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Abstract. We define kinetic Brownian motion on the diffeomorphism
group of a closed Riemannian manifold, and prove that it provides an
interpolation between the hydrodynamic flow of a fluid and a Brownian-
like flow.
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1. Introduction

Kinetic Brownian motion is a purely geometric random perturbation of geo-
desic motion. In its simplest form, in R?, the sample paths of kinetic Brown-
ian motion are C'!' random paths run at unit speed, with velocity a Brownian
motion on the unit sphere, run at speed o2, for a positive speed parameter
0. More formally, it is a hypoelliptic diffusion with state space R% x S~ 1,
solution to the stochastic differential equation

dz] =v] dt,

dv{ = o Pyg (odWy),

for P, : R — (a)*, the orthogonal projection on the orthogonal of (a), for
a # 0 in R%, and W a standard R%valued Brownian motion. If o = 0, we
have a straight line motion with constant velocity. For a fixed 0 < o < 400,
we have a O random path, whose typical behavior is illustrated in Figure 1
below.

FIGURE 1. Brownian motion on the sphere and its integral
path in R<.

For o increasing to 0o, the exponentially fast decorrelation of the veloc-
ity process v? on the sphere implies that the position process 7 converges
to the constant path xg, if the latter is fixed independently of o. One has to
rescale time and look at the evolution at the time scale o2 to see a non-trivial
limit. It is indeed elementary to prove that the time rescaled position process
(295,)o<t<1 of kinetic Brownian motion converges weakly in C'([0,1],R?) to
a Brownian motion with generator ﬁ Aga. See Figure 2 below for an il-
lustration in the setting of the flat 2-dimensional torus. This homogenization
result is in fact valid on a general finite dimensional Riemannian manifold
M, under very mild geometric assumptions. Kinetic Brownian motion on
a d-dimensional Riemannian manifold M is defined as Cartan development
(m¢,m¢) in the unit tangent bundle T*M of M of kinetic Brownian motion
in R?. It is a geodesic for ¢ = 0, and a C' random path for a finite positive
value of o. It was first proved by X.-M. Li in [?] that the time-rescaled posi-
tion process (mZ.,)o<i<1 converges weakly to Brownian motion with genera-
tor ﬁ Ajs. The manifold M was assumed to be compact and martingale

methods were used to prove that homogenization result. X.-M. Li extended
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FIGURE 2. Sample paths of kinetic Brownian motion
- .
(.’I/'O_Qt)ogtgl as o increases.

this result in [?] to non-compact manifolds subject to a growth condition on
their curvature tensor. In [?], Angst, Bailleul and Tardif gave the most gen-
eral result, assuming only geodesic and stochastic completeness, using rough
paths theory as a working horse to transport a rough path convergence result
about kinetic Brownian motion in R to the manifold setting. See also [?] for
further results in homogeneous spaces, and [?] for a generalization of the ho-
mogenization result of [?] to anisotropic kinetic Brownian motion, or more
general Markov processes on T' M. Note that the dynamically obvious con-
vergence of the unrescaled kinetic Brownian motion to the geodesic motion
has been studied from the spectral point of view in [?], for compact manifolds
with negative curvature, showing that the L? spectrum of the generator of
the unrescaled kinetic Brownian motion converges to the Pollicott-Ruelle res-
onances of M. Other examples of homogenization results for Langevin-type
processes include works by Hottovy and co-authors, amongst others; see e.g.
[?, 2, ?, 7] for quantitative convergence results. See also [?, 7, ?, ?] for other
works on Langevin dynamics in a Riemannian manifold.

This kind of homogenization result certainly echoes Bismut’s program
about his hypoelliptic Laplacian [?, ?], whose probabilistic starting point
is a similar interpolation result for Langevin process in R¢ and its Cartan
development on a Riemannian manifold. The dynamics is lifted to a dynamics
on the space of differential forms to take advantage of the correspondence
between the cohomology of differential forms and homology of M, via index-
type theorems. See [?, 7, ?, ?] for a sample of the deep results obtained by
Bismut and co-authors on the hypoelliptic Laplacian.

Note also that kinetic Brownian motion is the Riemannian analogue of
its Lorentzian counterpart, introduced first by Dudley in [?] in Minkowski
spacetime in the 60’s. See the far reaching related works [?, ?, 7, 7], on rela-
tivistic diffusions in a general Lorentzian setting. No homogenization result
is expected for these purely geometric diffusion processes, unless one has an
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additional non-geometric ingredient, e.g. in the form of a relativistic fluid
flow, like in [?].

The object of the present work is to define and study kinetic Brownian
motion in the diffeomorphism group .#, or volume preserving diffeomorphism
group .4, of a closed Riemannian manifold M. As in the finite dimensional
setting, we prove that it provides an interpolation between the geodesic flow
and a Brownian flow, as the noise intensity parameter o ranges from 0 to oco.
For ¢ = 0, the motion in each diffeomorphism group is geodesic, and it corre-
sponds to the flow of the solutions of Euler’s equation in the case of .4, after
the seminal works of Arnold [?] and Ebin & Marsden [?]. When considered in
the setting of volume preserving diffeomorphisms, the Eulerian picture of ki-
netic Brownian motion provides a family of random perturbations of Euler’s
equations for the hydrodynamics of an incompressible fluid. There has been
much work recently on random perturbations of Euler’s equations, following
Holm’s seminal article [?]. See [?, 7, ?, ?, ?] for a sample. The structure of
the noise in these works is intrinsically linked to the group structure of the
diffeomorphism group, and it amounts to perturbe Euler’s equation for the
velocity field by an additive Brownian term, with values in a space of vector
fields on the fluid domain M. Our point of view is purely Riemannian, and
does not appeal to the group structure of the diffeomorphism group of the
fluid domain M. As in the above finite dimensional setting, we define kinetic
Brownian on the diffeomorphism group as the Cartan development of its ‘flat’
counterpart. Unlike the group-oriented point of view, where the running time
diffeomorphism is sufficient to describe its infinitesimal increment from the
noise, we need here a notion of frame of the tangent space of the running
diffeomorphism to build its increment from the noise. We provide an explicit
description of the invariant measure of the energy of the Eulerian velocity
field.

On the technical side, we use rough paths theory to transport a weak
convergence result for the flat kinetic Brownian motion taking values in the
tangent space to the configuration space .#, or .#, to a weak convergence
result for the solution of a differential equation controlled by that flat kinetic
Brownian motion. We use for that purpose the continuity of the Ito-Lyons
solution map to a controlled ordinary differential equation, in the present
infinite dimensional setting. This allows to bypass a number of difficulties that
would appear otherwise if using the classical martingale problem approach,
as in [?, ?]. All we need about rough paths theory is recalled in Section 2.4.

From a geometric point of view, the tangent space to the configura-
tion space can naturally be seen as an infinite dimensional Hilbert space. For
this reason, we define and study in Section 2 kinetic Brownian motion on a
generic infinite dimensional Hilbert space H. We provide an explicit descrip-
tion of the invariant measure of the velocity process in Section 2.1, and we
establish exponential decorrelation identities for the latter in Section 2.2. The
invariance principle for the position process associated to the time-rescaled
H-valued kinetic Brownian motion is then established in Section 2.3. With
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the rough paths tools introduced in Section 2.4, Section 2.5 is devoted to the
proof of the fact that the canonical rough path above the time-rescaled posi-
tion process converges weakly as a rough path to the Stratonovich Brownian
rough path of a Brownian motion with an explicit covariance. Elements of
the geometry of the configuration spaces .# and ., are recalled in Section
3. We develop in particular in Section 3.3 and Section 3.4 the material needed
to talk about Cartan development operation as solving an ordinary differen-
tial equation driven by smooth vector fields. The final homogenisation result,
proving the interpolation between geodesic and Brownian flows on the con-
figuration spaces, is proved in Section 4 using the robust tools of rough paths
theory. Appendix A contains the proof of a technical result about Cartan
development in ..

Notations. We gather here a number of notations that are used throughout
the article.

e The letter v stands for a Gaussian measure on a Hilbert space H, with
covariance C,, : H* x H* — R, and associated operator C., : H —
H. The scalar product and norm on H are denoted by (-,-) and || - ||,
respectively.

e We denote by H the Cameron-Martin space of the measure ~.

e We endow the algebraic tensor space H ®, H with its natural Hilbert
norm. This amounts to identify H® H with the space of Hilbert-Schmidt
operators on H.

e We use the notation A <, B for an inequality of the form A < ¢B, with
a constant ¢ depending only on p.

2. Kinetic Brownian motion in a Hilbert space

2.1. Brownian motion on a Hilbert sphere

We first recall basic results on Brownian motion in H, and refer the reader
to the nice lecture notes [?, ?] for short and detailed accounts.

Recall that a Gaussian probability measure on H is a Borel measure
such that £* is a real Gaussian probability on R, for every continuous linear
functional ¢ : H — R. Fernique’s theorem [?] ensures that

/ exp (al|z||*) v(dz) < oo,

H

for a small enough positive constant a. It follows that the covariance
Cy (0,0 = /6(:0)5’(56) v(dz), ¢,0 € H

is a well-defined continuous bilinear operator on H* x H*. One can then
define a continuous symmetric operator C', : H — H, by the identity

(C(h), k) = C(h, k),
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for all h,k € H. It has finite trace equal to
(@) = [ llalP 2 (do).

Conversely, one can associate to any trace-class symmetric operator C:H—
H, a Gaussian measure v on H whose covariance C.(¢,¢) = C(¢,), for all
¢ € H. Since 67 is compact, there exists an orthonormal basis (e,) of H,
such that
Cy(en) = O‘iem
for non-negative and non-increasing eigenvalues a,, with > a2 < co. We de-
fine a Hilbert space H by choosing (anen) as an orthonormal basis for it.
The space H is continuously embeded inside H. Let (X™) stand for a se-
quence of independent, identically distributed, real-valued Gaussian random
variables with zero mean and unit variance, defined on some probability space
(Q, F,P). Then the series
Z X"apen
n

converges in L?(Q, H), and has distribution ~.

Fix a positive time horizon T € (0, co]. An H-Brownian motion in H, on
the time interval [0,T) is a random H-valued continuous path W on [0,T),
with stationary, independent increments such that the distribution of Wi is a
Gaussian probability measure v on H. A simple construction is provided by
taking a sequence (W) of independent, identically distributed, real-valued
Brownian motions, and setting

W, = Z Wlanen.

