, T, ωq 1{p 1 ¯"c 2 `1 `ζi,n ℓ pωq ˘ı2 x N i,n ℓ pωq`1 , (5.22) 
imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 using the fact that c ě 1. By induction, we get the following global bound:

E i,n τ ℓ`1 pωq ď ℓ ÿ k"0 K i,n k,ℓ pωq " ζ i,n k pωqΘ n k pωq `θi,n pωq `pnq v E ',n τ k pωq w 8  , (5.23) 
with

K i,n k,ℓ pωq :" ℓ ź j"k κ i,n j pωq. (5.24) 
We deduce that for any r ą 8, we can find a constant qprq such that

pnq v E ',n τ ℓ`1 pωq w r ď ℓ ÿ k"0 " pnq v K ',n k,ℓ w qprq ˆ´1 `pnq v p w ',n p0, T, ωq 1{p 1 w qprq 1 `pnq $ % " c 2 `1 `ζ',n k pωq ˘‰2 x N ',n k pωq`1 , - qprq pnq v θ ',n pωq w qprq `pnq v E ',n τ k pωq w r ¯*.
Using the fact that

pnq v K ',n k,ℓ w qprq ě max ´1, pnq v p w ',n p0, T, ωq 1{p 1w qprq , pnq $ % rc 2 p1 `ζ',n k pωqqs 2 x N ',n k pωq`1 , - qprq ¯,
we obtain a bound of the form a ℓ`1 ď ř ℓ k"0 g k,ℓ `b `ak ˘, with

a ℓ :" pnq v E ',n τ ℓ pωq w r , g k,ℓ :" 4 ˆ´pnq v K ',n k,ℓ w qprq ¯3, b :" pnq v θ ',n pωq w qprq .
Hence,

a ℓ ď b ℓ ÿ j"1 ÿ 0ďk1﨨¨ďkj ďkj`1"ℓ j ź h"1 g k h ,k h`1 . (5.25) 
Back to (5.24), we will use below the bound

K i,n k,ℓ pωq ď c 2pℓ`1´kq ℓ ź j"k ! `1 `p w i,n p0, T, ωq 1{p 1 ˘"c 2 `1 `ζi,n j pωq ˘‰2 x N i,n j pωq`1 ) ď c 4pℓ`1´kq`4 x N i,n k,ℓ`1 pωq `1 `p w i,n p0, T, ωq 1{p 1 ˘ℓ`1´k`2 x N i,n k,ℓ`1 pωq , (5.26) 
with the shortened notation p N i,n k,ℓ pωq :" p N i,n `rτ k , τ ℓ s, ω, 1{p4Lq ˘.

Step 5. We now recall that the sequence of times 0 " τ 0 ă τ 1 ă ¨¨¨ă τ M must satisfy (5.20). A priori, the sequence may be random, but we are free to imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 take it deterministic, which is what we do below. To make it clear, we let

M 1 " A › › W p¨q › › p r0,T s,p1{pq´H E q `A› › Wp¨q › › p 1 {2 r0,T s,p2{p 1 q´H E q `A› › W K K p¨, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q ,
and we consider the events

A n 1 " " ω P Ω : pnq v› › W ' pωq › › p 1 r0,T s,p1{p 1 q´H w q `pnq v› › W ' pωq › › p 1 {2 r0,T s,p2{p 1 q´H w q `pnq vv› › W ',' pωq › › p 1 {2 r0,T s,p2{p 1 q´H ww q ď M 1 `1* , A i,n 2 " " ω P Ω : pnq v› › W ',i pωq › › p 1 {2 r0,T s,p2{p 1 q´H w q `pnq v› › W i,' pωq › › p 1 {2 r0,T s,p2{p 1 q´H w q ď A › › W i,K K pω, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q `A› › W i,K K p¨, ωq › › p 1 {2 r0,T s,p2{p 1 q´H E q `1* . On the event A n 1 X A i,n 2 , we have (compare with (4.3) and (4.5) 
) for s, t P r0, T s 2 , s ă t, v i,n p 1 ps, t, ωq ď › › W i pωq › › p 1 rs,ts,p 1 ´v `› › W i pωq › › p 1 {2 rs,ts,p 1 {2´v `ˆ2 `M1 `A› › W i,K K pω, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q `A› › W i,K K p¨, ωq › › p 1 {2 r0,T s,p2{p 1 q´H E q ˙pt ´sq.
Therefore, introducing the new event

A n 3 " " pnq $ % A › › W ',K K pω, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q , - q `pnq $ % A › › W K K,' pω, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q , - q ď 2 `1 `M1 ˘*, we get, on A n 1 X `Şn i"1 A i,n 2 ˘X A n 3 , pnq v v ',n p 1 pωq
w q;rs,ts,1´v ď `5 `4M 1 ˘pt ´sq.

Recall now the definition of p v i,n p 1 in (5.3). We have p v i,n p 1 ps, t, ωq " @ W i,K K pω, ¨qD p 1 {2 q;rs,ts,p 1 {2´v `@W i,K K p¨, ωq 

D p 1 {2 q;rs,ts,p 1 {2´v ď "A › › W i,K K pω, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q `A› › W i,K K p¨, ωq › › p 1 {2 r0,T s,p2{p
% A › › W ',K K pω, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q , - q `pnq $ % A › › W K K,' pω, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q , - q ˙pt ´sq.
Therefore, on the event 

A n 1 X `Şn i"1 A i,n 2 ˘X A n 3 ,
› › W i pωq › › p 1 rs,ts,p 1 ´v `› › W i pωq › › p 1 {2 rs,ts,p 1 {2´v `p10 `7M 1 qpt ´sq `2@ W i,K K pω, ¨qD p 1 {2
q;rs,ts,p 1 {2´v `2@ W i,K K p¨, ωq D p 1 {2 q;rs,ts,p 1 {2´v .

Using the notation (2.17), we also let r N i,n prτ, τ 1 s, ω, αq :" N ̟ prτ, τ 1 s, αq, with ̟ :" p r w i,n p 1 pωqq 1{p 1 . By (5.27), p N i,n prτ, τ 1 s, ω, αq ď r N i,n prτ, τ 1 s, ω, αq,

for ω P A n 1 X `Şn i"1 A i,n 2 ˘X A n 3 .
The good point here is that the variables `r w i,n p 1 ˘1ďiďn are independent whilst the variables `p w i,n p 1 ˘1ďiďn are not. Similarly, whenever τ and τ 1 are deterministic, the variables `r N i,n prτ, τ 1 s, ¨, αq ˘1ďiďn are independent. Moreover, it is not difficult to see that r w i,n p 1 ps, t, ωq ď 2 p w i,n p 1 ps, t, ωq `8p1 `M1 qpt ´sq, from which we deduce, see for instance (A.1), that, for any α ą 0,

r N i,n `rτ, τ 1 s, ω, α ˘ď p N i,n ´rτ, τ 1 s, ω, α 4 ¯`C α ,
for a constant C α only depending on α and on M 1 . In particular, we can easily replace p N i,n by r N i,n in the third item of the assumption of the statement. Moreover, by (4.11), we deduce that each r w i,n p 1 satisfies the first bound in (3.5), uniformly in i and n.

We now have all the ingredients to choose the sequence 0 " τ 0 ă ¨¨¨ă τ M " T . We may take it, independently of n, such that A r N for c as in (5.15). Existence of the dissection follows from the third item in the assumption of the statement as it says that the left-hand side can be bounded by C ? τ ℓ`1 ´τℓ . Importantly, the latter bound says that M can be chosen independently of n. For sure, the index 1 in the left-hand side may be replaced by any i P t1, ¨¨¨, nu. We then consider the family of events

A ℓ,n 4 " ! pnq $ % r N ',n `rτ ℓ , τ ℓ`1 s, ¨, 1{p4L 0 q ˘, - 8 ď c 
) , ℓ " 0, ¨¨¨, M ´1.

