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Abstract. We start in this work the study of the relation between the theory of regularity struc-
tures and paracontrolled calculus. We give a paracontrolled representation of the reconstruction
operator and provide a natural parametrization of the space of admissible models.

1 – Introduction

Starting with his groundbreaking work [12], M. Hairer has developed with his co-authors
[7, 8, 6] a theory of subcritical singular stochastic partial differential equations (PDEs) that
provides now an automated blackbox for the basic understanding of a whole class of stochastic
PDEs. Equations of this class all share the common feature of involving ill-defined products
of distributions with functions or distributions. The methodology of regularity structures for
the study of a given singular stochastic PDE takes its roots in T. Lyons’ theory of rough
paths, such as reshaped by M. Gubinelli [9, 10]. It requires first to identify a proper space
of enhanced noises. The raw random noise that appears in the equation needs to be lifted
into a random noise taking values in that enhanced space. This is typically a probabilistic
task, mostly independent of the details of the dynamics under study, once the appropriate
space of enhanced noises has been constructed from the equation. (That space happens to be
equation-independent in the rough differential equation setting, while it is equation-dependent
in a PDE setting.) The lifting task typically involves stochastic or Gaussian calculus in a rough
paths setting; it involves the difficult implementation of a renormalisation procedure in the
singular stochastic PDE setting. This step somehow takes care of the core problem: defining
the product of two random distributions as a random variable rather than taking the product
of two realizations of these random variables. These enhanced noises come under the form of a
model in regularity structures. This is a deterministic object, and the previous step takes care of
constructing a random model. Having a model is somewhat equivalent to having a definition of
the product of a number of otherwise possibly ill-defined quantities. A restricted class of space-
time functions or distributions is then described in regularity structures theory under the form
of a space-time indexed family of jets describing them locally around each space-time point.
Given any choice of model, a consistency relation ensures that coherent jets describe indeed
true space-time functions or distributions. This is the role of the reconstruction operator;
coherent jets are modelled distributions. It happens then that one can reformulate the formal
ill-posed equation into the space of jets as a well-posed, model-dependent, fixed point equation
in a well-chosen space of jets. For the random model built from a renormalisation procedure
in [8], the space-time function/distribution associated with the solution of the fixed point
equation on the jet space can be shown to be the limit in probability of solutions of a family
of well-posed space-time stochastic PDEs driven by regularized noises, as the regularization
parameter tends to 0 – this is the content of [6]. The fact that some of the terms in these
modified and regularized stochastic PDEs blow up as the regularization parameter goes to 0
is a feature of the singular nature of the initial equation.

Let us emphasize that the multiplication problem is fundamentally dealt with on the ground
of the following heuristic argument. If one can make sense of the product of a number of
reference quantities, one can make sense of the product of quantities that look like the reference
quantities. This is what motivates the introduction of jets on scene.

The choice of a jet space to describe a possible solution to a singular stochastic PDE is
not the only possible. As a matter of fact, Gubinelli, Imkeller and Perkowski devised in [11]
a Fourier-based approach to the study of singular stochastic PDEs whose scope has been
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extended in [2, 3, 4]. The heuristic remains the same, but paraproducts are used as a mean of
making sense of what it means to look like a reference distribution or function. This choice of
representation makes the technical details of paracontrolled calculus rather different from their
regularity structures counterparts, and paracontrolled calculus remains to be systematized.
Despite that fact, it happens to be possible to make a close comparison between the two
settings. We start that comparison in this work by providing an ’explicit’ paracontrolled
representation of the reconstruction operator. This is the operator that associates to a coherent
jet a space-time distribution. All notions and notations in the statement are properly defined
below.

Theorem 1. Let a concrete regularity structure T “ pT`, T q be given, together with a model
M “ pg,Πq on it.

(1) One can construct functions rr¨ssM : T ÞÑ Cβ0pRdq and rr¨ssg : T` ÞÑ C0pRdq, such that
– rrσssM P C|σ|pRdq, and rrτ ssg P C|τ |pRdq, for every homogeneous σ P T and τ P T`,
– all rrσssM, and rrτ ssg are continuous function of the model pg,Πq,

and the following holds true.
(2) One can associate to any modelled distribution

f “
ÿ

τPB;|τ |ăγ

f ττ P DγpT , gq,

a distribution rrf ssM P CγpRdq such that one defines a reconstruction Rf of f setting

Rf :“
ÿ

τPB;|τ |ăγ

Pfτ rrτ ss
M ` rrf ssM. (1.1)

Each coefficient f τ , also has a representation
f τ “

ÿ

τăµ;|µ|ăγ

Pfµrrµ{τ ss
g ` rrf τ ssg, (1.2)

for some rrf τ ssg P Cγ´|τ |pRdq. Moreover, the map

f ÞÑ
´

rrf ssM,
`

rrf τ ssg
˘

τPB

¯

from DγpT , gq to CγpRdq ˆ
ś

τPB Cγ´|τ |pRdq, is continuous.

This is the content of Proposition 12 and Theorem 14. Any regularity exponent a P R is
allowed in the above statement. The inductive definition of rr¨ssM, Proposition 12, will make it
clear that rrσssM can be understood as the ‘part’ of Πσ of regularity C|σ|pRdq. The quantity rrτ ssg
has a similar meaning for the function gpτq. Theorem 1 provides a much refined version of the
paraproduct-based construction of the reconstruction operator from Gubinelli, Imkeller and
Perkowski’ seminal work [11]. Notice that this statement is not related to any problem about
singular stochastic PDE. The treatment of such equations involves the additional ingredient
of an abstract integration operator and the additional notion of admissible model. We provide
an explicit paracontrolled-based parametrization of that set of models under some canonical
structure assumptions on the regularity structure.

Theorem 2. Given any family of distributions
`

rrτ ss P C|τ |pRdq
˘

τPB;|τ |ď0
, there exists a unique

admissible model M “ pg,Πq on T such that one has

Πτ :“
ÿ

σăτ

Pgpτ{σqrrσss ` rrτ ss, (1.3)

for all τ P B with |τ | ď 0.

The fact that identity (1.3) holds true with rr¨ssM in place of rr¨ss for any model M “ pg,Πq,
is part of the proof of item (1) of Theorem 1.
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We work throughout with the usual isotropic Hölder spaces. All the results presented here
have direct analogues involving anisotropic Hölder spaces, such as required for applications to
parabolic singular stochastic PDEs. The proofs of all results are strictly identical. We refrain
from putting ourselves in that setting so as not to overload the reader with additional technical
details and keep focused on the main novelty. The reader will find relevant technical details
in the work [16] of Martin and Perkowski.

No previous knowledge of regularity structures or paracontrolled calculus is needed in this
work, that is mostly self-contained, with the exception of elementary facts on paraproducts
recalled in Appendix A. We have thus given at few places full proofs of statements that were
first proved elsewhere. The material has been organized as follows. Section 2 sets the scene of
regularity structures under a convenient form for us: Concrete regularity structures, models
and modelled distributions are introduced, together with a number of elementary identities
and examples. Theorem 1 is proved in Section 3, while Section 4 takes care of Theorem 2.

Notations – We use exclusively the letters α, β, γ, θ to denote real numbers, and use the letters
σ, τ, µ to denote elements of T or T`. We agree to use the shorthand notation sp`q to mean
both the statement s and the statement s`.

2 – Basics on regularity structures

Regularity structures are the backbone of expansion devices for the local description of
functions and distributions in Rd. The usual notion of local description of a function, near a
point x P Rd, involves Taylor expansion and amounts to comparing a function to a polynomial
centered at x

fp¨q »
ÿ

k

fkpxq p¨ ´ xqk, near x. (2.1)

The sum over k is finite and the approximation quantified. One gets a local description of f
near another point x1 writing

fp¨q »
ÿ

`ďk

fkpxq

ˆ

k

`

˙

p¨ ´ x1q`px1 ´ xqk´` »
ÿ

`

¨

˝

ÿ

k;`ďk

fkpxq

ˆ

k

`

˙

px1 ´ xqk´`

˛

‚p¨ ´ x1q`. (2.2)

A more general local description device involves an Rd-indexed collection of functions or distri-
butions pΠxτqp¨q, with labels in a finite set B “ tτu. Consider the real vector space T spanned
freely by B. Functions or distributions are locally described as

fp¨q »
ÿ

τ

f τ pxqpΠxτqp¨q, near each x P Rd.

This implicitely assumes that the coefficients f τ pxq are function of x. One has tτu “ tku and
pΠxkqp¨q “ p¨ ´ xqk, in the polynomial setting. Like in the former setting, in a general local
description device the reference objects

pΠx1τqp¨q “
`

ΠxpΓxx1τq
˘

p¨q (2.3)
at a different base point x1 are linear combinations of the Πxσ, for a linear map

Γxx1 : T Ñ T,

and one can switch back and forth between local descriptions at different points. The linear
maps Γxx1 are thus invertible and one has a group action of an Rd ˆ Rd-indexed group on the
local description structure T .