Denote by S the unit sphere of H, and let
P,:H—H

stand for the orthogonal projection on (a)*, for a # 0. The H-spherical
Brownian motion v{ on S is defined as the solution to the Stratonovich
stochastic differential equation

dv] = o Pz (odWy) (1)

associated to a given initial condition v§ € S; it is defined for all times. The
speed parameter o is a non-negative real number. Write Z for [, my(du).

Theorem 2.1. The image under the projection u — u/||u| of the measure
%my(du) in the ambiant space H is a probability measure u on S that is
invariant for the dynamics of vy, for any positive speed parameter o.

This statement generalizes Proposition 1.1 of [?] to the present infinite
dimensional setting. The above description of the invariant measure p as an
image measure under the projection map actually coincides with the finite
dimensional description given in the latter reference.
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Proof. When written in Ité form, the stochastic differential equation (1)
defining the process (vy)¢>o reads

0.2

aof = - (tr(a)vg + O, (07) — 207(%,%)@;’)6115 4o Py (dW),  (2)

and setting v;"" := (v, e;), for any integer i, we have

2
. O' .
gt __ 2 2 21,,0,m(2 0,1
dvy ——2[5 an+0¢i—2§ o vy |]vt dt
n n

+ 0 |ad W} — o7 Z anvf’”th"] .
n

As in the finite dimensional anisotropic case treated in [?], it is actually
easier to work with an H-valued lift of this S-valued process. We introduce
for that purpose the process (u):>o solution of the Stratonovich stochastic
differential equation

2
duf =~ uf [Pugdt + o g Jod Wi

equivalently, in Tt6 form and coordinate-wise, setting uy"* := (ug, e;) as above,
we have

0.2

dul* = = (= [luf |* + oF) uf "dt + o|uf o dW;.

A direct application of It6’s formula then shows that uJ"/||u?|| satisfies the
same stochastic differential equation as vy ’i, for all 7, so the two S-valued
processes (v )i>0 and (u? /||uf||)¢>0 have the same distributions. As in the
finite dimensional case, one can then check by a direct computation that the
measure ||u| ~!y(du) on H is invariant for the processes (uf); this implies the

statement of Theorem 2.1.

Alternatively, one can bypass computations and argue using Malliavin
calculus as follows. Denote by L the infinitesimal generator of the process
(u?). Set V(u) := u/||u||? for u # 0, and let A, denote the Laplace operator
associated with the covariance C., with weights (a2),. We then have for any
test function f and any v € H

Lf(w) = - ull*(Lof)(w),
with
(Lof)(u) = B f(u) = uV f(u) + Cs (V(w), VF(w)).
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One then has for any test function f, with usual notations D for the gradient
and ¢ for the divergence,

/ Lf (u)Jul = (du)
H

z /H Lo () |ull(du)
— 0?E[(~ 0DF + (V. DF)c,) [W]]

- E[( —§D|W|+6 VW )F} —0.
—— ——

W - W
T wi

O

We prove in Section 2.2 that the velocity process (v{) converges expo-
nentially fast in Wasserstein distance to the invariant probability measure p
of Theorem 2.1, for any initial velocity vg. An invariance principle for the
time-rescaled position process (x7,,) is obtained as a consequence in Section
2.3. We recall in Section 2.4 what we need from rough paths theory in this
work, and prove in Section 2.5 that the canonical rough path associated to the
time-rescaled process (27,,) converges weakly as a rough path to an explicit
Stratonovich Brownian rough path.

2.2. Exponential mixing of the velocity process
We consider in this section the mixing properties of the spherical process
(vf)i>0 with unit speed parameter o = 1. To simplify the expressions, we
drop momentarily the exponents o from all our notations. Our objective is
to show that the spherical process
(v)e>0 = (vf)e>0

is exponentially mixing. Recall that the 1 and 2-Wasserstein distances are
defined for any probability measures p, v on S by the identities

Wa(\, v) = inf {]E[HX Y2 X ~ A Y ~ 1/},

Wi(\,v) = inf {]E[||X Y| X ~AY ~ u}

- sup{/fd(x— D): | fluip < 1},

where the infimum is taken over all couplings P of X ~ A and Y ~ v, and the
supremum over all 1-Lipscthiz functions f : S — R. The first two equalities
are definitions, the last one is the Kantorovich-Rubinstein duality principle.
Note that W; < Whs.

Proposition 2.2. Assume that
3a < tr(C,). (3)

There exists a positive time T such that for any probability measures A and v
on the unit sphere S of H, we have

Wa (PPN, Piv) < e V" Wa(A,v),
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for all t > 0. In particular, the invariant measure p is unique, and for any
probability measure A on the sphere S, and t > 0, we have

Wa(PiA, ) < 2677, (4)

The role of the trace condition (3) will be clear from the proof. If we
have the freedom to choose the covariance C of the Brownian noise, this is
not a constraint. Note that the rougher the noise, that is the more slowly
the sequence of the eigenvalues «,, converges to 0, the easier it is to satisfy

condition (3). We shall see in Section 4 that it holds automatically in a

number of relevant examples of random dynamics in the configuration space
of a fluid flow.

Proof. Denote by P the law of the Brownian motion (B;) with covariance C,,
and by P, the law of the solution of Equation (1) with ¢ = 1, starting from
v € S. Denote by E and E, the associated expectations operators. Recall
that the notation (a,b) stands for the scalar product of a and b in H. Fix
vo,wo € S, and consider the two diffusion processes (v¢) and (w;), started
from vy and wg, respectively, and solutions of the It6 stochastic differential
equations

1 _ _
dv, = —i(tr(Cv)vt + T (vy) — 2C7(vt,vt)vt>dt + P, (dW),
1 _ _
dw; = —5(‘61?(07)% + Cy(wy) — 2C, (wy, wt)wt)dt + Py, (dWy).

Comparing with Equation (2), it is clear that (v;) has law P,, and (w;) has
law P,,,. Moreover, It6’s formula yields

A(vr, wn) = (66(C5) = Cs (01, 01) = o (we, wy) = Co (v, we) ) (1= (v, w)) e
+ (1= (ve, wy)) ((”Uta dWy) + (wt,th)>,
or equivalently, setting
Ne = glwe = il = 1= (o w0),

we get

dN,; = —(tr(éw) — Cy(ve,v) — Cy(wy, we) — Cy(v4, wt))Ntdt

- Nt((vt, dWy) + (wy, th)).

Now remark that since the sequence («,) is non-increasing, we have

Oy (v,0) = Y anlonl® < af,

n>0

for any v € S. Taking the expectation under P in equation (5), we have from
Gronwall inequality

]E[Nt] S e—t(tr(Cw)—3()zg)IE[]\/'()]7
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that is ,
E[[Jvr — wy]|?] < e (@) =890) 1 — g ||2.

The conclusion of the statement follows. O

Remark that E,[v;] = 0, as a consequence of the symmetry properties
of the invariant measure p.

Corollary 2.3. For any vy € S, we have
B [ve]|] < 2e7/7,

The process (v¢) is stationary if vy has distribution p; it can then be
extended into a two sided process defined for all real times. Denote by (F;)ier
the complete filtration generated by (v;) on the probability space where it is
defined. Set F<g := a(]-'t; t < 0) and F>, = 0(.7-} ;t > s), for any real time
s. Recall that the mixing coefficient «(s) of the velocity process v is defined,
for s > 0, by the formula

a(s) == sup |[P(AN B) —P(A)P(B)|.
AE€F<o,BEF>,
The following fact will be useful to get for free the independence of the incre-
ments of the limit processes obtained after proper rescalings of functionals of

(ve)-
Corollary 2.4. The mizing coefficient «(s) tends to 0 as s increases to oo.

Proof. As a preliminary remark, recall the definition of the lift (u7) to H of
(v7), introduced in the proof of Theorem 2.1. This process is strong Feller,
as it can be seen to satisfy a Bismut-Li integration by parts formula. See e.g.
Peszat and Zabezyk’ seminal paper [?], and Wang and Zhang’s extension [?]
to unbounded drift and diffusivity. The velocity process (vy) is thus itself a
strong Feller diffusion, and if one denotes by (F;) its transition semigroup, the
functions P g, for g measurable, bounded by 1, are all Lipschitz continuous,
with a finite common upper bound L for their Lipschitz constants.

Now, it follows from the Markovian character of the dynamics of (v;),
and the Feller property of its semigroup, that it suffices to see that

E[f(v0)g(vs)] (6)
tends to 0 as s goes to oo, for any real-valued continuous functions f,g on
the unit sphere S, with null mean with respect to the invariant measure p,
uniformly with respect to f and g with L°°-norm 1. Writing further

E[/(00)E[g(vs)lvs,] | = E[£(v0) (Prg)(vs-1)]

for s > 1, and using the strong Feller property of the semigroup of the
diffusion process (v;), we can further assume that the function g in (6) is
L||g||so-Lipschitz continuous. Let wg stand for its uniform modulus of conti-
nuity. For each s, denote by (vs,7s) a Wi-optimal coupling of the measures
P} 6,, and p, for a deterministic vg, so we have

E[[vs — Ts|] = Wi (P! 60y, 1)
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Using the fact that [ gdu = 0, one then has
[ (0)g(v,)]| = [E[£(w0) E[g(0,)luo] |

< 1l B[y (f — )]
< il llglloe Eflos — 7,1

so the statement follows from Proposition 2.2. O

2.3. Invariance principle for the position process

We assume in all of this section that the initial condition vy of the velocity
process of kinetic Brownian motion is distribued according to its invariant
probability measure p, from Theorem 2.1.

Pick 1/3 < a < 1/2. We prove in this section that the distribution
in C*([0,1], H) of the time-rescaled position process (x7,,) converges to the
distribution of a Brownian motion in H with an explicit covariance, given
in identity (7) of Proposition 2.5 below. The usual invariance principles in
Hilbert spaces consider weak convergence in C°([0,1], H), so we need an
extra tightness estimate provided in Section 2.3.1 to complete the program.
To make the most out of the convergence results from Section 2.2, set

g ._ 5.0 .
Xt = To24s

we have

o2t 1 ot
X7 — X7 :/ Vo2 du = — vy du,
o
g

2s ots

with (v;) = (v}), the spherical Brownian motion run at speed o2 = 1.
Proposition 2.5. For every 0 < « < 1/2, the distribution in C*([0,1], H) of

the process (X7) converges as o goes to oo to the Brownian motion on H
with covariance operator

) - /0 OO]E{E(UO)E’(W) 0 ()e(wy)] d, ™)

for £, 0 e H*.