On A n 1 X `Şn i"1 A i,n 2 ˘X A n 3 X `ŞM´1 ℓ"0 A ℓ,n 4 
˘, the upper bound (5.20) is satisfied and then the conclusion of the fourth step holds true. Following (5.22), this prompts us to set:

r κ i,n ℓ pωq :" c 2 ´1 `r w i,n p0, T, ωq 1{p 1 ¯"c 2 `1 `r w i,n pτ ℓ , τ ℓ`1 , ωq 1{p 1 ˘ı2 Ă N i,n ℓ pωq`1
, and then r K i,n k,ℓ pωq :" ś ℓ j"k r κ i,n j pωq. Returning to the conclusion of the fourth step, we get, for ω P A n :"

A n 1 X `Şn i"1 A i,n 2 ˘X A n 3 X `ŞM´1 ℓ"0 A ℓ,n 4 ˘, pnq v E ',n τ ℓ pωq w r ď pnq v θ ',n pωq w qprq ℓ ÿ j"1 ÿ 0ďk1﨨¨ďkj ďkj`1"ℓ j ź h"1 4 ˆ´pnq v r K ',n k h ,k h`1 pωq w qprq ¯3 ď ℓ2 2ℓ`1 ˆ4ℓ ˆpnq v θ ',n pωq w qprq ˆ´pnq v r K ',n 0,ℓ pωq w qprq ¯3ℓ .
The key fact here is that r K i,n 0,M pωq, for any i P t1, ¨¨¨, nu, has finite moments of any order, independently of i and n. The proof follows from (5.26), from (4.11) and from the third item in the assumption of the statement of Theorem 5.1, the last two properties implying that `1 `r w i,n pτ ℓ , τ ℓ`1 , ωq 1{p 1 ˘Ă N i,n ℓ pωq has finite moments of any order, independently of i and n, see for instance (5.32) below. Hence, for a constant C, independent of n but possibly depending on M , we get

A 1 A n p¨q pnq v E ',n T p¨q w r E r ď C A pnq v θ ',n p¨q w qprq E 2r ď C @ θ 1,n p¨q D qprq ,
where we took, without any loss of generality, qprq ě 2r. Taking ̺ " qprq in (5.11), we get that, for a constant C independent of n, but depending on r,

sup 1ďiďn A 1 A n p¨q ˇˇ`X i ´Xi ˘p¨q ˇˇE r ď Cς n .
(5.28)

Step 6. From the law of large of numbers and from (4.11), we claim that PppA n 1 q A q decays faster than any n ´s, for s ą 0. The first step of the proof is to 

w q ´A› › W p¨q › › p 1 r0,T s,p1{p 1 q´H E q ě 1 3 
P´ω

: pnq v› › W ' pωq › › p 1 {2 r0,T s,p2{p 1 q´H w q ´A› › Wp¨q › › p 1 {2 r0,T s,p2{p 1 q´H E q ě 1 3 
P´ω

: pnq vv› › W ',' pωq › › p 1 {2 r0,T s,p2{p 1 q´H ww q ´A› › W K K p¨, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q ě 1 3 
":

π n 1,1 `πn 1,2
`πn 1,3 .

Since the most difficult term is the last one, we just explain how to handle it. The other two terms may be treated in the same way. Since q ě 1, we first observe that

π n 1,3 ď P ´ω : pnq vv› › W ',' pωq › › p 1 {2 r0,T s,p2{p 1 q´H ww q q ě A › › W K K p¨, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q q `1 3 q ď P ˆω : 1 n 2 ÿ i "j ´› › W i,j pωq › › qp 1 {2 r0,T s,p2{p 1 q´H ´A› › W K K p¨, ¨q› › qp 1 {2 r0,T s,p2{p 1 q´H E 1 ¯ě 1 3 q`1 Ṗˆω : 1 n 2 n ÿ i"1 › › W i pωq › › qp 1 {2 r0,T s,p2{p 1 q´H ě 1 3 q`1 ˙.
By (4.11), the last term in the right-hand side is easily handled. As for the first one, Markov's inequality yields, for any s ą 1,

P ˆω : 1 n 2 ÿ j "i ´› › W i,j pωq › › qp 1 {2 r0,T s,p2{p 1 q´H ´A› › W K K p¨, ¨q› › qp 1 {2 r0,T s,p2{p 1 q´H E 1 ¯ě 1 3 q`1 ď 3 spq`1q n s`1 n ÿ i"1 E "ˇˇˇˇÿ j:j "i ´› › W i,j p¨q › › qp 1 {2 r0,T s,p2{p 1 q´H ´A› › W K K p¨, ¨q› › qp 1 {2 r0,T s,p2{p 1 q´H E 1 ˇˇ¯ˇˇˇˇs  .
By (4.11) again and by Rosenthal's inequality, see [START_REF] Rosenthal | On the span in L p of sequences of independent random variables[END_REF], we deduce that the right-hand side is less than Cn ´s{2 , for a constant C independent of n. This completes the proof of our claim.

The same result holds for PpA n 3 q. Also, since `r N i,n prτ ℓ , τ ℓ`1 s, ¨, αq ˘1ďiďn , are independent for any ℓ " 0, ¨¨¨, M ´1, we also have that PpA ℓ,n 4 q decays faster than any n ´s, for any ℓ " 0, ¨¨¨, M ´1.

We finally check that the same is true for A i,n 2 . To make it clear, we prove that, for any s ą 0, sup i"1,¨¨¨,n P `pA i,n 2 q A ˘ď Cn ´s for a constant C independent of n, but the result is less obvious. In fact, it suffices to upper bound the first imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 term below, for which we have, as before,

P ´ω : pnq v› › W i,' pωq › › p 1 {2 r0,T s,p2{p 1 q´H w q ě A › › W i,K K pω, ¨q› › p 1 {2 r0,T s,p2{p 1 q´H E q `1 2 ď P ˆω : 1 n ÿ j:j "i ´› › W i,j pωq › › qp 1 {2 r0,T s,p2{p 1 q´H ´A› › W i,K K pω, ¨q› › qp 1 {2 r0,T s,p2{p 1 q´H E 1 ¯ě 1 2 q`1 Ṗˆω : › › W i,i pωq › › qp 1 {2 r0,T s,p2{p 1 q´H ě n 2 q`1 ˙.
The last term in the right-hand side is easily handled. As for the penultimate one, we proceed as before, recalling that W i,j " IpW i , W j q. By Markov's inequality,

P ˆω : 1 n ÿ j:j "i ´› › W i,j pωq › › qp 1 {2 r0,T s,p2{p 1 q´H ´A› › W i,K K pω, ¨q› › qp 1 {2 r0,T s,p2{p 1 q´H E 1 ¯ě 1 2 q`1 ď 2 pq`1q n s E " E "ˆn ÿ j"1,j "i ´› › I `W i pωq, W j pωq ˘› › qp 1 {2 r0,T s,p2{p 1 q´H ´A› › I `W i pωq, W j p¨q ˘› › qp 1 {2 r0,T s,p2{p 1 q´H E 1 ¯˙s | σ `W i p¨q ˘ .
We apply Rosenthal's inequality once again, but conditional on σpW i p¨qq. Assuming without any loss of generality that s ě 2, we obtain, for a constant C independent of n,

P ˆω : 1 n ÿ j:j "i ´› › W i,j pωq › › qp 1 {2 r0,T s,p2{p 1 q´H ´A› › W i,K K pω, ¨q› › qp 1 {2 r0,T s,p2{p 1 q´H E 1 ¯ě 1 2 q`1 ď C n s{2 E " E " › › I `W i pωq, W j pωq ˘› › sqp 1 {2 r0,T s,p2{p 1 q´H | σ `W i p¨q ˘ıı ,
where j right above is any arbitrary integer in t1, ¨¨¨, nuztiu. We easily deduce that, for any s ą 0, sup i"1,¨¨¨,n P `pA i,n 2 q A ˘ď Cn ´s for a constant C independent of n.