Whereas one uses the same polynomial-type local description for the fk as for f itself in
the usual Cα setting, there is no reason in a more general local description device to use the
same reference objects for f and for its local coefficients, especially if the pΠxτqp¨q are meant
to describe distributions, among others, while it makes sense to use functions only as reference
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objects to describe the functions f τ . A simple setting consists in having all the f τ locally
described by a possibly different finite collection B` “ tµu of labels, in terms of reference
functions gyxpµq, with

f τ pyq »
ÿ

µPB
f τµpxqgyxpµq, near x.

One thus has both
fp¨q »

ÿ

τPB
f τ pxqpΠxτqp¨q »

ÿ

τPB, µPB`
f τµpyqgyxpµqpΠxτqp¨q (2.4)

and
fp¨q »

ÿ

σPB
fσpyqpΠyσqp¨q.

Consistency dictates that the two expressions coincide, giving in particular the fact that the
coefficients f τµpyq are linear combinations of the fσpyq. Re-indexing identity (2.4) and using
the notation σ{τ for the µ corresponding to τµ » σ, one then has

fp¨q »
ÿ

σPB,τPB
fσpyq gyxpσ{τqpΠxτqp¨q. (2.5)

The transition map Γxy : T Ñ T , from (2.3) is thus given in terms of the splitting map

∆ : T Ñ T b T`, ∆σ “
ÿ

τ

τ b pσ{τq

that appears in the above decomposition, with
Πyσ “

ÿ

τPB
gyxpσ{τqΠxτ

so
Γxyσ “

ÿ

τPB
gyxpσ{τqτ.

If one further expands fσpyq in (2.5) around another reference point z, one gets

fp¨q »
ÿ

τ,σ,νPB
fνpzq gzypν{σqgyxpσ{τqpΠxτqp¨q

»
ÿ

νPB
fνpzqpΠzνqp¨q »

ÿ

τ,νPB
fνpzq gzxpν{τqpΠxτqp¨q.

(2.6)

Here again, consistency requires that the two expressions coincide, giving the identity
ÿ

σPB
gzypν{σqgyxpσ{τq “ gzxpν{τq

in terms of another splitting map
∆` : T` Ñ T` b T`

satisfying by construction the itendity
pIdb∆`q∆ “ p∆b Idq∆

encoded in identity (2.6). Developing fνpzq in (2.6) in terms of another reference point leads
by consistency to the identity

pIdb∆`q∆` “ p∆` b Idq∆`.

If we insist that the family of reference functions gyxpµq, µ P B`, be sufficiently rich to describe
locally an algebra of functions, it is convenient to assume that the linear span T` of B` has
an algebra structure and the maps gyx on T` are characters of the algebra – multiplicative
maps. Building on the example of the polynomials, it is also natural to assume that T` has
a grading structure; an elementary fact from algebra then leads directly to the Hopf algebra
structure that appears below in the definition of a concrete regularity structure.
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We choose to record the essential features of this discussion in the definition of a concrete
regularity structure given below; this is a special form of the more general notion of regularity
structure from Hairer’ seminal work [12]. The reader should keep in mind that the entire
algebraic setting can be understood at a basic level from the above consistency requirements
on a given local description device. We refer the reader to Sweedler’s book [18] for an accessible
reference on Hopf algebras. Given two statements s and s`, recall the convention that we agree
to write sp`q to mean both the statement s and the statement s`.

Concrete regularity structures

Definition – A concrete regularity structure T “ pT`, T q is the pair of graded vector spaces

T` “:
à

αPA`

T`α , T “:
à

βPA

Tβ

such that the following holds.

‚ The index set A` Ă R` contains the point 0, and A` `A` Ă A`; the index set A Ă R
is bounded below, and both A`and A have no accumulation points in R. Set

β0 :“ minA.

‚ The vector spaces T`α and Tβ are finite dimensional.
‚ The set T` is an algebra with unit 1, with a Hopf structure with coproduct

∆` : T` Ñ T` b T`,

such that ∆`1 “ 1b 1, and, for τ P T`α ,

∆`τ P

$

&

%

τ b 1` 1b τ `
ÿ

0ăβăα

T`β b T
`
α´β

,

.

-

, (2.7)

‚ One has T`0 “ x1y, and for any α, β P A`, one has T`α T`β Ă T`α`β.
‚ One has a splitting map

∆ : T Ñ T b T`,

of the form

∆τ P

$

&

%

τ b 1`
ÿ

βăα

Tβ b T
`
α´β

,

.

-

(2.8)

for each τ P Tα, with the right comodule property
p∆b Idq∆ “ pIdb∆`q∆. (2.9)

Let B`α and Bβ be bases of T`α and Tβ, respectively. We assume B`0 “ t1u. Set

B` :“
ď

αPA`

B`α , B :“
ď

βPA

Bβ.

An element τ of T p`qα is said to be homogeneous and is assigned homogeneity |τ | :“ α. The
homogeneity of a generic element τ P T p`q is defined as |τ | :“ maxtαu, such that τ has a
non-null component in T

p`q
α . We sometimes denote by

T :“
`

pT`,∆`q, pT,∆q
˘

a concrete regularity structure.

Note that we do not assume any relation between the linear spaces T`α and Tβ at that stage.
Note also that the parameter β in (2.8) can be non-positive, unlike in (2.7). For an arbitrary
element h in T , set

h “
ÿ

βď|h|

hβ P
à

βď|h|

Tβ.
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We use a similar notation for elements of T`. For γ P R, set
Tăγ :“

à

βăγ

Tβ, T`ăγ :“
à

αăγ

T`α .

The homogeneous spaces Tβ and T`α being finite dimensional, all norms on them are equivalent;
we use a generic notation } ¨ }β or } ¨ }α for norms on these spaces. For simplicity, we write

}h}α :“ }hα}α. (2.10)
To have a picture in mind, think of T and T` as sets of possibly labelled rooted trees, with
T` consisting only of trees with positive tree homogeneities – a homogeneity is assigned to
each labelled tree. This notion of homogeneity induces the decomposition (2.10) of T into
linear spaces spanned by trees with the same homogeneity; a similar decomposition holds for
T`. The coproduct ∆`τ is typically a sum over subtrees σ of τ with the same root as τ , and
τ{σ is the quotient tree obtained from τ by identifying σ with the root. One understands the
splitting ∆τ of an element τ P T in similar terms. See e.g. Section 2 and Section 3 of [7].

Notation. Given σ, τ P Bp`q, we use the notation σ ďp`q τ to mean that σ appears as a left
hand side of one of the tensor products in the sum defining ∆p`qτ ; we write τ{p`qσ for the
corresponding right hand side, so we have, for τ P Bp`q

∆p`qτ “
ÿ

σPBp`q
σ b pτ{p`qσq.

Write σ ăp`q τ to mean further that σ is different from τ . The notations τ{p`qσ and σ ăp`q τ
are only used for τ and σ in Bp`q.

Decomposing ∆τ in the basis B b B` of T b T` as
∆τ “:

ÿ

σPB,θPB`
p∆τqσθ σ b θ,

one has
τ{σ “

ÿ

θPB`
p∆τqσθ θ.

We have a similar expression for τ{`σ; for σ, τ P B`,

τ{`σ “
ÿ

θPB`
p∆`τqσθ θ. (2.11)

With these notations, the right comodule property (2.9) writes for all τ P B
ÿ

σPB
p∆τqσc p∆σqab “

ÿ

θPB`
p∆τqaθ p∆`θqbc (2.12)

for all a P B and b, c P B`. The identity from Lemma 3 is a direct consequence of the
co-associativity property

p∆` b Idq∆` “ pIdb∆`q∆`,

of the coproduct ∆`, and the right comodule identity (2.9).
Lemma 3. For σ ă` τ in B`, we have

∆`pτ{`σq “
ÿ

σď`ηď`τ

pη{`σq b pτ{`ηq

“ pτ{`σq b 1` 1b pτ{`σq `
ÿ

σă`ηă`τ

pη{`σq b pτ{`ηq.
(2.13)

For σ ă τ in B, we have
∆`pτ{σq “

ÿ

σďηďτ

pη{σq b pτ{ηq. (2.14)
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A character g on the algebra T` is a linear map g : T` Ñ R such that gpτ1τ2q “ gpτ1qgpτ2q

for any τ1, τ2 P T
`. The antipode A of the Hopf algebra structure turns the set of characters

of the algebra T` into a group G` for the convolution law ˚ defined by
pg1 ˚ g2qτ :“ pg1 b g2q∆

`τ, τ P T`.

The identity of the group is the counit 11, the dual basis vector of the unit 1, and the inverse
g´1 “ g ˝A. One associates to a character g of T` the map

pg :“ pIdb gq∆ : T ÞÑ T,

from T to itself. We have
{g1 ˚ g2 “ pg1 ˝ pg2

for any g1, g2 P G
`, as a consequence of the comodule property (2.9). Also, for any τ P T ,

´

pgpτq ´ τ
¯

P Tă|τ |,

as a consequence of the structural identity (2.8). Remark that for any concrete regularity
structure T “

`

pT`,∆`q, pT,∆q
˘

, then
T ` :“

`

pT`,∆`q, pT`,∆`q
˘

is also a concrete regularity structure. For g P G`, set
pg`τ :“ pIdb gq∆`; (2.15)

this map sends T` into itself.

Remark. For g P G`, the map pg is denoted by Γg in Hairer’s work [12]; we prefer the former
Fourier-like notation.