2.3.1. Tightness in Holder spaces. We dedicate this section to proving the
following uniform estimate.

Proposition 2.6. For any p > 2, we have
sup E[[| X7 — X7[7] <, [t — s]P/.
a>0

It follows from Kolmogorov-Lamperti tightness criterion that the laws
of X7 form a tight family in C*([0, 1], H), for any 0 < o < 1/2. Note that for

T = o*(t — 5) > 0, we have
T
/ Uy, du
0

o (t—s)
/ Uy, du
0

=t—s|-

)

(o (o 1
e - xs £ 4

1
VT
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so Proposition 2.6 is a consequence of the estimate

T
/ V¢ dt
0

We translate our problem in discrete time, writing

/OT _ Z /kkJrl

k<T

p

E <, TP/

to work with the correlations between different integral slices, and compare
this sequence to martingale differences. There is an abundant literature on
the subject; we follow here the approach of C. Cuny [?].

Let (92, F,P) be a probability space with a filtration (F,,)n>n,, where
—o00 < ng <0, and let (X,,),>n, be H-valued random variables such that
each X,, is measurable with respect to F,. Recall that (X,),>0 is said to
be a martingale difference with respect to (F,) if each X,, is integrable
and E[Xn+1|]:n] = 0, for all n > ng. The following result is an elementary
consequence of the Burkholder-Davis-Gundy and Jensen inequalities.

Lemma 2.7. Let X be an H-valued martingale difference with moments of
order p > 2. Then

1 1 P
IE[|X0+---+Xn—1|p]’1’ <pVn (n(EHXom +---+E[]Xn_1!”])> .
In particular, if X is stationary, then

1
E|:|X0 + -+ Xn71|p} ! Sp \/EHXUHLP

Assume from now on that we are given a sequence (X,,)>n, of integrable
H-valued random variables on (Q, F,P). For j € Z, and k > 0, define the
o-algebra

]:](k) = ]:ij?
and set
k k
v = ]E{ijk ot Xjorgero |fg(f)1]

(It may not make sense for all j, k, depending on how far in the past the
o-algebras (F,,) are defined.) Note that
(e+1) ) ) (£+1)
v = E{Yzj +Y2j+1‘fj,1 }
SO

Y4 J4 4 £+1
MO = y® 1y, v

is a stationary martingale difference with respect to the filtration (]-' ;Hl))j> 0"
We use the classical martingale/co-boundary decomposition to prove the next
result.
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Lemma 2.8. Fiz p > 2, and assume that F,, is defined for n > —2Ft1, then

1
B[ 4o+ 32,
1
<» Z o(k—3)/2 ( ( [|Y(J)| } HY(;)J 1’ ]))p
0<i<k

In particular, if the sequence (X,,) is stationary, then
B[V 4+ V3077 < 22 (BIIYO)]? + -+ 27 2R |y P[] )

Proof. For any 0 < j < k, set nj := 2k=J: note that n, = 1. We have for
j < k the identity

Y ety = (07 ) e (Ve Yo, )

2n]+1 1

_ Méj) +. —I—M(]) 1 _|_Y(J+1) N +Y(J+1)

i+ njy1—1

By induction we get

VO v = (0 -+ MO )+ () Y.
Because M) is a martingale difference, we know from Lemma 2.7 that
» 1
E[| MO+ + M ]
1
1 () g
<o v (o (1M + -+ g 1) )
Jj+1

We also know that

M(])

D —vPL 2 BV + Y| FSY),

2k—1
so we have
E[M )7 < E[IL 7 + (v, [ + BRI PIFG)]”
{ [‘Y(J+1+1‘p|]_-£j1+1)]] ;
< 2B[[V2L["7 + B[V, )7
Putting it all together, we obtain
B[V +--+ v "]

=

1 , ,
Sp Z I+t (2n +1 (E[|%(])|p] + +E[|Y2(’f]13+1|p])>

0<j<k

+E[YOP)

< Z o(k=3)/2 (Q:_j(]EHYo(j)m‘F EHYu)J |7 D)

0<j<k

=
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Proof of Proposition 2.6. It is enough to prove that we have for any T > 1
and p > 2, the estimate
T
/ (7 dt
0

Fix the integer k such that 7/2 < 2¥ < T, and define

p

E <, TP

G+1)T27"
X; ;:/ vdt, F za(vs,s <+ 1)T2*’€).
jT2-F

Since we assume that vy is distributed according to an invariant probability
measure, we can actually have our process started for a time arbitrarily far
in the past, so we can assume that F; is well-defined for any j > —2k+1 We
can then write

T
/ vedt = (Xo — E[Xo|F-1]) + -+ (Xor 1 — E[ X1 |For_s])
0

+E|:X0|f_1:| + e +E|:X2k:_1|.F2k_2].

The first sum is a stationary martingale difference with respect to the o-
algebra (F;);>0; the second is the subject of the previous lemma. One then
has the estimate

T
/ UVt dt
0

4 ok/2 <]E{|YO(°)|”]’I’ +m+2k/2E[|YO(k)|p]i>

S =

1

p
E ] <, 2F/2 E[\XG - ]E[X0|}L1]]p} ’

< VT <1E[|Xo|”]” +E[OF] -+ 2k/2E[|YO(k)|p]p>

with the notations of Lemma 2.8. In our setting,

T2k
/ VUt dt
0

Pl p i
] <(T27%)r <2
2itio—Fk
/ (0 dt
2iT2—Fk

2itio—Fk
/ V¢ dt| .
2iT2-F
Note that we have from Corollary 2.3

2i+1po—k 2i+1o—k )
E,, / vedt|| < / |Eo, [vd]| dt < / et dt
2iT2—Fk 2

[ XollLr = E

and

YU =E F_1| =E,

JT2—k 2072k

<e 2T,
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We can insert this in the upper bound for the integral to obtain

T
/ (0 dt
0

2.3.2. Convergence in Hélder spaces. We are ready to prove Proposition 2.5
on the weak convergence of X° in any Holder space C*([0,1], H) to the
Brownian motion in H with covariance given by formula (7).

< |14+ 27922 VT, (8)

Lp j=0

O

Proof of Proposition 2.5. From the tightness result in C*([0,1], H) stated
in Proposition 2.6, it is sufficient to show that X7 converges weakly in
C°([0,1], H) to the above mentionned Brownian motion. Since we start the
velocity process from its invariant measure, the position process X has sta-
tionary increments, and any weak limit will have the same property. From
Corollary 2.4, the increments of a weak limit are independent on disjoint in-
tervals; continuity of a limit process gives independence of the increments on
adjacent intervals. Any weak limit of the X is thus a Brownian motion, and
uniqueness will follow from identifying uniquely its covariance. The latter is
identified writing
otT
1

E[6(x5)"] = % /O / U4TIE[£(US)£(vt)]dtds
i /O ” <U4 /O b 1S+u§04Td5) E[¢(v0)¢(v)] du.

We see on this expression that is has limit

2T /OOOEV(UO)E(UU)]du,

using the decorrelation estimate from Proposition 2.2 to justify dominated
convergence.
O

We aim now at improving the weak invariance principle of Proposition
2.5 into a weak invariance principle for the canonical rough path associated
with X?. This will be crucial in Section 4 when defining kinetic Brownian
motion in a diffeomorphism space as the solution of a differential equation
driven by X7, and proving the interpolation results of Theorem 4.3 and
Theorem 4.4 by a continuity argument. We recall in the next section all we
need to know from rough paths theory.

2.4. The flavour of rough paths theory

It is not our purpose here to give a detailled account of rough paths theory.
We refer the reader to the lecture notes [?, 7, ?, ?], for introductions to the
subject from different point of views. The following will be sufficient for our
needs here.
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Rough paths theory is a theory of ordinary differential equations
¢
dz =Y Vi(z) dhi, 9)
i=1

controlled by non-smooth signals h € C%([0,1],R?). The point z; moves
here in R?, where we are given sufficiently regular vector fields V;. Young
integration theory [?, ?] allows to make sense of the integral fo V(ys)dhs,
for paths y,h that are o-Holder, for a > %, as an R%valued a-Hélder
path depending in locally Lipscthiz way on y and h. This allows to for-
mulate the differential equation (9) as a fixed point problem for a con-
tracting map from C%([0,1],R?) into itself, and to obtain as a consequence
the continuous dependence of the solution path on the driving control h.
Lyons-Young theory cannot be used for a-Holder controls with a < %, as
even in R, with one dimensional controls, there exists no continuous bi-
linear form on C%([0,1],R) x C*([0,1],R) extending the Riemann integral
fol yidhy, of smooth paths y, h; see Propositon 1.29 of [?]. (This can be un-
derstood from a Fourier analysis point of view as a consequence of the fact
that the resonant operator from Littlewood-Paley theory is unbounded on
C([0,1],R) x C*~1([0,1],R), when 2 — 1 < 0; see [?].) Lyons’ deep insight
was to realize that what really fixes the dynamics of a solution path to the
controlled differential equation (9) is not only the increments dhy, or hy — h,
of the control, but rather the increments of h together with the increments
of a number of its iterated integrals. This can be understood from the fact
that for a smooth control, one has the Taylor-type expansion

fen =10+ ([ t ) i)+ ([ oy i, bt ) (ViVif) )

+ / (VaViVif) (2u,) dh, dhd, dRE
s<ug<uz<ui<t

for any real-valued smooth function f on R?. (We use Einstein’ summation
convention, with integer indices in [1,£].) We consider here the vector fields
V; as first order differential operators, so we have for instance

ViVaf = (D*)(V}, Vi) + (D) ((DVi)(V5)).-
The usual first order Euler scheme
2 = 25 + (Rt — hi)Vi(zs),

is refined by the above second order Milstein scheme
2 2+ (W — B Vi(z) + ( / dhz;zdhﬁl) (ViVi) (z).

whose one step error is given explicitly by the above triple integral, of order
|t — 5|3, for a C! control h. The iterated integrals

s<uz<ui1<t s<u1<t

Sug<u; <t
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are however meaningless for a control h € C([0,1],R?), when a < 1/2. A p-
rough path X above h, with 2 < p < 3, is exactly the datum of h together with
a quantity, indexed by (s < t), that plays the role of these iterated integrals.