All and all, back to the definition of A n at the end of the fifth step, see (5.28), we deduce that, for any s ą 0, P `pA n q A ˘ď Cn ´s. Therefore, in order to conclude, it suffices to prove that, for any r ě 1, we can choose qprq ě 8 such that, if q ě qprq and X 0 p¨q is in L q , then sup

1ďiďn E " sup 0ďtďT |X i t | r ı ď Cprq, (5.29) 
for a constant Cprq depending on r but independent of n. The proof of (5.29) relies on the final estimate in the statement of Theorem 3.3. To make it clear, we consider a new random dissection 0 " τ 0 ă τ 1 ă ¨¨¨ă τ M " T of r0, T s (for simplicity, we use the same notation as in the previous step, but the new dissection has in fact nothing to do with the first one; in imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 particular, it is random) such that Γ pnq 1 `ω, rτ ℓ , τ ℓ`1 s ˘:" pnq $ % p N ',n `rτ ℓ , τ ℓ`1 s, ω, 1{p4L 0 q ˘, -

8 ď 1, Γ pnq 2 `ω, rτ ℓ , τ ℓ`1 s :" pnq $ % " γ 2 `1 `p w ',n p0, T, ωq 1{p 1 ˘‰x N ',n `rτ ℓ ,τ ℓ`1 s,ω,1{p4Lq ˘, - 32 ď η, (5.30) 
for the same constants as in the statement of Theorem 3.3. We deduce from Theorem 3.3 that there exists a constant C (independent of n) such that, for any i P t1, ¨¨¨, nu and ℓ P t0, ¨¨¨, M ´1u,

~Xi pωq~r τ ℓ ,τ ℓ`1 s, p w i,n ,p 1 ď " C ´1 `p w i,n p0, T, ωq 1{p 1 ¯ı2 x N i,n pr0,T s,ω,1{p4Lqq
.

Observe now that, for any i P t1, ¨¨¨, nu,

sup 0ďtďT |X i t ´Xi 0 | ď M´1 ÿ ℓ"0 ´~X i pωq~r τ ℓ ,τ ℓ`1 s, p w i,n ,p 1 p w i,n pτ ℓ , τ ℓ`1 , ωq 1{p 1 ď M " C ´1 `p w i,n p0, T, ωq 1{p 1 ¯ı2 x N i,n pr0,T s,ω,1{p4Lqq`1
.

The second factor in the right-hand side has finite moments of any order, see (5.33) below, replacing therein p N i,n ℓ { ? δ ℓ by N pr0, T s, ω, 1{p4Lqq{ ? T . Moreover, we prove below that M has sub-exponential tails, i.e., PpM ą aq ď c expp´a ε q, for c, ε ą 0. This suffices to prove (5.29).

We now prove that pτ ℓ q ℓ"0,¨¨¨,M in (5.30) may be constructed in such a way that M has sub-exponential tails. Obviously, see for instance (A.1), it suffices to construct, for each constraint in (5.30), a subdivision pτ ℓ q ℓ"0,¨¨¨,M of r0, T s, for which the corresponding constraint in (5.30) (and only this one) holds true and the number of points M has sub-exponential tails.

We start with the second constraint in (5.30). By induction, we define the sequence pτ 1 ℓ q ℓ"0,¨¨¨,M 1 , letting τ 1 0 :" 0 and τ 1 ℓ`1 :" inftt ě τ 1 ℓ : Γ pnq 2 pω, rτ 1 ℓ , tsq ě ηu ^T 4 , with M 1 :" inf ℓPN tℓ P N : τ 1 ℓ " T u. We claim that we may choose M " 2M 1 . Indeed, since the counter p N i,n appearing in (5.30) is the local accumulation of a continuous function on S T 2 , there exists δ L ą 0 such that, for any t P r0, T s and any i P t1, ¨¨¨, nu, p N i,n prt, pt `δL q ^T s, ω, 1{p4Lqq " 0. (Of course, δ L depends on n and ω, but this is not a problem in the rest of the proof.) Then, for any point t P rτ 1 ℓ , τ 1 ℓ`1 q, we have, by definition of

τ 1 ℓ`1 , Γ pnq 2 pω, rτ 1 ℓ , tsq ă η. Moreover, if |τ 1 ℓ`1 ´t| ă δ L , then Γ pnq
We now prove that M 1 has sub-exponential tails (which implies that M " 2M 1 also has sub-exponential tails). Letting δ ℓ :" τ 1 ℓ`1 ´τ1 ℓ , for any ℓ P N, we have, for any A ą 1 (recalling γ, η ą 1),

π 1 :" P ˆδℓ ă 1 A , ℓ ă M 1 ´1ď P ˆpnq $ % " γ 2 `1 `p w ',n p0, T, ωq 1{p 1 ˘‰x N ',n ℓ pωq{ ? δ ℓ , - 1{ ? A 32 ě η " P ˆpnq $ % " γ 2 `1 `p w ',n p0, T, ωq 1{p 1 ˘‰x N ',n ℓ pωq{ ? δ ℓ , - 32 ě η ? A ˙,
with the shorten notation p N ',n ℓ pωq " p N ',n `rτ 1 ℓ , τ 1 ℓ`1 s, ω, 1{p4Lq ˘. We now introduce the function f pxq " exp `lnpxq 1`ε ˘, x ą 1; it is non-decreasing on r1, 8q and convex on re, 8q. By Markov inequality,

π 1 ď e ´`lnrη 32 ? A s ˘1`ε E " f ˆ1 n n ÿ i"1 e " γ 2 ´1 `p w i,n p0, T, ¨q1{p 1 ¯ı32 x N i,n ℓ { ? δ ℓ ˙ ď e ´`lnrη 32 ? A s ˘1`ε 1 n n ÿ i"1 E " f ˆe" γ 2 ´1 `p w i,n p0, T, ¨q1{p 1 ¯ı32 x N i,n ℓ { ? δ ℓ ˙,
with e " expp1q. We prove in (5.32) below that, for ε small enough,

sup i"1,¨¨¨,n E " f ˆe" γ 2 ´1 `p w i,n p0, T, ¨q1{p 1 ¯ı32 x N i,n ℓ { ? δ ℓ ˙ ď C, (5.31) 
for C independent of n. As a result, π 1 ď C exp `´`3 2 lnpηq ˘1`ε A p1`εq{2 ˘, and then,

P `M 1 ą ℓ `1˘" P `δ1 `¨¨¨`δ ℓ ă T, ℓ `1 ă M 1 ď ℓ ÿ i"1 P ˆδi ă T ℓ , i `1 ă M 1 ˙ď Cℓe ´`32 lnpηq ˘1`ε pℓ{T q p1`εq{2
, which shows that M 1 has sub-exponential tails.

We now check what happens when handling the first constraint in (5.30). We may define M 1 as before, that is M 1 :" inf ℓPN tℓ P N : τ 1 ℓ " T u with τ 1 0 :" 0 and τ 1 ℓ`1 :" inftt ě τ 1 ℓ : Γ pnq 1 pω, rτ 1 ℓ , tsq ě 1u ^T . Then, we can repeat the same proof as above by using the fact that 

! δ ℓ ă 1 A , ℓ ă M 1 ´1) Ă " pnq $ % p N ',n `rτ 1 ℓ , τ 1 ℓ`1 s, ω, 1{p4L 0 q ?δ ℓ , - 8 
$ % p N ',n `rτ 1 ℓ , τ 1 ℓ`1 s, ω, 1{p4L 0 q ?δ ℓ , -
already justified in the latter example, we only prove (here that we can control the empirical local accumulation as the other requirements (c) in the statement of Theorem 5.1. Following the proof of [1, Theorem 2.6], we may focus on the local accumulation of each of the various terms in (5.3). To make it clear, we have the following property: For a given threshold α ą 0 and for any two continuous functions v 1 : S T 2 Ñ R `and v 2 : S T 2 Ñ R `, set N i pαq :" N vi `r0, T s, α ˘, for 1 ď i ď 2; see (2.17 Throughout the proof, we choose Ω as the space W " Cpr0, T s; R d q. We call H the corresponding Cameron-Martin space and we regard pW, H, Pq as an abstract Wiener space. We then regard pW 1 , ¨¨¨, W n q as the canonical process on Ω n equipped with the product measure P bn . We recall from [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF]Theorem 10.4] that the processes pW i q 1ďiďn and pW i,j q 1ďi,jďn may be regarded as random variables on Ω n .