We now come to the definition of the reference objects Πg
xτ and gyxpσq used to give local de-

scriptions of distributions and functions in a regularity structure setting, as in the introduction
to this section. They come under the form of a model.

Models

Recall β0 “ minA P R. Given a function ϕ on Rd, and x P Rd, 0 ă λ ď 1, set
ϕλxp¨q :“ λ´dϕ

`

λ´1p¨ ´ xq
˘

.

Definition – A model over a regularity structure T is a pair pg,Πq of maps
g : Rd Ñ G`, Π : T Ñ Cβ0pRdq

with the following properties.

‚ Set
gyx :“ gy ˚ g´1

x

for each x, y P Rd. One has

}g} :“ sup
τPB`

sup
xPRd

|gxpτq| ` sup
τPB`

sup
x,yPRd

|gyxpτq|

|y ´ x||τ |
ă 8. (2.16)

‚ The map Π is linear. Set
Πg
x :“ pΠb g´1

x q∆

for each x P Rd. Fix r ą |β0 ^ 0|. One has

}Π}g :“ sup
σPB

}Πσ}Cβ0 ` sup
σPB

sup
ϕ,0ăλď1,xPRd

ˇ

ˇ

@

Πg
xσ, ϕλx

Dˇ

ˇ

λ|σ|
ă 8, (2.17)

where ϕ runs over all functions ϕ P CrpRdq, with associated norm no greater than 1
and support in the unit ball.
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In Hairer’s original work [12], the notations Πx and Γyx are used instead of Πg
x and xgyx,

respectively. In (2.16) and (2.17), we assume global bounds over Rd, while Hairer only assumes
in [12] the previous bounds in any compact subset of Rd. In this paper, we work on the globally
bounded case for simplicity. Our result may be extended into the locally bounded case using
the weighted norms }f}L8w “ supxPRd w

´1pxq|fpxq| instead of }f}L8 .
For comparison, and given a ă 0, note that a distribution Θ on Rd is an element of CapRdq

iff one has a bound
ˇ

ˇ

@

Θ, ϕλx
Dˇ

ˇ À λa,

for any 0 ă λ ď 1, uniformly in x P Rd and ϕ P CrpRdq, of unit norm in that space and support
in the unit ball, for r “ |tau|. We stress that Πτ is only an element of Cβ0pRdq; identity (2.17)
conveys the idea that Πg

xτ behaves at point x like an element of C|τ |pRdq. Emphasize that g
acts on T`, while Π acts on T , and note that g plays on T` the same role as Π on T ; For
τ P T` and σ P T , one has

gyxpτq “
`

gp¨qpyq b g´1
x

˘

∆`τ, pΠg
xσqpyq “

`

Πp¨qpyq b g´1
x

˘

∆σ, (2.18)
in a distributional sense for the latter. Note also the fundamental relation

Πg
y “ Πg

x ˝ xgxy, (2.19)

for all x, y P Rd; it comes from the comodule property (2.9). The map Π can be recovered
from each map Πg

x, as we have
Π “ pΠg

x b gxq∆, (2.20)
as a consequence of the comodule property (2.9)

pΠg
x b gxq∆ “

`

Πb g´1
x b gx

˘

p∆b Idq∆
“

`

Πb g´1
x b gx

˘

pIdb∆`q∆

“ pΠb 11q∆ “ Π.

Examples. 1. Bounded polynomials structure. For any smooth function f on Rd, and r ą 0,
the Taylor expansion property

fpyq ´
ÿ

|k|ăr

Bkfpxq

k!
py ´ xqk “ Op|y ´ x|rq.

is usually lifted to a modelled distribution

fpxq :“
ÿ

|k|ăr

Bkfpxq

k!
Xk,

over the canonical polynomial regularity structure, under the model pΠXkqpxq “ xk and
gxpX

kq “ xk. Since they are not bounded functions, we modify this expansion by using smooth
and bounded functions behaving like polynomials in local sets. The following elementary claim
is proved in Appendix B.

Proposition 4. There exists a finite set E, an open covering tUeuePE of Rd, and a family
 

φe, tx ÞÑ xieu
d
i“1

(

ePE
of functions enjoying the following properties.

(a) The functions φe : Rd Ñ r0,8q, belong to C8b pR
dq, φepxq “ 0 for any x P U ce , and

ř

ePE φepxq “ 1 for any x P Rd.
(b) The functions x ÞÑ xie, belong to C8b pR

dq, and yie ´ xie “ yi ´ xi for any x, y on the
connected component of Ue.

(c) For any f P C8b pRdq and r ą 0, we have
ˇ

ˇ

ˇ
fpyq ´

ÿ

ePE

ÿ

|k|ăr

Bkpφefqpxq

k!
pye ´ xeq

k
ˇ

ˇ

ˇ
À Brpfq |y ´ x|

r, (2.21)
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where Brpfq :“ }f}Crb , if r P N, or Brpfq :“ }f}Cr , if r P p0,8qzN.

We lift expansion (2.21) to an appropriate regularity structure as follows. Let
X :“ tXi

euePE,1ďiďd

be a family of symbols, and let T`pXq be the commutative free algebra with unit 1, generated
by these symbols. We define a coproduct ∆` : T`pXq Ñ T`pXq b T`pXq by

∆`1 “ 1b 1, ∆`Xi
e “ Xi

e b 1` 1bXi
e,

which turns T`pXq into a Hopf algebra. By defining the homogeneity | ¨ | by |Xi
e| “ 1, we

have the graded Hopf algebra T`pXq. Let T pXq be the subspace spanned by the bounded
polynomials tXk

euePE,kPNd , where

Xk
e :“

d
ź

i“1

`

Xi
e

˘ki , k “ pkiq
d
i“1 P Nd.

Denote by
∆ : T pXq Ñ T pXq b T`pXq

the restriction of ∆` to T pXq, which turns T pXq into a right comodule over T`pXq. By
definition, we have the concrete regularity structure T pXq :“

`

T`pXq, T pXq
˘

. The canonical
model pg,Πq on T pXq is defined by

gxpX
k
eq “ pΠXk

eqpxq “ xke . (2.22)
The following elementary result, proved in Appendix B provides the canonical lift of a smooth
function to this bounded polynomials regularity structure. See the paragraph on modelled
distributions for the definition of DrpT pXq, gq and the associated norm ||| ¨ |||Dr .

Proposition 5. For any given f P C8b pR
dq and r ą 0, define the T pXq-valued function

fpxq :“
ÿ

ePE

ÿ

|k|ăr

Bkpφefqpxq

k!
Xk

e , x P Rd.

Then f P DrpT pXq, gq, and |||f |||Dr À Brpfq.

2. Canonical model on T `. As another example of model over some regularity structure,
consider the regularity structure T ` associated with any regularity structure T , and assume
we are given a function g : Rd ÞÑ G` that satisfies estimate (2.16). For τ P T`, set

Πgτpxq :“ gxpτq. (2.23)
Estimate (2.17) holds as a consequence of (2.16), so pg,Πgq is a model on T ` “ pT`, T`q.
This justifies to say simply that g is a model on T `. l

Equation (2.20) giving Π in terms of Πg
x and gx writes explicitly

Πτ “
ÿ

σďτ

Πg
xpσqgxpτ{σq,

for τ P B, that is
Πg
xτ “ Πτ ´

ÿ

σăτ

gxpτ{σqΠ
g
xσ. (2.24)

Furthermore expanding Πg
xσ, one has

Πg
xτ “ Πτ ´

ÿ

σ1ăτ

gxpτ{σ1qΠσ1 `
ÿ

σ2ăσ1ăτ

gxpτ{σ1qgxpσ1{σ2qΠ
g
xσ2.

Iterating this expansion gives a representation of Πg
x in terms of gx and Π

Πg
xτ “ Πτ ´

ÿ

ně1

p´1qn´1
ÿ

σnă¨¨¨ăσ1ăτ

gxpτ{σ1q ¨ ¨ ¨ gxpσn´1{σnqΠσn; (2.25)
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the sum is finite. Similarly, since gy “ gyx ˚ gx, by definition, Lemma 3 provides for any
σ ďp`q τ P Bp`q the relation

gyx
`

τ{p`qσ
˘

“ gy
`

τ{p`qσ
˘

´ gx
`

τ{p`qσ
˘

´
ÿ

σăp`qσ1ăp`qτ

gx
`

τ{p`qσ1

˘

gyx
`

σ1{
p`qσ

˘

.

A repeated expansion then gives a representation of gyxpτ{
p`qσq in terms of gy and gx

gyx
`

τ{p`qσ
˘

“ gy
`

τ{p`qσ
˘

´ gx
`

τ{p`qσ
˘

´
ÿ

ně1

p´1qn´1
ÿ

σăp`qσnăp`q¨¨¨ăp`qτ

gx
`

τ{p`qσ1

˘

¨ ¨ ¨ gx
`

σn´1{
p`qσn

˘

´

gy
`

σn{
p`qσ

˘

´ gx
`

σn{
p`qσ

˘

¯

.

(2.26)

Modelled distributions

Recall notation (2.10) for the notation }h}α for α P A and h P T .