Set [0,1]< := {(s,t) € [0,1]%; s < t}, and recall that (RZ)®2 stands for the
set of £ x ¢ matrices.

Definition 2.9. Fiz 2 < p < 3. A p-rough path X over R, is a map
0,1]< — R’ x (R")®*?
(57 t) = (Xt37 th)a
such that
th = ht - hS7
for a C*([0,1],R) path h, and X satisfies Chen’s relations
Xis = X + X ® Xy + qu

forall0 < s <u<t<1. The 1/p-Hélder norm on X, and the 2/p-Hélder
norm on X, define jointly a complete metric on the nonlinear space RP(p) of
p-rough paths.

Chen’s relation accouts for the fact that for a C! path h, one has indeed
[ —ndyanh = [ (n, ) dnt, -+ (- ) (8 - )
s<uy <t u<ui <t

e[ - ndand,
s<uj<u

forany 0 < s <wu <t <1, and any indices 1 < j,k < £. One has also in that
case, by integration by parts, the identiy

/ (hi, —hi)dhk + / (ks —hF)dhi,
s<u1 <t s<u1 <t
= & (i — hi) (b — 1),

A p-rough path X such that the symmetric part of X;4 is equal to % Xis® Xys,
for all times 0 < s < t < 1, is called weakly geometric. The set of weakly
geometric p-rough paths is closed in RP(p). For a C! path h defined on the
time interval [0, 1], setting X5 := hy — hs and

t
th ::/ Xus ®qua

for all 0 < s <t < 1, defines a weak geometric p-rough path, for any 2 <
p < 3, called the canonical rough path associated with h. Let B stand for
an (-dimensional Brownian motion. The Stratonovich Brownian rough path
B = (B, B) is defined by

Bis := / (By — Bs) ® odB,,.
s<u<t

It is almost surely a weak geometric p-rough path, for any 2 < p < 3.
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Definition 2.10. Let C’g’ vector fields (V;)1<i<e on R? be given, together with
a weak geometric p-rough path X over RY. A path (2zt)o<t<1 1s said to be a
solution to the rough differential equation

dZt = V(Zt) dXt (10)
if there is an exponent a > 1, such that one has
F(z) = f(z0) + X (Vi) (20) + X05 (ViVaf) (z) + Ot = 517),  (11)
for any smooth real-valued function f on R%, and any times 0 < s <t < 1.

The above O(-) term is allowed to depend on f. Importantly, the so-
lution of a rough differential equation driven by the Stratonovich Brownian
rough path coincides almost surely with the solution of the corresponding
Stratonovich differential equation; see e.g. the lecture notes [?, ?].

Theorem 2.11 (Lyons’ universal limit theorem). The rough differential equa-
tion (10) has a unique solution. It is an element of C1/P([0,1],R?) that de-
pends continuously on X.

The map that associates to the driving rough path the solution to a
given rough differential equation, seen as an element of C/P([0,1],R%), is
called the It6-Lyons solution map. If (X™) is a sequence of random geometric
p-rough path in R, converging weakly to a limit random geometric p-rough
path X the continuity of the Ito-Lyons solution map gives for free the weak
convergence in C/?([0,1],R?) of the laws of the solutions to Equation (10)
driven by the X", to the law of the solution of that equation driven by X.

The theory works perfectly well for dynamics with values in Banach
spaces or Banach manifolds, and driving rough paths X = (X, X), with X
taking values in a Banach space E. One needs to take care in that setting to
the tensor norm used to define the completion of the algebraic tensor space
F ®, F, as this may produce non-equivalent norms, and that norm is used to
define the norm of a rough path. Note that families of vector fields (V1, ..., Vp)
are then replaced in that setting by one forms on E with values in the space
of vector fields on the space where the dynamics takes place. See e.g. Lyons’
original work [?] or Cass and Weidner’s work [?] for the details. See e.g. [?]
for a simple proof of Lyons’ universal limit theorem in that general setting.

The vector fields in Definition 2.10 and Theorem 2.11 are required to
be C3. This is used to get solution of equation (10) that are defined on
the whole time interval [0,1]. Only local in time existence results can be
obtained when working with unbounded vector fields, or on a manifold. The
Taylor-like expansion property (11) defining a solution path is then only
required to hold for each time s, for ¢ sufficiently close to s. One still has
continuity of the solution path with respect to the driving rough path, in
an adapted sense. See e.g. Section 2.4.2 of [?]. This continuity property is
sufficient to obtain the local weak convergence of the laws of the solution
path to the corresponding limit path, for random driving weak geometric
p-rough paths converging weakly to a limit random weak geometric p-rough
path. See Definition 4.2 for the definition of local weak convergence.
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So far, we have defined kinetic Brownian motion (z¢,v{) in H from
its unit velocity process v?. We have seen in Proposition 2.5 that its time
rescaled position process (X7) := (x7.,) is converging weakly in C* ([0, 1], H)
to a Brownian motion with explicit covariance (7), for any o < 1/2. We
prove in the next section that the canonical rough path X7 associated with
X7 converges weakly as a weak geometric p-rough path to the Stratonovich
Brownian rough path associated with the Brownian motion with covariance
(7), for any 2 < p < 3. This convergence result will be instrumental in
Section 4 to prove that the Cartan development in diffeomorphism spaces of
the time rescaled kinetic Brownian motion in Hilbert spaces of vector fields
converge to some limit dynamics as ¢ increases to co. This will come as a
direct consequence of the continuity of the Ito6-Lyons solution map.

Remark 2.12. The idea of using rough paths theory for proving elementary
homogenization results was first tested in the work [?] of Friz, Gassiat and
Lyons, in their study of the so-called physical Brownian motion in a magnetic
field. That random process is described as a C* path (xt)o<t<1 in R? modeling
the motion of an object of mass m, with momentum p = mz, subject to
a damping force and a magnetic field. Its momentum satisfies a stochastic
differential equation of Ornstein-Uhlenbeck form

1
dpt = —— Mptdt + ch
m

for some matriz M, whose eigenvalues all have positive real parts, and B is a
d-dimensional Brownian motion. While the process (Mx;)o<i<1 i easily seen
to converge to a Brownian motion W, its rough path lift is shown to converge
i a rough paths sense in LY, for any q > 2, to a random rough path different
from the Stratonovich Brownian rough path associated to W.

A number of works have followed this approach to homogenization prob-
lems for fast-slow systems; see [?, 2,2, 7, 7] for a sample.

2.5. Rough paths invariance principle for the canonical lift

As in Section 2.3, we assume in all of this section that the initial condition
vo of the velocity process of kinetic Brownian motion is distribued according
to its invariant probability measure u, from Theorem 2.1.

Let X7 = (X9,X7) stand for the canonical rough path associated to
the random C! path X, where we recall that

t ot u
1
st:/(XZ—X§)®dXZ:—4/ / U ® Uy, drdu.
s o ots Jots
Recall that the tensor space H ® H is equipped with its natural complete
Hilbert(-Schmidt) norm.
2.5.1. Tightness in rough paths space.

Proposition 2.13. For any p > 2, we have

supEUX‘ZSV’] <t —sfP.
>0 '



20 J. AnGsT, I. BAILLEUL and P. PERRUCHAUD

It follows in particular from Proposition 2.6, Lemma 2.13 and the known
Kolmogorov-Lamperti criterion for rough paths that the family of laws £(X7)
is tight in RP(a™1), for any 1/3 < o < 1/2.

Proof. The statement of the lemma is a consequence of the estimate

T ot
E ‘/ / vg ® vy dsdt
o Jo

for T' > 1; we prove the latter. We use for that purpose the same kind of
multiscale martingale/coboundary decomposition as in the proof of Lemma
2.8. Let k the unique integer such that

1<6:=T2"%<2.

(j+1)8 pt
Aj = / / Vs ® vy dsdt,
js 0

ﬁj = f(j+1)5 = 0('[}578 < (] + 1)5)

p
gp Tpa

Define

and

As above, we can assume without loss of generality that ]?j is defined for
all j > —2F+1 as vy is assumed to be distributed according to the invariant
probability measure of the velocity process. Then the integral rewrites as

T
/ / Vs ® vy dsdt
o Jo

= (Ao - ]E[A0|}A-—1D +F (Azk—1 *E[Azk—l\ﬁ%—ﬂ)

+ EI:A0|J;_'\._1] + A + ]E[Agk_l‘ﬁQk_Q]
(12)

The first sum is a martingale difference with respect to (]?n)nZO, albeit not
stationary,
p}

EU > (Aj—E[Aﬂﬁj—l])
<p 2472 (Tk > EUAJ‘ —E[A4;|Fj1] \pD;

D=

0<j<2k
0<j<2k

1

S 2 (% 5 E[lal])”

0<j<2k
Each term is controlled using Lemma 2.6, and the fact that |v;| = 1,

(j+1)8 t » (5+1)8
sl <o [ E] [nafTas, [ eras ey
js 0 Jé
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so the LP norm of the first sum in (12) is bounded above by 2* up to a
constant depending only on p.

The second sum in 12 is treated as in the proof of Lemma 2.8. Set here

Zj(n) — Aj?“ 4+t Aj2"+(2”—1) ‘ﬁj(i)l}’

with

~

(n) ._ 7
.F] = .F(jfl)Qn.

One has

?

S
p:|p

1 n n P
S5 3 2 (G (B2 + e+ 2 L))

0<n<k

> E[4;]75-1]

0<j<2k

and we are left with the study of the moments of the Z j(-n). These variables are

the conditional expectation of a double integral, which can be decomposed
at time (j — 1)2"9 + § as follows.

(j+1)2"5 st R
/ / vs @ vy dsdt |1y
j2nd 0

(j+1)2™6 (j—1)2"6+6V0 .
= / / Vs @ E |:’Ut ‘ .F(j,]_)2n:| dsdt
j2¢ts 0

(j+1)2"8
+ / E
j2ns

—. pm (n)
= R,V +5;7.