Step 1. The first step is to consider, for a given α ą 0, the accumulation Step 2. We now focus on the local accumulation of the fourth and fifth terms in (4.3). For simplicity, we just explain what happens for the fourth term. The fifth term may be handled in the same way.

r N i `r0, T s, ω, α ˘associated with › › W i pωq › › p rs,ts,p´v `› › W i pωq › › p{2 
We use the same notation as in Subsection 4.1 and proceed as in the proof of [START_REF] Bailleul | Solving mean field rough differential equations[END_REF]Theorem 2.6]. The Gaussian process pW 1 , ¨¨¨, W n q has `Wn , H 'n , P bn ˘as abstract Wiener space. For ω " pω i q n i"1 P Ω n and for h " ' n i"1 h i P H 'n , we let T h W pnq pωq " T ' n i"1 hi W pnq pωq for the translated rough path along h (see [19, (11.5)]). By [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF]Lemma 11.4], with probability 1 under P bn , for all h P H 'n , Following the proof of (A.3), we deduce that pnq vv W ',' pωq ww p{2 q;rs,ts,p{2´v ď c

› › W i,j pωq › › p{2 rs,ts,pp{2q´v ď c ´› › pT h Wq i,j pωq › › p{2 rs,ts,pp{2q´v `› › pT h W q i pωq › › p rs,ts,p´v `› › pT h W q j pωq › › p rs,
" pnq $ % $ % pT h W q ',' pωq p r0,T s,p1{pq´H , - , - q pt ´sq `n´p2´εq{ppqq n ÿ j"1 › › h j › › 2´ε 
rs,ts,̺´v * , at least when the left-hand side is less than or equal to α p . Importantly, there is no need to distinguish the coordinate i of h from the other coordinates j " i since the coefficient in front of any }h j } rs,ts,̺´v , j " 1, ¨¨¨, n, has the same power decay as n tends to 8. So, the context is simpler than in the previous step and we may conclude in the same way.

Local accumulations associated to the second term in (4.3) and to ps, tq Þ Ñ pnq v v ',n p 1 pωq w q;rs,ts,1´v and ps, tq Þ Ñ pnq v p v ',n p 1 pωq w q;rs,ts,1´v in (5.3) are handled in the same way. (As for the latter one, the reader may refer to the proof of [1, Theorem 2.6].)

A.2. An Auxiliary Estimate

We prove in this appendix some auxiliary estimates that were used in Step 1 of the proof of Theorem 5.1. This is where the convergence rate ς n in Theorem 5.1 appears. Recall we set ς n " n ´1{2 if d " 1, and ς n " n ´1{2 lnp1 `nq, if d " 2, and ς n " n ´1{d , if d ě 3. Recall also definitions (5.6), (5.7), (5.8) and (5.9). Lemma A.1. Fix ̺ ě 8. There exist an exponent ̺ 1 and a positive constant C such that, if X 0 p¨q is ̺ 1 -integrable, then, for any integers 1 ď i ď n, and 0 ď r ď s ď t ď T , one has The reason the appearance of the quantity w `instead of w, in the above upper bounds, will appear at the beginning of Step 2 in the proof.

@" F i,n p¨q ´F i p¨q ‰ s,t D ̺ ď Cς n ⟪w `ps, t, ¨, ¨q⟫ 1{p ̺ 1 , A I i,n,B ts,tu p¨q ´Ii,B ts,tu p¨q E ̺ ď C ς n ´⟪w `ps, t, ¨, ¨q⟫ 1{p ̺ 1 `⟪w `ps, t, ¨, ¨q⟫ 2{p ̺ 1 ¯, ˆżΩ ˇˇ1 n n ÿ j"1 δ µ F i,j,n s pωqW j,i s,t pωq ´E" δ µ F i s pω, ¨qW i,K K s,t p¨, ωq ‰ ˇˇρdPpωq ˙1{ρ `A`δ x F i,n s p¨q ´δx F i s p¨q ˘Wi s,t p¨q E ρ ď C ς n ⟪w `ps, t, ¨, ¨q⟫ 2{p ̺ 1 , A! I i,
Proof. We directly prove the last inequality in the statement; the first three inequalities follow from the computations. Throughout the proof, we use the following notations. For each i P t1, ¨¨¨, nu, we call w i the control associated with W i p¨q through identity (2.10). For j P t1, ¨¨¨, nu, we also let w i,j ps, t, ωq :" › › W i,j pωq › › p rs,ts,p´v .

We make in the course of the proof an intense use of Lemma A.2 below, giving the convergence rate of the empirical measure of a sample of independent and identically distributed random variables towards their common law. By Theorem 3. Step 3. We now turn to the last term in the right-hand side of (A.6). It reads as the empirical mean of n random variables, n ´1 of which are conditionally centered and conditionally independent given the realization of the imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 by w i pr, t, ωq 1{p . By Cauchy Schwarz inequality, the L ̺ norm of the resulting bound is less than c @ d 1 pµ n r p¨q, LpX r q D χ̺ @ ~Xp¨q r0,T s,w,p D χ̺ @ wpr, t, ¨qD 3{p χ̺ .

The second difference term that we have to handle corresponds to the second term in the right-hand side of (A. where S i,n r,s `ω, |R X ' r,s pωq| ˘is the n-empirical mean of n variables that are dominated by `|R X j r,s pωq| ˘j"1,¨¨¨,n and n ´1 of which are conditionally centered and conditionally independent given the realization of the path pX i , W i , W i q.

Hence, the L ̺ norm of the right-hand side, after multiplication as before by w i ps, t, ωq 1{p , is less than c ´Ad 1 ´µn r p¨q, LpX r q ¯Eχ̺ `n´1{2 ¯@~Xp¨q~r 0,T s,w,p D χ̺ @ wpr, t, ¨qD 3{p χ̺ .

As for the third term in the right-hand side of (A.8), it fits, up to the additional factor X i r,s pωq, the analysis in the first step. So we get as an upper bound for its L ̺ norm, after multiplication by w i ps, t, ωq 1{p , the quantity Following Step 2, we get exactly a similar bound for the fourth term in the righthand side of (A.8). Applying once again Lemma A.2 completes the proof.

A.3. About Law of Large Numbers

Lemma A.2. There exists a real q d ě 1 such that, for any q ě q d and any probability measure µ on R d satisfying M q pµq :" `şR d |x| q µpdxq ˘1{q ă 8, it imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019

Letting S n " ř n i,j"1,i "j f pX i , X j q, for n ě 1, we then define the σ-field G n " σpS k , k ě nq. By independence of the variables pX k q kě1 , we have, for any pi, jq P t1, ¨¨¨, nu 2 with i " j, Erf pX i , X j q|G n s " Erf pX i , X j q|S n s. By exchangeability, this is also equal to Erf pX 1 , X 2 q|S n s. We get Erf pX 1 , X 2 q|G n s " 1 n 2 ´n n ÿ i,j"1,i "j E " f pX i , X j q|S n ‰ " S n n 2 ´n . By Lévy's downward theorem and by Kolmogorov zero-one law, the left-hand side converges almost surely to Erf pX 1 , X 2 qs.