Definition – Let g : Rd Ñ G` satisfy (2.16). Fix a regularity exponent γ P R. One defines the
space DγpT , gq of distributions modelled on the regularity structure T , with transition g,
as the space of functions f : Rd Ñ Tăγ such that

rsf rsDγ :“ max
βăγ

sup
xPRd

›

›fpxq
›

›

β
ă 8,

}f}Dγ :“ max
βăγ

sup
x,yPRd

›

›fpyq ´ xgyxfpxq
›

›

β

|y ´ x|γ´β
ă 8.

Set |||f |||Dγ :“ rsf rsDγ ` }f}Dγ .

For a basis element σ P B, and an arbitrary element h in T , denote by hσ its component
along the σ direction. For a modelled distribution fp¨q “

ř

σPB f
σp¨qσ in DγpT , gq, and

σ0 P B, we have
´

fpyq ´ xgyxfpxq
¯σ0

“ fσ0pyq ´ fσ0pxq ´
ÿ

τąσ0

gyxpτ{σ0q f
τ pxq. (2.27)

As an example, given a basis element τ P B, set
hτ pxq :“

ÿ

σăτ

gxpτ{σqσ. (2.28)

Then, it follows from identity (2.14) giving ∆`pτ{σq, in Lemma 3, that

xgyxhτ pxq “
ÿ

ηďσăτ

gyxpσ{ηqgxpτ{σqη “
ÿ

ηăτ

`

gypτ{ηq ´ gyxpτ{ηq
˘

η

“ hτ pyq ´
ÿ

ηăτ

gyxpτ{ηqη.

The size estimate
ˇ

ˇgyxpτ{ηq
ˇ

ˇ À |y ´ x||τ |´|η|, then shows that hτ is a modelled distribution in
D|τ |pT , gq. Here is another example.

Lemma 6. Let f “
ř

σPB f
σp¨qσ, be an element of DγpT , gq. Then, for each τ P B, the

T`-valued function
f{τ :“

ÿ

σěτ

fσp¨qσ{τ.

is an element of Dγ´|τ |pT `, gq.

Proof – This comes from the identity

pf{τqpyq ´ xgyx
`
pf{τqpxq “

ÿ

σěτ

´

fσpyq ´
ÿ

µěσ

fµpxq gyxpµ{σq
¯

σ{τ,
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and the fact that f is a modelled distribution. B

Recall β0 “ minA, and fix r ą |β0 ^ 0|.

Theorem 7. (Hairer’s reconstruction theorem) Let pg,Πq be a model over T . Fix a regularity
exponent γ P R. There exists a linear continuous operator

R : DγpT , gq Ñ Cβ0pRdq
satisfying the property

ˇ

ˇ

ˇ

@

Rf ´ Πg
xfpxq, ϕ

λ
x

D

ˇ

ˇ

ˇ
À }Π}g

›

›f
›

›

Dγ λ
γ , (2.29)

uniformly in f P DγpT , gq, ϕ P CrpRdq with unit norm and support in the unit ball, x P Rd and
0 ă λ ď 1. Such an operator is unique if the exponent γ is positive.

A distribution satisfying identity (2.29) is called a reconstruction of the modelled distribution
f . See Theorem 3.10 in Hairer’ seminal work [12]. We provide in Theorem 14 below an explicit
representation for the reconstruction operator R building on paracontrolled calculus. Notice
from the definition of Πg

x that the constraint
ˇ

ˇ

@

Πg
xτ, ϕλx

Dˇ

ˇ À λ|τ |, that needs to be satisfied by
a model, is equivalent to the estimate

ˇ

ˇ

ˇ

@

Πτ ´
ÿ

σăτ

gxpτ{σqΠ
g
xσ, ϕ

λ
x

D

ˇ

ˇ

ˇ
À λ|τ |.

This means that Πτ , with τ P B, is a reconstruction of the modelled distribution hτ P
D|τ |pT , gq defined above in (2.28). Recall that uniqueness in the reconstruction theorem im-
plies that if f takes values in a function-like sector of T , then Rf “ 11pfq – see e.g. Proposition
3.28 in Section 3.4 of [12].

3 – Explicit formula for the reconstruction operator

We prove Theorem 1 giving an explicit description of the reconstruction operator in this
section.

3.1 From Taylor local description to global paracontrolled representation

We describe here some simple properties of a natural two-parameter extension of the ele-
mentary paraproduct built from Littlewood-Paley blocks, and refer the reader to Appendix
A for background on Littlewood-Paley decomposition. The notations ∆i and Qi for the ith
Littlewood-Paley block and its kernel are recalled in Appendix A. For j ě 1, define the oper-
ator Sj :“

ř

iďj´2 ∆i, and its smooth kernel Pj :“
ř

iďj´2Qi. The Hölder spaces CαpRdq are
defined as Besov spaces Bα

88pR
dq – see Appendix A.

For a two-variable real-valued distribution Λ on Rd ˆ Rd, and j ě 1, set

pQjΛqpxq :“

ĳ

Pjpx´ yqQjpx´ zqΛpy, zqdydz;

we abuse notations using the integral notation. Set
PΛ :“

ÿ

jě1

QjΛ.

We often write
PΛ “ Py,z

`

Λpy, zq
˘

in order to display the integrated variables. With that notation, we have the consistency
relation

Pfg “ Py,z

`

fpyqgpzq
˘

, f, g P L8,
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between the paraproduct operator P and its two-parameter extension. For α ą 0, and a
measurable real-valued function F on Rd ˆ Rd, set

|||F |||Cα2 :“ sup
y,zPRd

|F py, zq|

|y ´ z|α
.

Proposition 8. (a) Let Λ be a real-valued distribution on Rd ˆ Rd. If }QjΛ}L8 À 2´jα,
for all j ě 1, for some α P R, then PΛ P CαpRdq, and

}PΛ}Cα À sup
jě1

2jα}QjΛ}L8 .

(b) Let α ą 0, and a real-valued measurable function F on RdˆRd be given, with |||F |||Cα2 ă
8. Then PF P CαpRdq, and }PF }Cα À |||F |||Cα2 .

Proof – (a) Since FPj is supported in
 

x P Rd; |x| ă 2j ˆ 2
3

(

and FQj is supported in
 

x P Rd; 2j ˆ 3
4 ă |x| ă 2j ˆ 8

3

(

, the integral
ż

Qipx´ wqPjpw ´ yqQjpw ´ zqdw

vanishes if |i´ j| ě 5. Hence ∆ipPΛq “
ř

|i´j|ď4 ∆ipQjΛq and we have

}∆ipPΛq}L8 ď
ÿ

|i´j|ď4

}∆ipQjΛq}L8 À
ÿ

|i´j|ď4

}QjΛ}L8 À
ÿ

|i´j|ď4

2´αj À 2´αi.

(b) It is sufficient to show that }QjF }L8 À 2´αj for all j ě 2. By the scaling properties
Pjp¨q “ 2pj´2qdP2p2

j´2 ¨q and Qjp¨q “ 2pj´2qdQ2p2
j´2 ¨q, we have

|QjF pxq| À

ĳ

|Pjpx´ yqQjpx´ zq||y ´ z|
αdydz

“ 2´αpj´2q

ĳ

|P2p2
j´2x´ yqQ2p2

j´2x´ zq||y ´ z|αdydz

“ 2´αpj´2q

ĳ

|P2pyqQ2pzq||y ´ z|
αdydz À 2´αj .

B

The next proposition is the key step to the representation of the reconstruction operator
given in Theorem 6.10 of [11]. We state it and prove it here under a slightly more general
form. See the proofs of Lemma 6.8, Lemma 6.9 and Theorem 6.10 therein.

Proposition 9. Let γ P R and β0 P R be given together with a family Λx of distributions on
Rd, indexed by x P Rd. Assume that one has

sup
xPRd

}Λx}Cβ0 ă 8

and one can decompose pΛy ´ Λxq under the form

Λy ´ Λx “
N
ÿ

`“1

c`yx Θ`
x (3.1)

for N finite, Rd-indexed distributions Θ`
x, and real-valued coefficients c`yx depending measurably

on x and y, such that
sup
xPRd

sup
jě´1

2jβ`
ˇ

ˇ

@

Θ`
x, Pjpx´ ¨q

Dˇ

ˇ ă 8, |||c`|||Cγ´β`2

ă 8,

for regularity exponents β` ă γ, for all 1 ď ` ď N . Denote PpΛq “ Py,zpΛypzqq below.
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‚ If γ ą 0, then there exists a unique function fΛ P CγpRdq such that
ˇ

ˇ

ˇ

A

 

PpΛq ´ fΛ

(

´ Λx, Pipx´ ¨q
Eˇ

ˇ

ˇ
À 2´iγ , (3.2)

uniformly in x P Rd.
‚ If γ ă 0, then we have

ˇ

ˇ

@

PpΛq ´ Λx, Pipx´ ¨q
Dˇ

ˇ À 2´iγ , (3.3)
uniformly in x P Rd.