(n) _
Z;” =E

t
/ vs © [0 F,] ds | f(j_mn] dt
(j—1)27646V0

Because the conditioning is from a distant past, the first term is controlled
using the exponential mixing and the estimate of Lemma 2.6.
p]

(j—1)2"6+85V0
/ v ds
0

(j—1)276+5V0
/ Vs ds
0

<p (ke

p

E[|R")"] =E

(j+1)2"8 N
/ Elvg [ F(j-1)2n] dt
j2n5

p ontls p
/ o (t=0)/7 g4
ng

<E
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When dealing with the second term, we use the stationarity of v to write

(+1)2"8 t >
1 L2772l
jans (G-1)28+5

ontls t R
= / E [/ Vs ®E[vt|}—s] .7-"0] dt
ong s
ontls t R
s/ E[/ e_(t_s)/Tds‘}"o} dt
ng P
< 2™,

Now we have, for each 0 <n <k and 0 < j < 2k,
EHZJ(Z)}P] (2k Z) (QF) —p2 /T _|_2p/

so we eventually have

B =

pq L

E Z E[Aj\]?j_l] » Z 2k l9t/2, —2f /‘r+2(k e)/22g)

0<j<n 0<f<k

A

9—t/2 —2@/7 4ok e)/Q)
0

=9k 2742(1 + e /m.
0</(<k

I/\

gk

IN
IA

This last sum is convergent, so the L? norm of the second term in (12) is no
greater than a constant multiple of 2%. O

2.5.2. Convergence in rough path space. We are now ready to state and
prove the main result of this section.

Theorem 2.14. Pick 1/3 < o < 1/2. The processes X% converge in law in
RP(a™1), as o goes to oo, to the Stratonovich Brownian rough path with
covariance

) = /0 b E[z(vo)e’(vt) + e'(vo)z(vt)} dt

Let X be a random weak geometric a~!-rough path with distribution an
arbitrary limit point of the family of laws of the X?. Write X = (B, X), with
B a Brownian motion with the above covariance. Denote by X the projection
of X on the finite dimensional space generated by the first d vectors of the
basis (e;) from Section 2.1 — we use below the associated coordinate system.
Using a monotone class argument and the tightness result stated in Lemma
2.13, the statement of Theorem 2.14 is a consequence of the following result,
given that d > 1 is arbitrary.

Lemma 2.15. The d-dimensional random rough path X s a Stratonovich
Brownian rough path with associated covariance matriz diag(y1,- -+ ,7va), with

i = 2/ E[vévﬂ dt.
0
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Proof. Let G? stand for the step-2 nilpotent Lie group over R?. We prove
that the process (X;o)o<i<1 is a Gfi—valued Brownian motion by showing
that it has stationary, independent, increments. The stationarity is inherited
from the stationarity of the X?. The independence of the increments of X on
disjoint closed intervals is a consequence of Corollary 2.4 on the convergence
to 0 of the mixing coefficient of (v;). Continuity of X allows to extend the
result to adjacent time intervals.

We identify the generator of the G2-valued Brownian motion (X, ) as the
generator of the d-dimensional Stratonovich Brownian rough path following
the method of [?]. We recall the details for the reader’s convenience. Note that
we only need to consider the joint dynamics of B, and the antisymmetric part
(A,) of (X,); the former takes values in the Lie algebra g3 of G2 — a linear
space. Denote by AP the antisymmetric part of Stratonovich Brownian rough
path associated with B. We then have, for any smooth real-valued function
f on R? x g% with compact support, the identity

(£(Bis) = 1(0)) = (£(B,AF) - £(0))

= (02)(B,,0)(&, — AP) + O(|&, - AP[?)

= ((221)(B.,0) = (82)(0,0)) (&, — AF) + (320)(0,0) (&, — AF)
+0(|a, - AP[").

The conclusion follows by multiplying by ¢t~ and taking expectation, sending
t to 0, after recalling that A, and Af} are centered, and recalling the uniform
estimates from Proposition 2.13 under the form

A| . v |AZ] . s t.

3. Geometry of the configuration space

3.1. Configuration space

Let (M, g) be a d-dimensional connected and oriented Riemannian manifold,
and 7 : ' — M a finite dimensional fiber bundle over M, with vertical bundle
VF — M. Think of the trivial bundles M x M — M, or M x TM — M,
as typical examples. We collect from Palais’ seminal work [?] elementary
results on the Hilbert manifold H®(F') of sections of m with Sobolev regularity
exponent s > %.

1. Sobolev embedings hold true, with in particular H*(F) C C*(M, F), if
s>k+%andk20.

2. Variations of H®-sections of F'. The spaces TH*(F) and H*(VF) are
isomorphic as Hilbert manifolds. This isomorphism accounts for the
fact that an infinitesimal perturbation (Jf) of a section f of F, reads
as a collection of vertical tangent vectors (0 f)(z) € Vi, F', indexed by
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x € M. As a particular example, for any finite dimensional manifold IV,
the spaces TH®*(M,N) and H*(M,TN) are isomorphic.

3. For any two finite dimensional fiber bundles F, G above M, the map

(f.9) = (z€ M (f(2),9(x)))
is an isomorphism between H*(F') x H*(G) and H*(F Xy G).
4. Omega lemma. Given a smooth fiber bundle morphism ¢ : FF — G,
above M, set
wo(f) :=Pof,
for any section f of F. Then wg sends H*(F) in H*(G), and dwg :
TH*(F) — TH*(G) is isomorphic to wqe : H*(VF) — H*(VG), via
the isomorphisms TH*(F) ~ H*(VF) and TH*(F') ~ H*(VQ).

For s > %, set
M = H*(M,M);
this will be the configuration space of our dynamics. Choosing s > %7 ensures
that .# C C°(M,M), by Sobolev embedings. The tangent space to this
Hilbert manifold is given by

T ~ H*(M,TM),

from item 2 above. If s > % + 1, elements of .# are C' maps from M into
itself. Recall in that case from Section 4 of [?] that the subset .#, of A of H®
maps from M into itself that preserve the volume form by pull-back is then
a closed submanifold of .#, and that elements of .#, are diffeomorphisms.
So .4y is a group. We shall always assume implicitly these constraints on
the regularity exponent s, when talking about .# or .#;. We recall other
elementary facts on H*(TM) at the end of this section.

To implement a version of Cartan’s development machinery in the weak
Riemannian setting of the next section, we introduce the following finite
dimensional fiber bundles above M, seen below as the first component. Given
z,y € M, denote by O(T,M,T,M) the set of isometries from T, M to T,,M.
Set

F) .= {(w,y;e); (z,y) e M x M,e € O(TEM,TyM)},
ﬂm:{@%MNLMEMxMMEEM}
F®) = {(m,y;v); (x,y) e M x M,v € TyM},

Fe) = 3 (2,y5e,0) 5 (2,y) € M x M,e € O(T, M, T,M),v € T,M ;.
We understand H*(F ")) as the set of H® maps from M into T M, so
T ~ H*(F™). We denote by (¢(-),v(-)) a generic element of H*(F®)).
We have similar interpretations of the other H* spaces over the corresponding
bundles, with similar notations. Since the map
F x e FO — F@)

((z,y5e), (z,y3w)) = (z,y; e(w)),
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e

O\

FIGURE 3. An infinitesimal rigid object = is moving along
a path. It has position y and velocity v at some time. Its
orientation at that time is given by an isometry e : T, M —
T, M, and its velocity v is given in its initial reference frame
by w.

is a smooth bundle morphism, it follows from items 3 and 4 above, that it
induces a smooth map from H*(F(€)) into H*(F(*)). Similarly, the smooth
map

Flev) _y p(w)
(z,y5e,0) = (z,y5¢7 1 (v)),
induces a smooth map from H®(F()) into H*(F™)).

We refer the reader to the classic textbook [?] for the following elemen-
tary facts from functional analysis about the Laplace operator A on vector
fields on M. We take the convention that —A is a non-positive symmetric
operator on L?(TM). This operator has compact resolvant, so one has an
eigenspaces decomposition

2(rM) = P B, (13)
n>0

with finite dimensional eigenspaces E) , with corresponding non-positive
eigenvalues A, | —oo. Eigenvectors of —A are smooth, from elliptic regu-
larity results. We recover the space H*(TM) described above setting

HYTM) = f =Y fo € LX(TM); > Xl fullz < o0

n>0 n>0

The 0-eigenspace is finite dimensional. Any choice of Euclidean norm || - || on
it defines the topology of H*(T'M), associated with the norm
1/2

1£lls = 1lfoll + | D Asllfal3:

n>0
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3.2. Weak Riemannian structure on the configuration space

Denote by VoL the Riemannian volume measure on (M, g), and by exp :
TM — M, its exponential map. The configuration space .# is endowed with a
smooth weak Riemannian structure, setting for any ¢ € .# and X (p),Y () €
T, ,

(K@Y ), = [ em (X(@)m), Y (p)m) VoL(dm).  (14)

This formula defines by restriction a weak Riemannian metric on the space
Moy of H® maps from M into itself preserving the volume form. In that
setting, notice that if X(¢) = Xop and Y (¢) = Y o, for some vector fields
X,Y on M, then the change of variable formula gives

(XY (), = [ o (X(m). ¥(m) VoL(am)

so the scalar product is in that case the L? scalar product of the vector fields
X and Y. The fact that the topology on .# induced by the scalar product is
weaker than the H*-topology makes non-obvious the existence of a smooth
Levi-Civita connection. Ebin and Marsden have proved that

e the L2 metric (14) is a smooth function on .Z,

e it has a smooth Levi-Civita connection V, with associated exponen-
tial map Exp well-defined and smooth in a neighbourhood of the zero
section; it is explicitly given by

EXpW(X)(m) = eXPy(m) (X(m))

The geodesics of (.#,V) are defined for all times. Denote by V the Levi-
Civita connection of (M, g). For smooth right invariant vector fields X,Y on
A, with X(p) =X oy and Y(¢) =Y o @, one has

(VxY)(p) = (VxY)op.