(4. 5 )

 5 Taking the mean over i P t1, ¨¨¨, nu and invoking the law of large numbers (see Lemma A.3 in Appendix A.3 for a version of the law of large numbers with second order interactions), we deduce that, for almost every ω P Ω, lim sup ně1 sup 0ďsătďT pnq v v ',n p ps, t, ωq

  (a) Assumptions (a)-(d) in the statement of Theorem 4.3 are satisfied. (b)

  [START_REF] Carmona | Forward-backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics[END_REF]. With an obvious definition for R X p¨q, it reads ˇˇˇ1 LpX r q ¯`X r p¨q ˘RX r,s p¨qE ˇˇˇ.Proceeding exactly as in the first step, the latter is bounded byc d 1 ´µn r pωq, LpX r q ¯˜1 n n ÿ j"1 ˇˇR X j r,s pωq ˇˇ¸`c ˇˇS i,n r,s ´ω, ˇˇR X ' r,s pωq ˇˇ¯ˇˇˇ,

  Definition 2.1. An ω-dependent continuous R d -valued path pX t pωqq 0ďtďT is called an ω-controlled path on r0, T s if its increments can be decomposed as

	X s,t pωq " δ x X s pωqW s,t pωq	`E" δ µ X s pω, ¨qW s,t p¨q ‰	`RX s,t pωq,	(2.11)
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  We call δ x Xpωq and δ µ Xpω, ¨q in (2.11) the derivatives of Xpωq.

	4{3
	`~Xpωq~r 0,T s,w,p ă 8,
	where
	~Xpωq~r 0,T s,w,p :" }Xpωq} r0,T s,w,p `}δ x Xpωq} r0,T s,w,p `@δ µ Xpω, ¨qD r0,T s,w,p,4{3 `}R X pωq} r0,T s,w,p{2 ,
	with
	}Xpωq} r0,T s,w,p :" @ δ µ Xpω, ¨qD r0,T s,w,p,4{3 :" sup H "ps,tqĂr0,T s sup ˇˇX s,t pωq ˇwps, t, ωq 1{p , and similarly for B x X H "ps,tqĂr0,T s @ δ µ X s,t pω, ¨qD 4{3 wps, t, ωq 1{p , }R X pωq} r0,T s,w,p{2 :" sup H "ps,tqĂr0,T s ˇˇR X ˇwps, s,t pωq t, ωq 2{p .

Xpωq takes in values in R d b R m rather than R d , the

  Above, δ x X s pωq W s,t pωq is the product of a d ˆm matrix and an m ˆm matrix, so it gives back a d ˆm matrix, with components `δx X s pωqW s,t pωq ˘i,j "

	"	,u pωq b dW u pωq ż s r X r,u pωq b dW u pωq	`ż t s	X s,u pωq b dW u pωq `Xr,s pωq b W s,t pωq,
	together with the estimate
	ˇˇˇż	t s	X s,u pωq b dW u pωq ´δx X s pωqW s,t pωq	´E" δ µ X s pω, ¨qW K K s,t p¨, ωq ‰	ˇˇď
				c 0 ~Xpωq~r 0,T s,w,p wps, t, ωq 3{p .	(2.13)
	ř m k"1 `δx X i s pωq ˘k`W s,t pωq ˘k,j , for i P t1, ¨¨¨, du and j P t1, ¨¨¨, mu, and simi-larly for Erδ µ X s pω, ¨qW K K s,t p¨, ωqs. As usual, the above construction allows us to define an additive process setting
	ż t			ż t
	s	X u pωq b dW u pωq :"	s	X s,u pωq b dW u pωq `Xs pωq b W s,t pωq,
	for 0 ď t ď T . We can thus consider the integral process as an ω-controlled trajectory with values in R dˆm , with `şt 0 X s pωqbdW s pωq ˘0ďtďT
					ˆδx	"ż 0 X s pωq b dW s pωq 	t ˙pi,jq,k	" `Xt pωq ˘iδ j,k ,
	for i P t1, ¨¨¨, du and j, k P t1, ¨¨¨, mu, where δ j,k stands for the usual Kronecker symbol, and with null µ-derivative.
	When the trajectory integral ş t 0 X s pωq b dW s pωq belongs to R d b R m b R m . We then set for i P t1, ¨¨¨, du ˆż t 0 X s pωqdW s pωq ˙i :" m ˆż t ˙i,j,j ÿ j"1 0 X s pωq b dW s pωq ,
	and consider	ş t 0 X s pωqdW s pωq as an element of R d .
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  We just address the derivation of the last inequality since the latter is not given in[START_REF] Bailleul | Solving mean field rough differential equations[END_REF] Theorem 4.4]. The key point is to sum over n ě 1 in [1, (4.30)], replacing r0, Ss therein by rS 1 , S 2 s, which is indeed licit provided that @ N `rS 1 , S 2 s, ¨, 1{p4L 0 q ˘D8 ď 1, see for instance[1, (4.23)], and

	A " γ `1 `wp0, T, ¨q1{p ˘‰NprS1,S2s,¨,1{p4Lqq	E

generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 and B " γ ´1 `wp0, T, ¨q1{p ¯ıNprS1,S2s,¨,1{p4Lqq F 32 ď η, it holds, for any ω P Ω ~Xpωq~r S1,S2s,w,p ď " C ´1 `wp0, T, ωq 1{p ¯ı2Npr0,T s,ω,1{p4Lqq , for a constant C depending only on Λ and T . Proof. 32 ď η for η small enough, see [1, (4.29)].

  as in(3.6). Still, if the summands in the two sums are integrable, the limit is @› › I `W 1 p¨q, W 2 p¨q ˘› › pq{2

	Hence	r0,T s,p2{pq´H	D	, see Lemma A.3 in Appendix A.3.

p2{pq´H , imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 with I

  which is indeed satisfied for ω in a full event. The solution reads in the form of a n-tuple X pnq pωq " pX i pωqq 1ďiďn in Cpr0, T s; R d q n . The coefficient driving the equation for X i pωq reads

	8, F ´Xi t pωq, X	θnp¨q t	pωq ¯, t P r0, T s,	1 n	ř n i"1 ˇˇX i 0 pωq ˇˇ2 ă
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  Let w be a control satisfying (2.8) and (2.9). Assume there exists a positive time horizon T such that the random variables wp0, T, ¨q and `N `r0, T s, ¨, α ˘˘αą0 , see (2.17), have sub and super exponential tails, see (3.5). (c) Assume that the rough set-up W is strong. (d) Assume also that there exists a positive constant ε 1 such that

	E	"	exp ´› › W p¨q} ε1 r0,T s,p1{pq´H ¯ı `Eb2 " exp ´› › W K K p¨, ¨q} ε1{2 `E" exp ´› › Wp¨q} r0,T s,p2{pq´H ¯ı ă 8. ε1{2 r0,T s,p2{pq´H	¯ı	(4.11)
	as `řd ℓ"1	ř m j,k"1 Bx ℓ F ι,j `Xi s pωq, X	θnp¨q s θn p¨q s pωq ˘`F ℓ,k `Xi pωq ˘`F `Xi s pωq, X s pωq, X θnp¨q θn p¨q s s p¨qpωq ˘`W i pωq ˘Wi s,t pωq ˘is understood s,t ˘k,j pωq ˘˘ι"1,¨¨¨,d
	and similarly for the term on the third line.	