Proof – (i) We prove that one has
ˇ

ˇ

ˇ
∆j

`

PpΛq ´ Λx
˘

pxq
ˇ

ˇ

ˇ
À 2´jγ , (3.4)

uniformly in x P Rd. We write for that purpose

PpΛqpyq ´ Λxpyq “
ÿ

jě´1

ĳ

Pjpy ´ uqQjpy ´ vq
`

Λupvq ´ Λxpvq
˘

dudv ´S pΛxq

“
ÿ

1ď`ďN

ÿ

jě´1

ĳ

Pjpy ´ uqQjpy ´ vqc
`
uxΘ`

xpvq dudv ´S pΛxq.

Here the operator S is defined by
S f :“ f ´ P1f “ f ´Py,z

`

1pyqfpzq
˘

(3.5)
for any f P S 1pRdq. This is a smooth function that depends continuously on f ; if f P CαpRdq
with α P R, then for any r ą 0,

}S f}Cr À }f}Cα .

Hence we have for any i ě 1,
ˇ

ˇ∆i

`

PpΛq ´ Λx
˘

pxq
ˇ

ˇ ď
ÿ

|j´i|ď4

ÿ

`

ĳ

ˇ

ˇQipx´ yqPjpy ´ uq
ˇ

ˇ |u´ x|γ´β`2´iβ` dudy ` op2´iγq.

Then (3.4) follows from elementary estimates and the bounds
ż

Rd
|Pj |pxq |x|

r dx À 2´jr,

ż

Rd
|Qj |pxq |x|

r dx À 2´jr, (3.6)

that holds for any positive exponent r.

(ii) If γ ą 0, estimate (3.4) implies that the sum

fΛpxq :“
ÿ

jě´1

∆j

`

PpΛq ´ Λx
˘

pxq,

defines an element fΛ of CγpRdq; this is proved in point (iii) below. Then we have, for any
x P Rd,

ˇ

ˇ

@

PpΛq ´ fΛ ´ Λx, Pipx´ ¨q
Dˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jďi´2

∆j

`

PpΛq ´ Λx
˘

´ SipfΛqpxq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

fΛpxq ´
ÿ

jąi´2

∆j

`

PpΛq ´ Λx
˘

´ SipfΛqpxq

ˇ

ˇ

ˇ

ˇ

ˇ

À
ÿ

jąi´2

ˇ

ˇ∆jpfΛqpxq
ˇ

ˇ`
ÿ

jąi´2

ˇ

ˇ∆j

`

PpΛq ´ Λx
˘

pxq
ˇ

ˇ À 2´iγ .

Uniqueness of fΛ follows from the fact that Pi converges to a Dirac mass at 0, so if f 1Λ
were another Cγ function satisfying estimate (3.2), one would have

ˇ

ˇ

@

fΛ ´ f
1
Λ, Pipx´ ¨q

Dˇ

ˇ À 2´iγ ,
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uniformly in x, for all i ě ´1, giving indeed f 1Λ “ fΛ.

If γ ă 0, we directly have from (3.4) that
ˇ

ˇ

@

PpΛq ´ Λx, Pipx´ ¨q
Dˇ

ˇ À
ÿ

jďi´2

ˇ

ˇ

@

PpΛq ´ Λx, Qjpx, ¨q
Dˇ

ˇ À
ÿ

jďi´2

2´jγ À 2´iγ .

(iii) We follow the argument in Section 6 of [11]. We decompose fΛ “ fďj`1
Λ ` fąj`1

Λ ,
where

fďj`1
Λ pxq :“

ÿ

iďj`1

∆i

`

PpΛq ´ Λx
˘

pxq.

We consider ∆jfΛ “ ∆jf
ďj`1
Λ `∆jf

ąj`1
Λ . For the second term, by the estimate (3.4) one

has
›

›∆jf
ąj`1
Λ

›

›

L8
À

ÿ

iąj`1

2´iγ À 2´jγ .

For the first term, since Qj ˚Qďj`1 “ Qj , one has

∆jf
ďj`1
Λ pyq “

ż

Qjpy ´ xqQďj`1

`

PpΛq ´ Λx
˘

pxqdx

“

ż

Qjpy ´ xqQďj`1

´

PpΛq ´ Λy `
ÿ

`

c`yxΘ`
x

¯

pxqdx

“ Qj
`

PpΛq ´ Λy
˘

pyq `
ÿ

`

ż

Qjpy ´ xq c
`
yx

`

Qďj`1Θ`
x

˘

pxq dx.

The first term is estimated by (3.4). The second term is bounded by 2´jγ by assumption.
In the end, we have

›

›∆jf
ďj`1
Λ

›

›

L8
À 2´jγ .

B

If Λx stand for Πg
xfpxq, for a modelled distribution f P DγpT , gq and a model pg,Πq, one

has
Λy ´ Λx “

ÿ

σPB

´

fpyq ´ xgxyfpyq
¯σ

Πg
xσ,

and Λ satisfies the assumptions of Proposition 9, from condition (2.17) on models and the
definition of a modelled distribution. As in Lemma 6.3 of [11], we can extend the condition
(2.17) for any rapidly decreasing smooth functions ϕ. Identities (3.2) and (3.3) are equivalent
to saying that PpΛq ´ fΛ1γą0 is a reconstruction of f – see Lemma 6.6 of [11]. This is the
content of Theorem 6.10 in [11].

We prove in Theorem 14 below that Py,z

`

pΠg
yfpyqqpzq

˘

has an explicit form, up to some
remainder in CγpRdq. The mechanism at work in the proof of this fact lies in Proposition 10.
Following [4], set

R˝pa, b, cq :“ PapPbcq ´ Pabc.

It was proved in Appendix C1 of [4] that the map R˝ is continuous from L8pRdq ˆ Cr1pRdq ˆ
Cr2pRdq into Cr1`r2pRdq, for r1 P p0, 1q and r2 any regularity exponent in R. The next propo-
sition provides a refined continuity result for the operator R.

Proposition 10. Pick a positive regularity exponent α. Assume we are given a function
f P L8pRdq and a finite family pan, bnq1ďnďN of elements of L8pRdq ˆ L8pRdq such that one
has

fpyq ´ fpxq “
N
ÿ

n“1

anpxq
`

bnpyq ´ bnpxq
˘

` f 7yx, (3.7)
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for any x, y P Rd, for a two-parameter remainder f 7 with finite α-Hölder norm |||f 7|||Cα2 ă 8.
Then, for any regularity exponent β P R and g P CβpRdq, we have

N
ÿ

n“1

R˝pan, bn, gq P Cα`βpRdq.

Proof – Recall from equation (3.5) the definition of the smooth function S g, for any g P
CβpRdq, with β P R, and note the identity

R˝pa, b, cq “ P
´

apxq
`

Pb´bpxqc
˘

pyq
¯

´ PabpS cq.

Applying the two-parameter P-operator to identity (3.7), we see that
N
ÿ

n“1

R˝pan, bn, gq “ R˝p1, f, gq ` Pf pS gq ´
N
ÿ

n“1

PanbnpS gq ´Px,y

´

pP
f 7¨x
gqpyq

¯

“ ´S pPfgq ` Pf pS gq ´
N
ÿ

n“1

PanbnpS gq ´Px,y

´

pP
f 7¨x
gqpyq

¯

.

The first three terms on the right hand side are smooth. To prove that the last term on
the right hand side is an element of Cα`βpRdq, it is sufficient, from Proposition 8, to see
that

ˇ

ˇ

ˇ
Qj

´

`

P
f 7¨x
g
˘

pyq
¯ˇ

ˇ

ˇ
À 2´jpα`βq,

for all j ě 1. Recall for that purpose the bound (3.6). Then we have for
ˇ

ˇ

ˇ
Qj

´

`

P
f 7¨x
g
˘

pyq
¯ˇ

ˇ

ˇ

the upper bound
ÿ

i;|i´j|ď4

ˇ

ˇ

ˇ

ˇ

ż

Pjpz ´ xqQjpz ´ yq

ˆ
ż

Pipy ´ uqQipy ´ vqf
7
uxgpvqdudv

˙

dxdy

ˇ

ˇ

ˇ

ˇ

À
ÿ

i;|i´j|ď4

ż

ˇ

ˇPjpz ´ xqQjpz ´ yq
ˇ

ˇ

ˆ
ż

ˇ

ˇPipy ´ uq
ˇ

ˇ |u´ x|α du

˙

|∆igpyq| dxdy

À
ÿ

i;|i´j|ď4

2´iβ
ż

ˇ

ˇPjpz ´ xqQjpz ´ yq
ˇ

ˇ

`

|y ´ x|α ` 2´iα
˘

dxdy

À
ÿ

i;|i´j|ď4

2´iβ
`

2´jα ` 2´iα
˘

À 2´jpα`βq.

B

Condition (3.7) is reminiscent of Gubinelli’s notion of controlled path [9]. Recall from
Proposition 35 in [4] that for f P Cα1 and g P Cα2 , with α1, α2 positive and α1 ` α2 P p0, 1q,
one has

ˇ

ˇ

ˇ
pPfgqpyq ´ pPfgqpxq ´ fpxq

`

gpyq ´ gpxq
˘

ˇ

ˇ

ˇ
À |y ´ x|α1`α2 .

It follows from Proposition 10 above that R˝pf, g, hq P Cα1`α2`β, for any h P Cβ, with β P R.