The L?-scalar product is right invariant on the group .#, from the change of
variable formula. The Levi-Civita connection of the L? metric on the volume
preserving configuration space .#; is explicitly given in terms of the Hodge
projection operator P on divergence-free vector fields on M. Denote by R,
the right composition by ¢. For any ¢ € .#j, the map

P, :=dR,0PodR", (15)

is indeed the orthogonal projection map from T,.# into T,,.#, and its de-
.. . =0 .
pends smoothly on ¢ € .#{. So the Levi-Civita connection V' on .4 is given
by
70 —
V' =PoV,;
it is a smooth map. Its associated exponential map is no longer given by the

exponential map on T'M, due to the non-local volume preserving constraint.
Geodesics are not defined for all times anymore. Denote by Id the identity
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map on M. For smooth right invariant vector fields X,Y on ., with X (¢) =
Xopand Y(p) =Y o, for vector fields X,Y on M, one has

(VxY)(1d) = P(VxY).
V.I. Arnol’d showed formally in his seminal work [?] that the velocity field
w: [0,T] — H*(TM) of a geodesic ¢ in .4y, with u; := p;0p; !, is a solution
to Euler’s equation for the hydrodynamics of an incompressible fluid. Ebin
and Marsden gave an analytical proof of that fact in their seminal work [?].
(Besides that classical reference, we refere the reader to Arnold and Khesin’s

book [?], or Smolentsev’s thourough review [?] for reference works on the
weak Riemannian geometry of the configuration space.)

The flat two-dimensional torus T? offers an interesting concrete exam-
ple. Its symplectic structure allows to identify a Hilbert basis (Ax, Br)rez2\0
of Tiq.#y from an eigenbasis for the Laplace operator on real-valued func-
tions on T?; see e.g. Arnold and Khesin’s book [?], Section 7 of Chap. 1.
Denote by 07,02 the constant vector fields in the coordinate directions, and
k = (k1,ko) € Z%. One has

Ay = k|7 (k2 cos(k - 0)91 — ky cos(k - 9)32),
By = |k (k2 sin(k - 0)9; — ky sin(k - 9)82).

One can see in the following simulations the image of axis circles by the time 1
map of the associated flow in T2, corresponding to different inital conditions
for ug, with oy = Id. The simulations were done using an elementary finite
dimensional approximation for the dynamics, using the explicit expressions
for the Christoffel symbols first given by Arnold in [?]. We come back to this

FI1GURE 4. Time 1 snapshots of the geodesic flow, for differ-
ent initial momenta in the volume preserving diffeomorphism
group.

point in Section 3.4.

3.3. Parallel transport

We recast in this section the parallel transport operations in .# and .#,
using the bundles F' from Section 3.1. This allows to set the notations for the
next section on Cartan development operation in .# and .#;. Recall H*(F')
stands for H® sections from M into the corresponding bundle F'. We denote
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by V F the vertical space in T'F, for the canonical projection map F — M.
Recall also that Tiq.# is simply the set of H® vector fields on M.

Denote by K : TTM — T M, the connector associated with the Levi-
Civita connection V on M. So, for a path v = (my,v;) in TM, one has

vmtvt = K(’.)/t),

and
VxY = K((dY)(X)),
for any smooth vector fields X,Y on M. The second order tangent bundle
TT.# of A identifies with H®(M,TTM). The connector K associated with
the L2-Levi-Civita connection V is given, for a section Y of TTM over an
element of .Z, by
KY):=KoY eT.

Set

F(v7‘7)) = F(v) XMxM TM.
One defines a smooth one form on F(*%) with values in TF"), by requiring
that Vg, vy = 0 iff

d .
o (Yo, ve) = 9 (e, ve; )
We choose the letter $, for this horizontal lift of the connection. In simple
terms, for any fixed (y,v) € TM, the linear map H)(y,v;-) identifies the
space T, M to the horizontal subspace of T{, ,,)TM, via the usual horizontal
lift. Note that the definition of $(*)(y, v;9) does not depend on the base point
x € M, for a generic element (z,y;v) € F®) and g € TyM.

Denote also by () the smooth one form on ‘/QF(U) with values in the
space of vector field on F(¢), such that for any path (z,y:;e;) in F(¢), and
any vector w € T,, M, the vector e,(w) € T,, M is transported parallely along
the M-valued path (y;) iff

d . .
P (e, er) = 9 (ye, x5 9e)-

Here again, the base point x € M is not involved in the definition of the
tangent vector $(°)(y,e;9), for a generic element (z,y;e¢) € F() and g €
T, M. Pick

(55071/0;60) € F(e)v
and note that for any vertical vector
(y7e) 6 ‘/(afo,yggeo)F(e)a
and vy € Ty, M, one has
(9, ¢) = 5 (yo, €03 v0)
iff
(yv 6(11))) = fj(v) (yOa 60(’[1}); UO) € ‘/(zo,yo;eo(w))F(v)a
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for any w € T, M, with é(w) defined naturally. It follows from the Omega
Lemma that one defines a smooth operator from H* (F(”v'g)) to TH*(F™),
setting

—(v) . v .

957 (p(),v(); () =9 0 (p(),v(-); ()
Similarly, we define a smooth one-form on Tiq.# with values in vector fields
on H*(F(©)), setting

9 ((),e(): X) =5 0 (p(),e(-);e(X)), X € Tt

Proposition 3.1. Given a path (¢i(-); et(')’vt('))0<t<1 in H*(F©v)), one has
pointwise o

& (pula)s ) = 9 (pula), en(w) @),
for all x € M, iff

d —(v
at (Wt,et(X)) :55( )

for every X € Tyg A .

(@t,et(x);vt),

The next two propositions give a description of parallel transport in .#
and .4, respectively, in terms of the vector field 5(U) on H¥(F®),

Proposition 3.2. Let (p¢(-), ve(+)) be a T.# -valued path. Then

0<t<1
v¢tvt = 0,
if
d —(v
a(%»vt) :53( )(%,Ut;sbt)-

Proof. Given (y,v) € TM, the following map identifies T}, M with the vertical
subspace of T, ,\T'M

d M
VO (y,v;) 1w € T, M — | (v +tw) € Ty, TM.
t=0

For any (z,y;v) € F(*) and u € T(yyv)(Fl(,U)), one then has
u=9"(y,v;a) + B (y,v;b) iff a=dpy(u), and b= K (u).
For an H*(F,)-valued path (¢;(:),v;(-)), one then has the splitting

d . v .
dt (e, ve) = VW o (1, ve; K 01y)) +H" o (e, ves Pt) (16)
=9 o (‘Ptvvt;ﬁwvt)) Jrg(v) (@tvvt;¢t)~
The result follows because composition by U, (y, v; ) is one-to-one. O

Recall that P stands for Hodge projector on divergence-free vector fields.
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Proposition 3.3. Let (gat(-),vt(-))0<t<1 be a T Hy-valued path. Then

=0
V¢t Ve = 0,
uf
—(v)

9 (o) = @P)(5

Proof. Write T 4, ./ for the section of T'.# above .#y, and write () :=id—P :
T 4o — T 4,4, for the projection on the orthogonal in T'.# of T'.#;. Note
that the differential dP of P identifies to P in the fibers, since it is linear.
The identification is up to an isomorphism which is exactly the composition
by 2U,, in the sense that

dP (B (¢, v; v')) =B o (p,v; P(v'))
for any v,v" € T, #. As we work with a T.#,-valued path (¢, v¢), one has
Q(vy) = 0, at all times, so differentiating this identity with respect to ¢ gives

dQ(v) = 0.
Since P+ @ = id, we can conclude with the decomposition (16), by rewriting
the expression for the time derivative under the form
dv . .
th = dP(i) + dQ(i¢)
=2 o (%,Ut;P(K(@t))) + dp(@(v) o (1, v 1))

=g o ((pt,vt;ﬁgtvt) + dP(E(U)(%Ut; @t)) =

(‘Pt, Uty 5 <Pt))~

3.4. Cartan and Lie developments

Cartan’s moving frame method [?] provides a mechanics for constructing C!
paths on M from C' path on R?, giving something of a chart on pathspace in
M. Tts description requires the introduction of the orthonormal frame bundle
OM over M. Tt is made up of pairs z = (m, e), with m € M and e an isometry
from R? to T}, M. It has a natural finite dimensional manifold structure, and
the Riemannian connection on T'M induces vector fields Hy,..., H; on OM
by parallel transport of a frame in the direction of its i*® direction along the
corresponding path in M. The development in M of a path (z;)o<i<1 in R?
is the natural projection (m;) in M of the OM-valued path (z:) solution to
the equation
Z.t = H(Zt)(.’ﬂt)

Explosion may happen before time 1. This path in M depends not only on
mg but also on eg. Conversely, given any C' path (m;)o<i<1 in M and 29 =
(mo,e0) € OM above my, parallel transport of e along the path (m)o<i<1
defines a path (z;)o<i<1 in OM, and setting z; := fot e5 1 (1) ds, defines a
path in R? whose Cartan development is (my)o<t<1. Geodesics are Cartan’s
development of straight lines in R?.
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T.0M

oM

FIGURE 5. For 2 € OM and a = (a1, ...,aq) € R, we have
H(2)(a) = Y1, a;H;(z) € T.OM.

We recast the definition of Cartan development given above in a finite
dimensional setting in the following form well suited for the present infinite
dimensional setting.

Definition 3.4. Let a C! path (X;) in Tya-# be given. An M -valued path (p;)
is the Cartan development of (X;) if there exists a family

et : Tiqll — Ty, M,
of bounded linear maps, with eq = id, such that
pr = er(Xy),
Vee(Y)=0, forallY € Tat,

at all times where ¢, is well-defined.

(17)

This definition conveys the same picture as above. The map e;, named
‘frame’; is transported parallely along the path (¢;), while ¢; is given by
the image by e; of X,. The existence of a unique Cartan development for a
path (X;) in T1q.# is elementary in that case. It follows from Proposition 3.2
that equation (17) is equivalent to requiring that the H*® (F(e))—valued path
(¢, 1) satisfies the equation

d —e .
i e) =9 (1, €05 Xy). (18)

Since the one-form §° is smooth, this equation has a unique solution until
its possibly finite explosion time.

Here is now the form of Cartan development dynamics in .#,. Recall
Tiq#, is the set of H® divergence-free vector fields on M.
Definition 3.5. Let a C' path (X;) in Tiq.#o be given. An My-valued path
(¢¢) is the Cartan development of (X;) if there exists a family

[ TIdv//O — th.ﬂo,
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of bounded linear maps, with eq = id, such that
bt = ey (Xt)a
ﬁgtet(Y) =0, foralY € T4y,

at all times where ¢, is well-defined.