3 In the second line, BxF `Xi s pωq, X imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019

(b)

  Lpxq ensures in particular a quantitative convergence rate for the particle system no greater than the corresponding convergence rate for the sample empirical mean of the driving noises, which is optimal. We get back such a sharp estimate in the present, much more complicated, setting in the next section. Note that the global Lipschitz bound satisfied by the natural map Φ giving the solution to equation (4.26) as a fixed point of Φ actually allows to deal with reflected dynamics, as the bounded variation part needed for the reflection happens to be a Lipschitz function of the non-reflected path, in Skorokhod formulation of the problem. We do not have such a strong continuity result for our solution map; see Theorem 3.5. See also the previous work[START_REF] Deuschel | The enhanced Sanov theorem and propagation of chaos[END_REF] of the authors.

obtained a quantified propagation of chaos result for mean field stochastic equations with additive noise dx t " b `xt , Lpx t q ˘dt `dw t , x 0 " ζ, (4.26) for a random path w P C `r0, T s, R d ˘subject to mild integrability condition, and random initial condition ζ. There is no need of rough paths theory to make sense of this equation and solve it by elementary means, under proper regularity assumptions on the drift b. Its distribution is even a Lipschitz function of the distribution of pζ, wq, in p-Wasserstein metric. Using Tanaka's trick, this continuity result entails a propagation of chaos result. The global Lipscthiz continuity of the solution map Lpw, ζq Þ Ñ imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019

  What makes the proof non-trivial is the fact that the rough setups used in the first and the second integrals are not the same. So, in order to compare the two of them, we need to come back to the original constructions of the two integrals. To simplify notations, and for 0 ď t ď T , set

		1. The first step is to compare		
	ż t 0	F ´Xi s pωq, LpX s q ¯dW	i s pωq and	ż t 0	F ´Xi s pωq, µ n s pωq ¯dW i,pnq s	pωq, (5.5)
	for t P r0, T s. F i t pωq :" F ´Xi t pωq, LpX t q ¯, F i,n t pωq :" F ´Xi t pωq, µ n t pωq ¯.	(5.6)
	For sure,	`F i			

t pωq ˘0ďtďT is ω-controlled by W i pωq, see Definition 2.1, and the collection indexed by ω P Ω is a random path controlled by W i , see Definition 2.2 for a reminder. The corresponding Gubinelli derivatives are denoted by `δx F i t pωq, δ µ F i t pω, ¨q˘0 ďtďT , see Proposition 2.4.

  Cς n pt ´sq 1{p . Cς n , for a new value of the constant C. Observe now that the empirical control associated with our empirical rough set-up and with the exponent p 1 reads (compare with (2.10))

	noting that				
		R s,t ş F i,n dW i,pnq	pωq "	ż t s	F i,n r pωqdW i,pnq r	pωq ´Ii,n,B s,t pωq
			R s,t ş F	i dW	i	pωq "	`δx F i,n s pωqW i s,t pωq ż t s F i r pωqdW i r pωq ´Ii,B `1 n s,t pωq n ÿ j"1 `δx F i s pωqW i s,t pωq `E" δ µ F i s pω, ¨qW i,K K δ µ F i,j,n s pωqW j,i s,t pωq, ı s,t p¨, ωq ,
	we deduce in a similar manner, using (5.10) and Lemma A.1 once again, that
				A	R s,t ş F i,n dW i,pnq	p¨q	s,t ´Rş F i dW i	p¨q E
		t s	F i,n r pωqdW i,pnq r	´ż t s	F	i r pωqdW
								(5.11)
		n,∆ s,t F i,n dW i,pnq p¨q ´Ii,n,∆ 1 s,t s,t ˇˇˇR ş pωq ´Rş F i dW i p¨q ) ´!I s,t	i,∆ s,t p¨q pωq ˇˇˇď θ i,n pωqpt ´sq 2{p 1 , ´Ii,∆ 1 s,t p¨q )E
	with	Bż t s @ θ i,n p¨q F i,n r p¨qdW i,pnq r D ̺ ď w i,n p 1 ps, t, ωq :" v i,n p¨q ´ż t s F p 1 ps, t, ωq `pnq v i r p¨qdW i r p¨q ´!I i,n,B ts,tu v ',n p 1 pωq w q;rs,ts,1´v , ts,tu ´Ii,B ) F	(5.10)
	By Lemma A.1, we also have deduce that	@	I i,n,B ts,tu	´Ii,B ts,tu	D	̺ ď Cς n pt ´sq 1{p , from which we
			A ż t s	F i,n r p¨qdW i,pnq r	p¨q	´ż t s	F	i r p¨qdW	r p¨q i E
	Similarly, Lemma A.1 says that	@" F i,n p¨q	´F i p¨q ‰	s,t	D	̺ ď Cς n pt ´sq 1{p , and,

̺ ď Cς n ´t ´s K ¯3{p , the constant C being allowed to increase from line to line as long as it remains independent of n and K. Letting t p1q " t k and applying iteratively the above bound to a sequence of meshes of the form ∆ztt p1q u, ∆ztt p1q , t p2q u, . . . , and then letting K tend to 8, we deduce that ̺ ď Cς n pt ´sq 3{p . ̺ ď imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 ̺ ď Cς n pt ´sq 2{p . So, fixing i P t1, ¨¨¨, nu, choosing ̺ large enough and applying a suitable version of Kolmogorov's theorem (see for instance Theorem 3.1 in [19]), we can find p 1 P pp, 3q such that ˇˇˇż i r pωq ˇˇˇď θ i,n pωqpt ´sq 1{p 1 , ˇˇ"F i,n pωq ´F i pωq ı s,t ˇˇď θ i,n pωqpt ´sq 1{p 1 ,

  i,n p 1 ps, t, ωq and it satisfies

	pnq v	p w ',n ps, t, ωq w q ď 2 p w i,n ps, t, ωq,	(5.14)
	which suffices to apply Proposition 3.2, see also [1, Proposition 4.3], with w i,n p 1 ps, t, ωq replaced by p w i,n ps, t, ωq. The resulting semi-norm that must be used to control the difference `Xpωq ´X1 pωq, Y p¨q ´Y 1 p¨q ˘" `Xi pωq ´Xi pωq, X ' pωq ´X' pωq ȏn

a given interval rs, ts is ~¨~r s,ts, p w i,n ,p 1 . We use the corresponding local accumulation, which we denote by p N i,n `r0, T s, ω, α ˘.

  we have

	pnq v v ',n p p 1 pωq w	q;rs,ts,1´v ď 2p1 `M1 qpt ´sq.
	Using the same notations as in (5.3), we end-up with
	p w i,n p 1 ps, t, ωq ď r w i,n p 1 ps, t, ωq, 2 ˘X A n i"1 A i,n 1 X `Şn for ω P A n 3 , where we let	(5.27)
	r w i,n p 1 ps, t, ωq :"	

  ts,p´v `}h i } p rs,ts,̺´v `}h j } p

	¯.
	rs,ts,̺´v
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  3 and following(5.33), we know that, under the standing assumption, sup 0ďtďT ˇˇX t p¨q ˇˇand Xp¨q r0,T s,w,p are in L ρ 1 as soon as X 0 p¨q is in L ρ 1 .Finally, we can write the whole difference in the formA key fact is that G x and G µ are Lipschitz continuous in all the entries, the Lipschitz property in µ being understood with respect to d 1 . Moreover, similar to F itself, they are jointly continuously differentiable in all the arguments and the derivatives are Lipschitz continuous, the Lipschitz property in µ being again understood with respect to d 1 . ;pr,sq , X r,s ˘py, zq, where, as before, X pλq r;pr,sq pωq " X r pωq `λX r,s pωq. Splitting the last two terms in the above expansion into ż ~Xk pωq~r 0,T s,w k ,p w k pr, s, ωq 1{p pωq| ˘is the n-empirical mean of n variables that are dominated by `|X j r,s pωq| ˘j"1,¨¨¨,n and n ´1 of which are conditionally centered and conditionally independent given the realization of the path pX i , W i , W i q. Recalling (2.9) and allowing the value of the constant c to increase from line to imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019 pωq| ˘ˇˇw i pr, t, ωq 2{p .In order to conclude for the second term in the right-hand side of (A.6), it suffices to recall from Rosenthal's inequality (applied under the conditional probability given the realization of the path pX i , W i , W i q) that where χ ě 1 is a universal constant whose value may change from line to line. If ρ is large enough, we deduce from Lemma A.2 that A" G x `Xi p¨q, µ n p¨q ˘´G xStep 2. By the same argument, we have ˇˇ"Gµ ´Xi pωq, µ n pωq ¯`X j pωq ˘´G µ ´Xi pωq, LpXq ¯`X ˆ"w i pr, s, ωq 1{p `wj pr, s, ωq 1{p `ˆ1 n ´1{2 @ ~X~r 0,T s,w,p wpr, s, ¨q1{p D ´1{2 @ ~X~r 0,T s,w,p y χ̺ @ wpr, t, ¨qy 1{p χ̺ .Observing that xw j,i ps, t, ¨q2{p y χ̺ ď ⟪w `pr, t, ¨, ¨q⟫ 2{p χ̺ -this is the rationale for introducing w `, and taking expectation, we get A" G Taking the mean over j, we obtain for upper bound for the third term in the right-hand side of (A.6) the quantity C 1 n ´1{2 @ ~Xp¨q~r 0,T s,w,p D χ̺ ⟪w `pr, t, ¨, ¨q⟫ 3{p χ̺ . By Lemma A.2, we get the same bound as in the first step.