Identity (2.26) provides another example of a setting where Proposition 10 applies, as it
states that one has for any τ, σ P B`

gy
`

τ{`σ
˘

´ gx
`

τ{`σ
˘

“
ÿ

ně1

p´1qn
ÿ

σă`σnă`¨¨¨ă`τ

gx
`

τ{`σ1

˘

¨ ¨ ¨ gx
`

σn´1{
`σn

˘

´

gy
`

σn{
`σ

˘

´ gx
`

σn{
`σ

˘

¯

` gyx
`

τ{`σ
˘

,

with
ˇ

ˇgyx
`

τ{`σ
˘ˇ

ˇ À |y ´ x||τ |´|σ|.
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Corollary 11. For any family phσqσPB`zt1u, with hσ P C|σ|, the sum
ÿ

ně1

p´1qn
ÿ

1ă`σă`σnă`¨¨¨ă`τ

R˝
´

g
`

τ{`σ1

˘

¨ ¨ ¨ g
`

σn´1{
`σn

˘

, gpσn{σq, hσ

¯

defines an element of C|τ |pRdq.

3.2 Paracontrolled representations

Proposition 12. Fix a regularity structure T and a model M “ pg,Πq on T . Define recursively
on |τ | and |σ| the families of real-valued functions

 

rrτ ssg
(

τPB` and
 

rrσssM
(

σPB on Rd, by the
formulas

gpτq “
ÿ

1ă`νă`τ

Pgpτ{`νqrrνss
g ` rrτ ssg, τ P B`,

Πσ “
ÿ

µăσ

Pgpσ{µqrrµss
M ` rrσssM, σ P B.

(3.8)

Then rrτ ssg P C|τ |pRdq, for all τ P B`, and rrσssM P C|σ|pRdq, for all σ P B. Furthermore, the
maps

M ÞÑ rrτ ssg P C|τ |pRdq, M ÞÑ rrσssM P C|σ|pRdq,
are continuous, for any τ P B` and σ P B.

Proof – First we construct the family
 

rrτ ssg; τ P B`
(

.
‚ The proof proceeds by induction on the homogeneity |τ | of τ , starting with the case
τ “ 1, for which we set rr1ssg :“ gp1q “ 1, the constant function on Rd, equal to 1.
Let |τ | ą 0 and assume that the functions rrσssg P C|σ|pRdq satisfying (3.8) have been
constructed for any σ P B` with |σ| ă |τ |. Applying the two-parameter extension of the
paraproduct operator P to identity (2.26) with σ “ 1 and ă` order, we have

P1gpτq “
8
ÿ

n“1

p´1qn´1
ÿ

1ă`σnă¨¨¨ăσ1ă`τ

Pgpτ{`σ1q¨¨¨gpσn´1{`σnqgpσnq `Px,y

`

gyxpτq
˘

.

We used the fact that Pf1 “ 0, for any f P S 1pRdq, to remove the zero-contribution from
the σn “ 1 term in the sum. Note that

P1gpτq “ gpτq ´S gpτq,

is the sum of gpτq and a smooth term depending continuously in any Hölder topology on
gpτq P L8pRdq. Expanding gpσnq by induction, we have

8
ÿ

n“1

p´1qn´1
ÿ

1ă`σnă`¨¨¨ăσ1ă`τ

Pgpτ{`σ1q¨¨¨gpσn´1{`σnqgpσnq

“

8
ÿ

n“1

p´1qn´1
ÿ

1ă`σnă`¨¨¨ă`σ1ă`τ

Pgpτ{`σ1q¨¨¨gpσn´1{`σnqrrσnss
g

`

8
ÿ

n“1

p´1qn´1
ÿ

1ă`σn`1ă`¨¨¨ă`σ1ă`τ

Pgpτ{`σ1q¨¨¨gpσn´1{`σnq

´

Pgpσn{`σn`1q
rrσn`1ss

g
¯

“
ÿ

1ăσăτ

Pgpτ{σqrrσss
g

`

8
ÿ

n“1

p´1qn´1
ÿ

1ă`σn`1ă`¨¨¨ă`σ1ă`τ

R˝
´

gpτ{`σ1q ¨ ¨ ¨ gpσn´1{
`σnq, gpσn{

`σn`1q, rrσn`1ss
g
¯

.
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from a (wonderful) telescopic sum simplification. This is where something is happening.
Define then rrτ ssg by the formula

S gpτq `Px,y

`

gyxpτq
˘

`

8
ÿ

n“1

p´1qn´1
ÿ

1ă`σn`1ă`¨¨¨ă`σ1ă`τ

R˝
´

gpτ{`σ1q ¨ ¨ ¨ gpσn´1{
`σnq, gpσn{

`σn`1q, rrσn`1ss
g
¯

.

It follows from the estimate |gyxpτq| À |y ´ x||τ |, and Proposition 8 that Px,y

`

gyxpτq
˘

P

C|τ |pRdq. Corollary 11 takes care of the sum and shows that it defines an element of
C |τ |pRdq.

‚ The proof of the regularity statement for rrτ ssM, for τ P B, proceeds by induction, similarly
as above, using identity (2.25) giving Πg

xτ in terms of Π only, as an input. Applying the
two-parameter operator P to (2.25), gives (3.8) for a choice of rrτ ssM equal to

S Πpτq `Px,y

`

Πg
xpτqpyq

˘

`

8
ÿ

n“1

p´1qn´1
ÿ

1ăσn`1ă¨¨¨ăσ1ăτ

R˝
´

gpτ{σ1q ¨ ¨ ¨ gpσn´1{σnq, gpσn{σn`1q, rrσn`1ss
M
¯

.

Since Πg
xτ “ Πg

x1ygx1xτ “ Πg
x1τ`

ř

σăτ gx1xpτ{σqΠ
g
x1σ, one can use Proposition 9 to conclude

that Px,y

`

Πg
xpτqpyq

˘

belongs to C|τ |pRdq. B

Recall from Example 2 in Section 2 that given a model pg,Πq on T , the concrete regularity
structure T ` is endowed with an associated canonical model

Mg :“ pg,Πgq “ pg, gq.

Remark that
rr¨ssM

g
“ rr¨ssg,

on T`, so the above statement is really about rr¨ssMg and rr¨ssM. The proof makes it clear that
the g-brackets rrτ ssg depend only on g. We extend by linearity the operators rr¨ssg, rr¨ssM to T`
and T , respectively.

Remark. One can make the link with the setting introduced in [4], and give a different represen-
tation of the brackets under the assumption that we are given an operator I that acts on smooth
functions and an abstract integration operator I : T ÞÑ T , on the regularity structure T , to-
gether with a naive interpretation operator Π, such that Π is multiplicative and ΠpIτq “ IpΠτq,
for all τ P T – see Section 4.2. Let then ζ : Rd ÞÑ R, stand for a smooth ‘noise’ and ˝ stand
for an element of T such that Πp˝q “ ζ. We assign homogeneity α´ θ to ˝, and |τ | ` θ to any
Iτ , and |τ1 ¨ ¨ ¨ τk| “ |τ1| ` ¨ ¨ ¨ ` |τk|, for all τi P T . Set gpI˝q :“ ΠpI˝q :“ Ipζq “: Z. Denote
by the unconventional sign a the resonant operator from the paraproduct decomposition of a
product – see Appendix A. Then

Πp˝Ip˝qq “ ζZ “ PZζ ` PζZ `apZ, ζq,

and we read on this expression that
rr˝Ip˝qssM “ PζZ `apZ, ζq.

Compute rr˝Ip˝q2ssM as another example. We have
Π
`

˝ Ip˝q2
˘

“ Z2ζ “ PZ2ζ ` 2PζPZZ ` Pζ
`

a pZ,Zq
˘

`a
`

2PZZ `apZ,Zq, ζ
˘

.
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To make the link with the defining relation (3.8) for rr˝Ip˝q2ssM, we use the corrector operator
C and the operator S from [4]. This gives for Π

`

˝ Ip˝q2
˘

the expression
PZ2ζ ` 2PZ

`

PζZ
˘

` 2Spζ, Z, Zq ` Pζ
`

a pZ,Zq
˘

` 2Z a pZ, ζq ` 2CpZ,Z, ζq ` a
`

a pZ,Zq, ζ
˘

“ PZ2ζ ` PZ
`

2PζZ `apZ, ζq
˘

`

!

2Spζ, Z, Zq ` Pζ
`

a pZ,Zq
˘

` 2PapZ,ζqZ ` 2a
`

Z,apZ, ζq
˘

` 2CpZ,Z, ζq ` a
`

a pZ,Zq, ζ
˘

)

,

so the term inside the brackets t¨ ¨ ¨ u defines rr˝Ip˝q2ssM. As can be seen from these examples,
these expressions of the brackets using the operators from [4] quickly get seemingly complicated.

Proposition 13. We have
gpτ{σq “

ÿ

ηPB, σăηăτ
Pgpτ{ηqrrη{σss

g ` rrτ{σssg,

for all σ, τ P B with σ ă τ .