(19)

The proof of existence of a unique solution to Cartan’s development
system (19) in .#; is not fundamentally different from the case of .#, and
uses Proposition 3.3 instead of Proposition 3.2. It is however more technical,
and full details are given in Appendix A. The system is recast as a controlled
ordinary differential equation in the state space

2 = H*(F9) x L(H*(TM)),

with generic element ((4,07 e), f), and dynamics of the form
d —e .
— (pt,e0) = H (ﬁpneﬁ ft(Xt))v

dt
d — d
%ft :5f <dt (‘Ptaet),ft) )

driven by a smooth vector field-valued one form on Tiq.#y. We use Cartan’s
development map in the configuration manifolds .# and .#; in the next
section. We conclude this section by a brief comparison between Cartan de-
velopment and the Lie group notion of development, commonly used to define
the stochastic Euler equation.

Let G stand for a finite dimensional Lie group with Lie algebra LIE(G).
Lie’s development operation provides another way of constructing paths

(gt)ogtg

with values in G from paths (z;)o<i<1 in R¢, by identifying T,,G and R? via
a linear map ¢g, and solving the ordinary differential equation

g = to(&1) ge-
In such a group setting, Malliavin and Airault [?] gave a correspondance be-
tween the Cartan and Lie notions of development, although this was certainly
known to practitioners before; see also [?]. Choose an orthonormal basis of the
Lie algebra of G, and denote by ¢ , the structure constants, so the Christoffel
symbols are given by I'} , = % (CZJ — C]Z,n + cfb) ,f)‘ Write 'y, for the antisym-
metric endomorphism with matrix F‘k’, in the chosen basis, for 1 < k < d,
and consider T as a linear map from R? into the set of antisymmetric endo-

morphism of the Lie algebra. Denote by OLIE(G) the orthonormal group of
L1E(G).

Proposition 3.6. Let (w:)o<t<1 be a C' path in the Lie algebra of G. The path
(9¢)o<t<1 solution to the (OLIE(G) x G)-valued equation
dOt = Ot F(wt) dt7 OO = Id,

. 20
dg: = Oy () gy, (20)
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is the Cartan development of the path (wy).
(The system (20) is reminiscent of the equation in
H3(F©) x L(H(TM))
from Appendix A, recasting Cartan’s development dynamics in .#;.) The

geodesic started from the identity of G, with direction w € LIE(G), is in
particular given in the Lie picture as the solution (g;)o<¢<1 to the equation

gr = exp (t0(w)) (w) gs-
Note that exp (tI'(w))(w) € LIE(G). Note also that it is the fact that the
Christoffel symbols are constants that allows to reduce the second order dif-

ferential equation for the geodesics on a generic Riemannian manifold into a
first order differential equation, in a Riemannian Lie group setting.

Following Euler’s picture, it is this group-oriented point of view that has
been considered so far in the geometric viewpoint on fluid hydrodynamics, de-
terministic or stochastic. The naive implementation of Cartan’s machinery in
terms of Lie development runs into trouble in the infinite dimensional setting
of A or .#,. This can be seen on the example of the two dimensional torus
and the volume preserving diffeomorphism group as a consequence of the
fact that Christoffel symbols define antisymmetric unbounded operators that
have no good exponential in the orthonormal group of Trq.#y. The problem
comes from the fact that .# of .4y have a fixed regularity. See Malliavin’s
works [?, ?] for a quantification of the loss of regularity of Brownian mo-
tion in the set of homeomorphisms of the circle, as time increases. The Lie
development picture of Cartan’s development map can however be used for
numerical purposes for simulating kinetic Brownian motion in .. It corre-
sponds to having w,; a Brownian motion on the unit sphere of the H® space
of divergence-free vector fields on M; see Section 4.

4. Kinetic Brownian motion on the diffeomorphism group
Pick s > g, or s > g + 1, depending on whether we work on .# or ..

4.1. Kinetic Brownian motion in .#

Set H := H*(TM). Pick another exponent a > 3, and let # stand for the

L2-orthogonal of ker(A) in H5+%(T'M), with norm
14 = D Pl (1 fallZe,

n>1

inherited from the eigenspace decomposition (13) of L?(T'M). Let ¢ stand
for the continuous inclusion of H into H, and use freely the canonical iden-
tification of H and H*. The continuous symmetric operator v.* : H — H,
is trace-class, as a consequence of Weyl’s law on a closed manifold, so it is
the covariance of an H-valued Brownian motion W. Note the correspondance
C = w*, and

O‘?L = |)‘n|_a7
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with the notations of Section 2.1. We assume that the trace condition
3ai < tr(0), (21)

holds true. Note that the faster \; goes to oo, the lesser there is noise in W.
The extreme case corresponds to only finitely many non-null ;. On the other
extreme, the bigger the multiplicity of a? is, the more noise there is in W.
The trace condition (21) holds automatically as soon as ? has multiplicity
three.

The Brownian motion vy on the sphere S of H, associated with the
injection H — H, is defined as the solution to the stochastic differential
equation

dv] = o Pye (cdWy),

where P, : H — H, is the orthogonal projection on (a)~*, for any a # 0, and
the position process x¢ of kinetic Brownian motion (:c‘t’ ,vf ) in H, given as
its integral

¢
ajt":mo—F/ v? ds.
0

Kinetic Brownian motion on .# is then defined as Cartan development in .#
of the time rescaled kinetic Brownian motion (ch2 t) in H.

Definition 4.1. Kinetic Brownian motion on # is the projection ¢f on the
configuration space M of the solution (gof, e?) to the equation in H*(F(©))

d o o =€ o o o
at (p7,ef) =9 (‘Pt ) €4 ;02U02t)7 (22)

with initial condition pg =1d and eg = Id € L(HS (TM))

This equation is only locally well-posed. We introduce the following
definition to deal with weak convergence questions for possibly exploding
solutions of random or stochastic differential equations. Add a cemetary point
t to H*(F(©), and endow the disjoint union H*(F(©)) LI {{} with its natural
topology. Denote by € the set of continuous paths z : [0,1] — H*(F(©)) L
{1}, that start from a reference point zy := (Id, eg) above the identity map
on M, and that stay at the cemetery point t, if it leaves H*(F(®)). Let
F = Vte[o,l] Fi where (F;)o<t<1 stands for the filtration generated by the
canonical coordinate process on pathspace. Let Br stand for the H® balls
with center zp and radius R, for any R > 0. The first exit time from Bpg is
denoted by 7g, and used to define a measurable map

TR : QO — C([O, 1]7§R)a

which associates to any path (z:)o<t<1 € o the path which coincides with z
on the time interval [O, TR}, and which is constant, equal to z,,, on the time
interval [TR, 1]. The following definition then provides a convenient setting
for dealing with sequences of random process whose limit may explode.
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Definition 4.2. A sequence (Qn)n>0 of probability measures on (907.7:) 1
said to converge locally weakly to some limit probability Q if the sequence
QHOTIQ1 of probability measures on C([0,1], Br) converges weakly to QOTgl,
for every R > 0.

We proved in Theorem 2.14 that the canonical rough path lift X7 of
(mgQ t)o <i<1 CONVErges weakly in the space of weak geometric p-rough paths
in H, to the Stratonovich Brownian rough path B = (B, B), with covariance

operator
Cut,0) = / E[0(00)¢'(0r) + € (w0)t(un)]dt, 6.0 € H.
0

Since one can rewrite Equation (22) as a rough differential equation driven
by the rough path X7

d —

7€) =9 (o7 e X7 )
the continuity of the It6-Lyons solution map gives the following theorem. Re-
call that the solution of a rough differential equation driven by the Stratonovich

Brownian rough path coincides almost surely with the solution of the corre-
sponding Stratonovich differential equation.

Theorem 4.3. The .# -valued part (©7) of kinetic Brownian motion is con-
verging locally weakly to the projection on .4 of the H*(F(®))-valued Brown-
ian motion (¢, er) solution to the stochastic differential equation

d —e
dt (pr,et) =9 ((Sﬁtv et); OdBt)~

The motion of ¢y itself is not given as the solution of a stochastic dif-
ferential equation. This happens already in finite dimension, when defining
anisotropic Brownian motion on a d-dimensional Riemannian manifold M as
Cartan development of an anisotropic Brownian motion in R%. One needs the
moving orthonormal frame attached to the running point on M, to define the
position increment in M from the increment of the driving anisotropic Brown-
ian motion in R?. The motion in M is in particular non-Markovian, while the
motion in OM is Markovian. The same phenomenon happens in the present
infinite dimensional setting, and we do not get here classical semimartingale
flows in H*(M, M) [?], or Brownian flows in critical spaces, such as in Malli-
avin’s work on the canonical Brownian motion on the diffeomorphism group
of the circle [?, 7, ?].

We remark here that the stochastic homogenization methods that X.-M.
Li used in [?] to prove the homogenization result for kinetic Brownian motion
in a finite dimensional, complete, Riemannian manifold, require a positive in-
jectivity radius and a uniform control on the gradient of the distance function
over the whole manifold. It is unclear that anything like that is available in
the present infinite dimensional setting, or in the setting of volume-preserving
diffeomorphisms investigated in the next section, especially given the fact
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that .# or .#, have infinite negative curvature in some directions. The ro-
bust pathwise approach of rough paths allows to circumvent these potential
issues.

4.2. Kinetic Brownian motion in ./

Let Hy stand for the closed subspace of H of divergence-free vector fields
on the fluid domain M. It is the tangent space at the identity map of the
closed submanifold .#, of .# of diffeomorphisms that leave invariant the
Riemannian volume form of M. The intersection H{t® of H3+® with Hy, is
continuously embedded into Hy. If ¢y stands for this injection, the continuous
symmetric operator toufy : Ho — Hp, is trace-class, so it is the covariance of
an Ho-valued Brownian motion W. The spectrum of Cy := 1ot is explicit
in the example of the 2-dimensional torus, with maximal eigenvalue 1, with
multiplicity 4. The trace condition (3) thus holds true for any a > %, in
that case. Similarly, the spectrum of the Laplacian operator on vector fields
on the 2-dimensional sphere is obtained from the spectrum of the Laplacian
operator on real-valued functions on the 2-sphere, as a consequence of its
canonical symplectic structure [?, ?]. Eigenvectors are constant multiples of
the complex spherical harmonics, so eigenvalues have multiplicity at least
two. Here as well, symmetry properties of the 2-dimensional sphere imply
that they have actually multiplicity four, so the trace condition (3) holds for
free. More generally, divergence-free vector fields on a simply connected d-
dimensional manifold M are gradients of functions, so one gets the spectrum
of the covariance operator C' from the spectrum of the Laplacian operator on
real-valued functions on M. One needs to assume the trace condition (3) in
this generality.