	We (A.5) ) tr,tu pωq ´Ii,B r,s pωq ¯Wi `Ii,B ts,tu pωq r,s pωq ´δx F i,B tr,su pωq s,t pωq `´δ x F i,n ts,tu pωq ´Ii,n,B tr,su pωq `Ii,n,B then compute ! I i,n,B tr,tu pωq ) ´!I " ´RF i,n r,s pωq ´RF i r,s pωq ¯W i i s,t pωq `˜1 n n ÿ j"1 δ µ F i,j,n r,s pωqW j,i s,t pωq ´E" δ µ F i r,s pω, ¨qW i,K K s,t p¨, ωq ı ¸, where R F i,n r,s pωq :" F i,n s pωq ´F i,n r pωq ´δx F i,n r pωqW i r,s pωq ´1 n n ÿ j"1 δ µ F i,j,n r pωqW j r,s pωq, R F i r,s pωq :" F i s pωq ´F i r pωq ´δx F i r pωqW i r,s pωq ´E" δ µ F i r pω, ¨qW r,s p¨q ı . Following (5.7) and (5.8), we define differentiable functions G x and G µ of their arguments setting δ x F i,n t pωq ": G x `Xi t pωq, µ n t pωq ˘, δ x F i t pωq ": G x `Xi t pωq, LpX t q ˘, δ µ F i,j,n t pωq ": G µ `Xi t pωq, µ n t pωq ˘`X j t pωq ˘, δ µ F ! I B tr,su pωq `IB ts,tu pωq ´IB tr,tu pωq ) ´!I B tr,su pωq `IB ts,tu pωq ´IB tr,tu pωq ) " `RF i,n r,s pωq ´RF i r,s pωq ˘W i s,t pωq `"G x `Xi pωq, µ n pωq ˘´G x `Xi pωq, LpXq ˘ır,s W i s,t pωq `1 n n ÿ j"1 " G µ `Xi pωq, µ n pωq ˘`X j pωq ˘´G µ `Xi pωq, LpXq ˘`X j pωq ˘ır,s W j,i s,t pωq `1 n n ÿ j"1 " G µ `Xi pωq, LpXq ˘`X j pωq ˘ır,s W j,i s,t pωq ´E" δ µ F i r,s pω, ¨qW i,K K s,t p¨, ωq ı . (A.6) Step 1. Observe that " G x `Xi pωq, µ n pωq ˘ır,s " ż 1 0 B x G x ´Xi,pλq r;pr,sq pωq, µ n,λ r;pr,sq pωq ¯Xi r,s pωqdλ `1 n n ÿ j"1 ż 1 0 D µ G x ´Xi,pλq j,pλq r;pr,sq pωq ˘Xj r,s pωqdλ " ż 1 0 B x G x ´Xi,pλq r;pr,sq pωq, µ n,λ r;pr,sq pωq ¯Xi r,s pωqdλ `żR 2d "ż 1 0 D µ G x ´Xi,pλq r;pr,sq pωq, µ n,λ r;pr,sq pωq ¯pyqzdλ  dν n,λ r;pr,sq pω; y, zq (A.7) where µ n,pλq r;pr,sq pωq :" 1 n n ÿ j"1 δ X j,pλq r;pr,sq pωq , ν n,pλq s;ps,tq pωq :" 1 n n ÿ j"1 δ `Xj,pλq r;pr,sq pωq,X j r,s pωq ˘, with X j,pλq r;pr,sq pωq :" X j r pωq `λX r,s pωq. j Proceeding similarly with " G x `Xi pωq, LpXq ˘‰r,s , we get " G x `Xi pωq, µ n pωq ˘´G x `Xi pωq, LpXq ˘ır,s " ż 1 0 " B x G x ´Xi,pλq r;pr,sq pωq, µ n,pλq r;pr,sq pωq Bx G x ´Xi,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯ı X i r,s pωq dλ `żR 2d "ż 1 0 D µ G x ´Xi,pλq r;pr,sq pωq, µ n,pλq r;pr,sq pωq ¯pyqzdλ  dν n,pλq r;pr,sq pω; y, zq ´żR 2d "ż 1 0 D µ G x ´Xi,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯pyqzdλ  dL `Xpλq R 2d "ż 1 0 D µ G x ´Xi,pλq n,pλq r;pr,sq pωq ¯pyqzdλ  dν n,pλq r;pr,sq pω; y, zq ´żR 2d "ż 1 0 D µ G x ´Xi,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯pyqzdλ  dν n,pλq r;pr,sq pω; y, zq `żR 2d "ż 1 0 D µ G x ´Xi,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯pyqzdλ  dν n,pλq r;pr,sq pω; y, zq ´żR 2d "ż 1 0 D µ G x ´Xi,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯pyqzdλ  dL `Xpλq r;pr,sq , X r,s ˘py, zq, we get ˇˇ"Gx `Xi pωq, µ n pωq ˘´G x `Xi pωq, LpXq ˘ır,s ˇď c ż 1 0 d 1 ´µn,pλq ċ ˇˇS i,n r,s `ω, |X ' r,s pωq| ˘ˇˇ, where S i,n r,s `ω, |X ' ˇˇ"Gx ´Xi pωq, µ n pωq ¯´G x ´Xi pωq, LpXq ¯ır,s W i s,t pωq ˇď c ż 1 0 d 1 ´µn,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯dλ ˆ"~X i pωq~r 0,T s,w i ,p `ˆ1 n n ÿ k"1 ~Xk pωq~2 r0,T s,w k ,p ˙1{2  ˆ"w i pr, t, ωq 3{p `1 n n ÿ k"1 w k pr, t, ωq 3{p  `c ˇˇS i,n r,s `ω, |X ' r,s A S i,n r,s `¨, |X ' r,s p¨q| ˘E3̺{2 ď c n ´1{2 A ~Xp¨q~r 0,T s,w,p wpr, s, ¨q1{p E 3̺{2 ď c n ´1{2 @ ~Xp¨q~r 0,T s,w,p D χ̺ @ wpr, t, ¨qD 1{p χ̺ , `Xi p¨q, LpXq ˘ır,s W i s,t p¨q E ̺ ď c ˆż 1 0 A d 1 ´µn,pλq r;pr,sq p¨q, L `Xpλq r;pr,sq ˘¯E χ̺ dλ ˙@~Xp¨q~r 0,T s,w,p D χ̺ j pωq ˘ır,s W j,i s,t pωq ˇď c ˆż 1 0 d 1 ´µn,pλq r;pr,sq pωq, L `Xpλq r;pr,sq ˘¯dλ ˙wj,i ps, t, ωq 2{p ˆ" X i pωq r0,T s,w i ,p ` X j pωq r0,T s,w j ,p `ˆ1 n n ÿ k"1 ~Xk pωq~2 r0,T s,w k ,p ˙1{2  n ÿ k"1 w k pr, s, ωq 2{p ˙1{2  `c ˇˇS i,j,n r,s `ω, |X ' r,s pωq| ˘ˇˇw j,i ps, t, ωq 2{p , where A S i,j,n r,s `¨, |X ' r,s p¨q| ˘E3̺{2 ď c n j p¨q ˘ır,s W j,i s,t pωq E ̺ ď c ˆż 1 0 A d 1 ´µn,pλq 3{p χ̺ `c n ´1{2 @ ~Xp¨q~r 0,T s,w,p D r,s line, we obtain ˆ@wpr, t, ¨qD 3{p χ̺ `c n ´1{2 @ ~Xp¨q~r 0,T s,w,p D χ̺ @ wpr, t, ¨qD 3{p χ̺ ď c ς n ´1 `@ sup j p¨q G ˘ır,s W j,i s,t pωq ̺ ď c ˆż 1 0 A d 1 ´µn,pλq r;pr,sq p¨q, L `Xpλq r;pr,sq ˘¯E χ̺ dλ ˙@~Xp¨q~r 0,T s,w,p D
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In fact, the term extended does not appear in[START_REF] Bailleul | Solving mean field rough differential equations[END_REF], but it is here of a convenient use to distinguish from the standard rough set-up used to solve the particle system (1.3).imsart-generic ver.
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Recall that a positive random variable A has a Weibull tail with shape parameter 2{̺ if A 1{ρ has a Gaussian tail. imsart-generic ver. 2014/10/16 file: MeanField2.tex date: July 2, 2019
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has Weibull tails with shape parameter strictly greater than 1 5 , uniformly in the choice of the dissection 0 " τ 0 ă ¨¨¨ă τ M 1 " T , which follows from the third item in the assumption of Theorem 5.1 together with the convexity of the function r0, `8q Q x Þ Ñ exppx 1`ε q, for ε ą 0. This permits to provide an upper bound for Ppδ ℓ ă 1{Aq and then to deduce as before that M 1 has sub-exponential tails.