Proof – With τ{σ “
ř

θPB`p∆τq
σθ θ, and θ{`ρ “

ř

κPB`p∆
`θqρκκ, we have on the one hand,

from Proposition 12,
gpτ{σq “

ÿ

θPB`
p∆τqσθgpθq “

ÿ

θ,ρPB`,1ă`ρă`θ
p∆τqσθ Pgpθ{`ρqrrρss

g `
ÿ

θPB`
p∆τqσθ rrθssg

“
ÿ

θ,ρ,κPB`,1ă`ρă`θ
p∆τqσθp∆`θqρκ Pgpκqrrρss

g ` rrτ{σssg,

and on the other hand, and since Pf1 “ 0, for any f P S 1pRdq,
ÿ

σăηăτ

Pgpτ{ηqrrη{σss
g “

ÿ

σăηăτ,κ,ρPB`,1ă`ρ
p∆τqηκp∆ηqσρ Pgpκqrrρss

g.

The statement then follows from the right comodule identity (2.9), such as expressed in
coordinates in identity (2.12), and the structural assumption (2.8) on the splitting map
∆. B

Theorem 14. Fix a regularity exponent γ P R, and a model M “ pg,Πq on the regularity
structure T . One can associate to any modelled distribution

f “
ÿ

τPB;|τ |ăγ

f ττ P DγpT , gq,

a distribution rrf ssM P CγpRdq such that one defines a reconstruction Rf of f setting

Rf :“
ÿ

τPB;|τ |ăγ

Pfτ rrτ ss
M ` rrf ssM. (3.9)

Each coefficient f τ also has a representation
f τ “

ÿ

τăµ;|µ|ăγ

Pfµrrµ{τ ss
g ` rrf τ ssg, (3.10)

for some rrf τ ssg P Cγ´|τ |pRdq. Moreover, the map

f ÞÑ
´

rrf ssM,
`

rrf τ ssg
˘

τPB

¯

from DγpT , gq to CγpRdq ˆ
ś

τPB Cγ´|τ |pRdq, is continuous.

Proof – Recall from Proposition 9 that, there exists a function g P CγpRdq such that

Px,y

´

`

Πg
xfpxq

˘

pyq
¯

´ g1γą0 (3.11)
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is the reconstruction Rf . We have from identity (2.25) giving Πg
x in terms of g and Π, the

finite expansion
`

Πg
xfpxq

˘

p¨q “

8
ÿ

n“0

p´1qn
ÿ

σnă¨¨¨ăσ1ăσ0

´

fσ0g
`

σ0{σ1

˘

¨ ¨ ¨ g
`

σn´1{σn
˘

¯

pxq pΠσnqp¨q.

So applying the two-parameter paraproduct operator P on both sides, and using the
same (fantastic) telescopic sum as in the proof of Proposition 12, we get, with an obvious
notation,

Px,y

´

`

Πg
xfpxq

˘

pyq
¯

“ pC8q `
ÿ

σ0PB
Pfσ0 rrσ0ss

M

`

8
ÿ

n“1

p´1qn
ÿ

σn`1ăσnă¨¨¨ăσ1ăσ0

R˝
´

fσ0g
`

σ0{σ1

˘

¨ ¨ ¨ g
`

σn´1{σn
˘

, gpσn{σn`1q, rrσn`1ss
M
¯

.

From (2.27), for each σ P B we have
fσpyq ´ fσpxq

“
`

fpyq ´ xgyxfpxq
˘σ
`

ÿ

σăσ0

fσ0pxqgyxpσ0{σq

“
`

fpyq ´ xgyxfpxq
˘σ

`
ÿ

ně0

p´1qn
ÿ

σăσnă¨¨¨ăσ1ăσ0

`

fσ0gpσ0{σ1q ¨ ¨ ¨ gpσn´1{σnq
˘

pxq
`

gypσn{σq ´ gxpσn{σq
˘

.

Proposition 10 applies and tells us that the sum of the R˝-terms defines an element of
Hölder regularity pγ ´ |σn`1|q ` |σn`1| “ γ. The claim of the theorem on Rf comes
from this fact and identity (3.11). To get the paracontrolled representation of f τ , note
from Lemma 6 that f{τ “

ř

µěτ ;|µ|ăγ f
µpµ{τq P Dγ´|τ |pT `, gq, and apply the result just

proved to the reconstructions of the modelled distribution. B

Theorem 14 refines over the paraproduct-based construction of the reconstruction operator
given by Gubinelli, Imkeller and Perkowski in [11], where Rf is proved to be of the form
Px,y

`

pΠg
xfpxqqpyq

˘

, up to a CγpRdq term. See our extension in Proposition 9 above. The
point of our refined representation of the family

`

Rf , f τ
˘

as a paracontrolled system lies in
Theorem 2, proved in the next section. It parametrizes the class of “admissible” models used
for the study of singular stochastic PDEs, in terms of the brackets rrτ ssM, with |τ | ď 0. The
forthcoming work [5] will give a similar description of more general models pg,Πq and modelled
distributions in DγpT , gq, in terms only of the bracket data, extending the main result of [16]
on Besov-type characterizations DγpT , gq.

One advantage of the explicit construction of the reconstruction operator given by Theorem
14 is that this representation is flexible enough to work in other functional settings than the
present Bγ

88-type space DγpT , gq. The continuity properties of the paraproduct operator on
Besov, Triebel-Lizorkin or Sobolev-Slobodeckij spaces are well-known, and allow for a direct
approach to reconstruction in these spaces, in the line of the recent works [13, 14, 15, 17].

Before giving the next statement, note that the restriction to Tď0 of the splitting ∆ turns

Tď0 :“
´

pT`,∆`q, pTď0,∆q
¯

into a regularity structure. The next statement is essentially contained in Proposition 3.31
from [12]; we give the details here to provide a self-contained document.

Corollary 15. Assume we are given a map g : Rd Ñ G` such that the bound (2.16) is satisfied.
Let a family

`

rrτ ss P C|τ |pRdq
˘

τPB,|τ |ď0
be given. For any τ P B with |τ | ď 0, set

Πτ :“
ÿ

σăτ

Pgpτ{σqrrσss ` rrτ ss.
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Then pg,Πq is a model on the regularity structure Tď0, and it has a unique extension into a
model on T .

Proof – ‚ Pick a basis vector τ P B with |τ | ď 0, and assume that pg,Πq is a model on the
sector Tă|τ |. Set for all x P Rd

hτ pxq :“
ÿ

σăτ

gxpτ{σqσ;

this defines a modelled distribution in D|τ |pT , gq. Then the bound |xΠg
xτ, ϕλxy| À λ|τ |

is equivalent to that Πτ is (one of) the reconstructions of hτ . From Theorem 14, the
distribution

ÿ

σăτ

Pgpτ{σqrrσss ` rrhτ ss

is a reconstruction of hτ . Since
Πτ ´ hτ “ rrτ ss ´ rrhτ ss P C|τ |pRdq,

the distribution Πτ appears then as another reconstruction of hτ .
‚ If one picks now a basis vector µ P B, with |µ| ą 0, then hµ P D|µ|pT , gq has a unique
reconstruction, equal to Πµ, that is characterized by the data

`

Πg
xσ, gxpµ{σq;x P Rd, σ ă

µ
˘

, from the defining property (2.29) of a reconstruction. An elementary induction then
shows the existence of a unique extension of Π to T that satisfies the property Πτ “ Rhτ ,
for every τ P B with positive homogeneity. B

4 – Parametrization of the set of admissible models

4.1 Usual models

We introduce in this section a notion of usual model on a concrete regularity structure,
motivated by some identity satisfied by gpτ{Xkq in the usual setting; see Equation (4.4) below.
Its introduction is motivated by the fact that usual models pg,Πq are entirely determined by
the Π map, under a mild structure assumption on T` and ∆. The definition of a usual model
requires that we work with concrete regularity structures where T and T` are related with
one another, unlike the results of the previous section.

Let T “
`

pT`,∆`q, pT,∆q
˘

be a concrete regularity structure. If T contains the usual
polynomial structure T pXq, one can expand the coproduct ∆τ of any τ P BztXkuk, as

∆τ “ ∆̊τ `
ÿ

kPNd

Xk

k!
bDkτ, ∆̊τ :“

ÿ

σ‰Xk

σ b pτ{σq,

where
Dkτ :“ k!pτ{Xkq.

Applying Πb g´1
x , we have

Πg
xτ “ Π̊g

xτ `
ÿ

kPNd

p¨qk

k!
g´1
x pD

kτq, Π̊g
x :“ pΠb g´1

x q∆̊.

Setting

fxpD
kτq :“ ´

ÿ

`PNd

x`

`!
g´1
x pD

k``τq,

or equivalently,

g´1
x pD

kτq :“ ´
ÿ

`PNd

p´xq`

`!
fxpD

k``τq,
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gives a Taylor-like expansion formula for Πg
xτ , under the form of the identity

Πg
xτ “ Π̊g

xτ ´
ÿ

kPNd

p¨ ´ xqk

k!
fxpD

kτq.

Since the derivatives Bky pΠ
g
xτqpyq vanishes at y “ x for any |k| ă |τ |, one has

fxpD
kτq “ 1|k|ă|τ |B

k
y pΠ̊

g
xτqpyq

ˇ

ˇ

y“x
. (4.1)

Given α P R, define a linear projection map Pąα : T ÞÑ T setting
Pąαpτq :“ τ 1|τ |ąα,

for every τ P B.