Kinetic Brownian motion (z¢,v{) in Hy is defined as above from the
associated Brownian motion (v{) on the sphere Sy of Hp, and its integral.
We prove in Theorem A.3 of Appendix A that the Cartan development ¢f
in .4y, of the time rescaled kinetic Brownian motion in Hy is the .#y-part of
the solution (7, e, f7), to a controlled ordinary differential equation on

¥ = H(F9) x L(H*(TM))

driven by a smooth vector field
d o o <¢(, 0 _o. ro o
it (@t 7615) =9 (‘Pt e I (027% ))7

d —f (d

G =5 (G eren.ar).
Here again, one can rewrite that equation as a rough differential equation
driven by the canonical rough path X? above the time rescalled position

process of kinetic Brownian motion in Hy. The continuity of the Ito-Lyons
solution map then gives the following theorem.

Theorem 4.4. The .#y-valued part (¢f) of kinetic Brownian motion in & is
converging locally weakly to the projection () on My of a Z -valued Brow-
nian motion.
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Here again, the dynamics of ¢¢ is non-Markovian. Note that since ki-
netic Brownian motion on .#; is defined by Cartan development, using the
L? metric (14), the L%-size of ¢¢ is equal to the L?-norm of v{. The metric
being right invariant on the group .4, the Eulerian velocity

. -1
uf = @7 o (pf) ™,
also has the same L2-norm as v§. The latter is not preserved a priori; neither

is the H®-norm of u{, as mentioned above after Proposition 3.6.
Denote by QU the quadratic form on H*(T M), with matrix

diag(|)\n\*s)n20,

in the orthonormal basis of H*(T M) associated with the eigenvector decom-
position (13) for —A on L?(T'M). For each v in the unit sphere S of H*(T'M),
one has Q°(v) = ||v]|2., and

oIz < Ao *[lvllas-

Since the S-valued diffusion (v{) is ergodic, each component (v{),, of v, in

the decomposition (13), is an ergodic process in the interval (f /\,_LS/Q, AES/Q).
The squared L?-norm of v{ is also an ergodic process in the interval (0, A ).
It has invariant measure the image of a constant multiple of the measure with
density 1/|lu|| with respect to the Gaussian measure in H with covariance
Loty, by the map

we H s Q(uflull),

from Proposition 2.1. This is the invariant measure of the squared L2-norm of
the Eulerian velocity process uf. We emphasize that this invariant measure
is independent of the interpolation parameter o € (0, 00). We record part of
these facts in the following statement.

Corollary 4.5. Fiz o € (0,00). The L?-norm of the velocity field u® of kinetic
Brownian motion is an ergodic process taking values in the interval (0, Ag %),
with invariant probability measure the image of a constant multiple of the
measure with density 1/||u|| with respect to the Gaussian measure in H with
covariance toty, by the map

ue Hw— Qo(u/||u||)

It is desirable to study the homogenization problem for other intrinsi-
cally randomly perturbated partial differential equations of geometric nature,
such as the KdV, (modified) Camassa-Holm equations, or equations with non-
local inertia operator, such as the modified Constantin-Lax-Majda equation
[?]. The core technical problem, from the geometric/analytic point of view, is
the definition of Cartan development map as the solution map of an ordinary
differential equation driven by sufficiently regular vector fields on the configu-
ration space. We took advantage, in the present L? setting, of the ‘pointwise’
character of the associated geometric objects to recast things in terms of the
F-bundles of Section 3.1. One may have to proceed differently for other weak
metrics. We expect the homogenization results proved in Theorem 4.3 and
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Theorem 4.4 to have analogues in the setting of the strong, complete, Rie-
mannian metrics of [?]. Global in time existence results for kinetic Brownian
motion and its limit Brownian motion are expected. We leave these questions
for a forthcoming work.

We worked here in the Sobolev setting to make things easier and con-
centrate on the probabilistic problems, and the implementation of the rough
path approach in this infinite dimensional setting. It is a natural question
to ask whether one can run the analysis in the Fréchet setting of smooth
diffeomorphisms of M, asking for preservation of the regularity of the initial
condition and velocity, as in Ebin-Marsden seminal work — Section 12 in [?],
under proper assumptions on the noise.

Appendix A. Cartan development in .7,

We prove in this Appendix that Cartan’s development system (19) on .
can be recast as an ordinary differential equation in H* (F(e)) X L(HS(TM)),
driven by a smooth vector field. It has, as a consequence, a unique solution,
up to a possibly finite explosion time.

Let P:T.# — T.#, stand for a smooth vector bundle morphism that
coincides with the Hodge projector P from (15) on T.#,. The existence of
such a map follows from the following elementary partition of unity result.

Proposition A.1. Let (O;);er be an open cover of . Then there exists a
smooth partition of unity subordinated to (O;);cr.

Set
§ . TH (F©)) x L(H*(TM)) — TL(H(TM))

d d 1=
<dt|t_0(@t(')7€t('))’ f) = %’t:o (X = ey (P(et(f(x)))>) .
The letter X stands for a generic element of H*(T'M), and
TL(H*(TM)) = L(H*(TM)).
We give the details of the following elementary result.
Lemma A.2. The map Ef 18 well-defined and smooth.
Proof. 1t is enough to prove that the map
H(F©) x L(H*(TM)) — L(H*(TM))
((p().e0)). 1) = (X e (Ple(r (X)) )
is smooth. Since the map
H*(F'9) x L(H*(TM)) x H*(TM) — H*(TM)
((00), (). £.X) = e (P(e(£(X))) )
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is smooth, the problem reduces to the following question. Let a Banach
manifold A and a Hilbert space H, be given together with a smooth map
F: Ax H— H, that is linear with respect to its second argument. Denote
by a and b generic elements of A. Prove that the curryfication Cur F' : a €
A~ F(a,-) € L(H) is well-defined and smooth.

Write d for the differential operator. We show that d(Cur F') = Cur (0, F).
This will be enough, since we can then bootstrap the construction to show
that d"(Cur F') = Cur (07 F'), is differentiable for any n. Because the result
is local, we can assume without loss of generality that A an open set of a
Banach space. Fix a € M, and let U x B(0, &) be a convex neighbourhood of
(a,0) in A x H, such that ||02F |~ < 1+ /02F(a,0)|. Then for all b € U and
|w] < 1, one has

b—al? .,
‘F(b, w) — F(a,w) — 8 F(a,w)(b — a)| < BT 02 F o /.

The conclusion follows from the fact that we have in particular the estimate

CurF(b) — CurF(a) — Cur(9,F)(a; b — a)H <clb—al?

for a positive constant ¢ independent of b. O

Choose now a C! path (X;) with values in Tjq.#p, and zero initial con-
dition. Let ((i¢,€), f) be the solution in H*(F(®) x L(H*(T'M)) of the
equation

% (prre0) =9 (tpt, €t; et (ft(Xt>))’

d . —f(d
aft—ﬁ (clt((pt’et)’ft)’

with initial condition eq = id7aq, and fo = idgs(7ar). Since the vector field

(23)

(Ee,ﬁf) is smooth, equation (23) is locally well-posed, possibly up to a finite
explosion time (.

Theorem A.3. The path (p;) takes values in My, and C(_)incides with the Car-
tan development of (X;). We further have ¢y = e;(fi(Xy)), so the dynamics
(23) does not depend on the extension P of the Hodge projector P used in the
definition of Ef.
Proof. Let Y € Tiq.#y, be a fixed divergence-free vector field on M. We need
to show that W

V¢t (627 (Y) = 0,
on the whole time interval [0, (). From Proposition 3.3, this is equivalent to
showing that we have

d

at (Sﬁt,et(ft(Y)» = dP(E(v) (Sﬁm@t(ft(Y));Sbt))-

Look at the function
(ps6,Z) = (p,e(2)),
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from H*(F(©)) x Tyg.# to H*(F™), and set

§:= 3(¢,e){(%€7 Z)— ((p,e(Z))}.

We have

;t (‘Pn €t (ft( )))

=5 (& e D) =5 (§ Goneher (Platrty) )
+dpP (S(i (‘Ptaet)vft(Y))> :

We prove that e;(Y) is divergence-free. Define for that purpose the subset
I C [0,¢) of times t such that e;(Z) is divergence-free for all Z € Tiq.#, and
¢ preserves the volume form. It is a non-empty closed subset of [0, (). Fix
to € 1. It Sufﬁces to prove that tg is in the interior of I for a well-chosen
extension P of P, possibly different from P. We choose for P any smooth
extension of P defined on a neighbourhood of ¢y, such that PoP =P. Set
Q =id—P:TH — T A, so for a fixed Z € Tiq.#y, the quantity

= @(et(ft(Z)))

satisfies the equation

7= a0 (5 (g (onener (Qelri@) ))

dQ< ( (pr,e1) € 1(Zt)>)~

This differential equation satisfies the classical Picard-Lindelof assumptions,
so it has a unique solution with given initial condition. Since Zy = 0 and the
constant zero vector field is a solution to the equation, Z; is identically zero,
and e;(Z) is divergence-free.

This holds true for any Z, in a time interval independent of Z. It follows
in particular that ¢, = e, ( ft(Xt)) is locally divergence-free, and ; preserves
the volume form, in a neighbourhood of the time tg. The interval I is thus
both closed and open, so I = [0,¢). The statement of Theorem A.3 follows,

since P(et(ft(Y))) =e (ft(Y)), so we get
% (%,et(ft(Y)D =dP (S(jt (1, €t), ft(Y))>

— dP (;8’ (cps,es(ft(Y))>>

= aP (5 (pre (1Y) ).

using Proposition 3.1 in the last equality. (]
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