It now remains to prove (5.31). By (4.24) and (4.25), we can find a real ε 1 ą 0, independent of n, such that sup i"1,¨¨¨,n E " exp `p w i,n p0, T, ¨qε1 ˘‰ ď C, for C independent of n. Hence, combining with the third item in the assumption of the statement, we get, for any n ě 1, i P t1, ¨¨¨, nu, a ą 1 and K ą 0, P ˆ´1 `p w i,n p0, T, ¨q1{p

for a new constant c independent of n and i. Choosing K " pln aq 1{p1`ε2{2q , we deduce that there exist a constant c ą 1 and an exponent ε ą 0 such that, for any a ą 0,

from which we obtain (5.31).

Appendix A: Integrability and Auxiliary Estimates

We prove in this appendix auxiliary results that we left aside in the body of the text to keep focused on the main problems at hand. In Appendix A. Importantly, the constant c is independent of n. Below, it is allowed to increase from line to line as long as it remains independent of n. So,

rs,ts,pp{2q´v

, -

rs,ts,pp{2q´v

, -

, -

where for any i, j P t1, ¨¨¨, nu, we let W i,j pωq rs,ts,p1{pq´H :" }pW i , W j qpωq} rs,ts,p1{pq´H `b}W i,j pωq} rs,ts,p2{pq´H , and similarly for pT h W q i,j pωq r0,T s,p1{pq´H . The tricky term in (A.2) is the last one on the last line. The key point is to notice that, for a given ε P p0, 2 ´ρq,

where we used the fact that 2 ´ε ă pq. Observe in particular that, whenever

where, in the second line, we used the fact that p{p2´εq ą 1. Returning to (A.2), we deduce that, whenever }h i } rs,ts,̺´v ď 1 and

, -

rs,ts,̺´v * .

(A. When the left-hand side is less than or equal to α p , we can modify the constant c in such a way that the inequality remains true when }h i } rs,ts,̺´v ě 1 or

rs,ts,̺´v ě n p2´εq{ppqq . Noticing that 2 ´ε ą ρ, (A.3) remains true with pnq pW i,' pωqq p{2 q;rs,ts,pp{2q´v in the left-hand side. Define now N i,n,K K `r0, T s, ω, α ˘:" N ̟ `r0, T s, α ˘, when ̟ps, tq p " pnq v W i,' pωq w p{2 q;rs,ts,pp{2q´v .

Then, (A.3) (together with 2 ´ε ą ρ) yields

, -

, -

where we applied Hölder's inequality to handle the last term. By choosing ε small enough such that p2 ´εq{ppqq ´ε{2 ą 0 and by applying Proposition 11.2 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF], we get, for a possibly new value of the constant c,

with }h} 2 H 'n "

We then notice that p2 ´εq{p2̺q ą 1{2 since 2 ´ε ą ̺. We deduce that T p2´εq{p2̺q ď cT 1{2 for a possibly new value of the constant c. We then apply Theorem 11.7 in [START_REF] Friz | A course on rough paths, with an introduction to regularity structures[END_REF] but on the space pW bn , H 'n , P bn q. Importantly, we observe that

, q ı is bounded by a constant c, independent of i and n, which proves that N i,n,K K pr0, T s, ¨, αq{ ? T has a Weibull distribution with shape parameter 2{p2 ´εq, independently of n.

Step 3. We now turn to the local accumulation of the sixth term in (4.3). Taking the norm pnq p ¨qq in (A.2), we get, with probability 1 under P bn , for all 

which suffices to conclude.

Step 4. We now handle the remainders in (A.6). By expanding (A.5) and by using similar notations for the remainders in the expansion of each `Xj ˘j"1,¨¨¨,n , we have (see for instance the proof of [1, Proposition 3.5]) Expanding R F i r,s pωq in a similar way, we have to investigate four difference terms in order to estimate the difference R F i,n r,s pωq ´RF i r,s pωq. The first difference term corresponds to the first term in the right-hand side of (A.8)

ˇˇ"BxF ´Xi r pωq, µ n r pωq ¯´B x F ´Xi r pωq, LpX r q ¯ı R X i r,s pωq ˇď c d 1 ´µn r pωq, LpX r q ¯~X i p¨q r0,T s,w i ,p w i pr, s, ωq 2{p .

Then, we must recall that, in the first line of the right-hand side in (A.6), the difference R F i,n r,s pωq ´RF i r,s pωq is multiplied by W i s,t pωq, which is less than w i ps, t, ωq 1{p . In other words, we must multiply both sides in the above inequality `µn p¨q, µ ˘q{3 ı 3{q ď c q,d M q pµq ς n , for a constant c q,d depending on q and d, where µ n p¨q is the empirical distribution of n independent identically distributed random variables.

Proof. Without any loss of generality, we can assume that M q pµq " 1, see the argument in [9, Chapter 5]. Then Theorem 2 in [START_REF] Fournier | On the rate of convergence in the Wasserstein distance of the empirical measure[END_REF] gives us the following results. 

Assuming without any loss of generality that A ě 1, we have lnp2 `A´1 ς ´1 n q ď lnp2 `ς´1 n q " lnp1 `2ς n q ´lnpς n q, which is less than ´2 lnpς n q for n large enough. Given our choice of ς n , we have ´lnpς n q " lnpnq{2 ´lnplnp1 `nqq, which is less than lnpnq{2. Hence, modifying the value of the constant c, we get, for A ě 1 and for n large enough, independently of the value of A, we get the bound P ´d1 `µn p¨q, µ ˘ě Aς n ¯ď C exp ˆ´cA 2 lnp1 `nq 2 plnpnqq 2 ˙`CnpnAς n q ´q{2 , which suffices to complete the proof.

Lemma A.3. Let pX n q ně1 be a collection of independent and identically distributed random variables with values in a Polish space S and let f be a realvalued Borel function on S 2 such that Er|f pX 1 , X 2 q|s and Er|f pX 1 , X 2 q|s are both finite. Then, with probability 1,

Proof. By the standard version of the law of large numbers, it suffices to prove that, with probability 1, lim nÑ8 1 n 2 n ÿ i,j"1,i "j f pX i , X j q " E " f pX 1 , X 2 q ‰ .
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