Lemma 16. For any τ P BztXkuk, one has

gxpD
kτq “

´

Bky

 

pΠ̊g
xPą|k| b gxq∆τ

(

pyq
¯ˇ

ˇ

ˇ

y“x
. (4.2)

Proof – It suffices to show that
gxpD

kτq “
ÿ

σ‰X`

fxpD
kσqgxpτ{σq; (4.3)

we get (4.2) by inserting (4.1) into (4.3). We start from the formula

∆`pτ{Xk``q “
ÿ

σ‰Xm

pσ{Xk``q b pτ{σq `
ÿ

m

ˆ

k ` ``m
m

˙

Xm b pτ{Xk```mq.

Since τ{Xk`` P T`zx1y, applying g´1
x b gx to the preceding identity gives

0 “
ÿ

σ‰Xm

g´1
x pD

k``σqgxpτ{σq `
ÿ

m

p´xqm

m!
gxpD

k```mτq,

that is

0 “ ´
ÿ

m

p´xqm

m!

˜

ÿ

σ‰Xm

fxpD
k```mσqgxpτ{σq ´ gxpD

k```mτq

¸

.

Identity (4.3) is obtained as a consequence, since

0 “
ÿ

`,m

x`

`!

p´xqm

m!

˜

ÿ

σ‰Xm

fxpD
k```mσqgxpτ{σq ´ gxpD

k```mτq

¸

“
ÿ

σ‰Xm

fxpD
kσqgxpτ{σq ´ gxpD

kτq.

B

We use in the present work the bounded polynomial structure rather than the usual polyno-
mial structure. We work with concrete regularity structures for which the following assump-
tions hold true.

Assumption (A) The bounded polynomial structure T pXq “ xXk
eye,k is contained in T , and

the polynomial ring T`pXq “ xXk1
e1 ¨ ¨ ¨X

kn
en ye1,...,en,k1,...,kn is included in T`.

We do not make a difference in the notations between the two copies in T and T` of the
bounded polynomial structure.

Definition 17. Let T be a concrete regularity structure satisfying Assumption (A1). We say
that the model pg,Πq is usual if one has gxpX

k
eq “ pΠXk

eqpxq “ xke , and

gxpD
k
eτq “

´

Bky

!

φe
`

Π̊g
xPą|k| b gx

˘

∆τ
)

pyq
¯ˇ

ˇ

ˇ

y“x
. (4.4)
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for any τ P BztXk
eue,k, where Dk

eτ :“ k!pτ{Xk
eq.

4.2 Abstract integration operator and admissible models

Fix a positive regularity exponent θ, and let T be a concrete regularity structure. Assume
for simplicity that

β0 ą ´θ,

so all the elements of T have homogeneity strictly greater than ´θ. We consider in this section
concrete regularity structures T equipped with an abstract integration operator I, that is a
regularity structure counterpart of an operator I that is typically an integral operator given by
a kernel that is singular on the diagonal, such as the Green function of a differential operator.
The exponent θ quantifies the regularizing properties of the operator I in the Hölder or Besov
scale.

Remark – The dynamical Φ4
3 equation

BtΦ “ ∆Φ´ Φ3 ` ξ

seems not to satisfy the above assumption. Indeed, one should choose β0 “ ´5
2 ´ ε, and

θ “ 2 for the heat kernel in any dimension. However, if we decompose Φ “ Ψ ` v, where
BtΨ “ ∆Ψ` ξ and

Btv “ ∆v ´ pv `Ψq3,

then one can choose β0 “ 3p´1
2 ´ εq instead, so the equation for v satisfies β0 ą ´θ. A

general da Prato-Debussche trick is described in Section 6 of [6], that allows to set the study
of a generic subcritical singular partial differential equation, within the setting of regularity
structures, under the assumption β0 ą ´θ.

Integration operator

Let Kn : Rd ˆ Rd ÞÑ R, be a sequence of kernels on Rd, with support in
 

px, yq P Rd ˆ Rd; |y ´ x| ď 2´n
(

,

and such that one has, for all n P N and x, y P Rd,
ˇ

ˇBkxB
`
yKnpx, yq

ˇ

ˇ ď Ck,` 2´npθ`ε´d´|k|´|`|q, (4.5)
for some (small) positive ε. (This ε is only needed in the proof of Lemma 22; see the remark
following that lemma.) The converging sum

Kpx, yq “
ÿ

ně0

Knpx, yq

defines a kernel
K : Rd ˆ Rdztpx, xq;x P Rdu ÞÑ R,

and, for each x P Rd, an integration map

pIϕqpxq :“

ż

Rd
Kpx, yqϕpyq dy,

for ϕ P DpRdztxuq. The archetypal example is the smoothly localized Green kernel
Kpx, yq “ χp|y ´ x|q |y ´ x|2´d,

for χ a smooth real-valued function with compact support identically equal to 1 in a neigh-
bourhood of 0, in dimension at least d ě 3, for which one can take any θ ă 2. The associated
integration map sends any CβpRdq, into Cβ`2pRdq, for β R Z – these are Schauder estimates.
Note however that pIζqpxq is not defined for a generic distribution ζ.
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Lemma 18. Let tζxuxPRd Ă S 1pRdq be a family of distributions. If there exist α P R and a
positive constant C such that one has

ˇ

ˇxζx, ϕ
λ
xy
ˇ

ˇ ď Cδλ,

uniformly over ϕ P CrpRdq, with unit norm and support in the unit ball, λ P p0, 1s and x P Rd,
then the sum

pIekpζxqqpxq :“
A

ζx, B
k
x

`

φepxqKpx, ¨q
˘D

:“
ÿ

ně0

A

ζx, B
k
x

`

φepxqKnpx, ¨q
˘

E

(4.6)

converges for any |k| ă α` θ, e P E and x P Rd.

Proof – Pick x P Rd. Let ϕ be any smooth function with support in ty P Rd; |y ´ x| ă λu,
such that one has

sup
|`|ďr

λd`|`|}B`ϕ}L8 ď 1,

for some λ P p0, 1s. Since ϕx,λpyq :“ λdϕpx`λyq has unit norm in CrpRdq and ϕ “ pϕx,λqλx,
we have |xζx, ϕy| ď Cλα, from the assumption of the lemma. Pick k P Nd. Since ϕpyq :“

BkxpφepxqKnpx, yqq is supported in ty P Rd; |y ´ x| ă 2´nu and }B`ϕ}L8 À 2pd`|k|`|`|´θqn,
we thus have

ˇ

ˇ

ˇ

A

ζx, B
k
x

`

φepxqKnpx, ¨q
˘

Eˇ

ˇ

ˇ
À 2p|k|´α´θqn, (4.7)

and a converging sum in (4.6) if |k| ă α` θ. B

Note that we cannot even make sense of
ş

Rd Kpz, yqζxpyq dy, for z ‰ x. Were we able to
define that function as a regular function of z, it would have a regularity structure lift in the
canonical polynomial structure. Lemma 18 allows to define an avatar for the lift at point x
only of the non-existing function

`

pφeIqζx
˘

p¨q, under the form of the quantity
ÿ

ePE,|k|ăα`θ

Xk
e

k!

`

pφeIqζx
˘

pxq.

It follows from Lemma 18 and the assumption β0 ą ´θ, that one can make sense of IpΠτqpxq
for any x P Rd, under the form of the converging sum

IpΠτqpxq :“
ÿ

ně0

@

Πτ,Knpx, ¨q
D

.

Regularity structures with an abstract integration operator

In addition to Assumption (A), we make the following set of assumptions on the concrete
regularity structure T .
Assumption (B) The sets T` and T are related via the integral operators in the following
sense.

‚ There exist operators Ie`k : T ÞÑ T`, indexed by e P E and k P Nd, with positive
homogeneities

|Xi
e| “ 1,

ˇ

ˇIe`k τ
ˇ

ˇ “ |τ | ` θ ´ |k|.

‚ One has
∆`1 “ 1b 1, ∆`Xi

e “ Xi
e b 1` 1bXi

e,

and the operators ∆ and ∆` are related by the intertwining relations

∆`pIe`k τq “ pIe`k b Idq∆τ `
ÿ

`PNd

X`
e

`!
b Ie`k``τ. (4.8)

In addition, T satisfies the following assumptions.
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‚ There exists an operator I : T ÞÑ T , with
ˇ

ˇIτ
ˇ

ˇ “ |τ | ` θ.

‚ For any τ P B, one has

∆pIτq “ pI b Idq∆τ `
ÿ

ePE,`PNd

X`
e

`!
b Ie`` τ. (4.9)

Note that identity (4.9) identifies Ie`k τ as Iτ{Xk
e , for any k P Nd, e P E. The operators Ie`k

are the regularity structure counterparts of the operators BkpφeIq. Note that the restrictions on
the index sets in identities (4.8) and (4.9) to indices ` with |k|`|`| ă |τ |`θ, are redundant with
the fact that Ie`k`` is null on Tβ, for β ď ´|k| ´ |`|. In applications to the study of stochastic
PDEs with derivatives of unknown functions, such as the KPZ equation, we can also assume
the existence of other operators Ik : T Ñ T , associated with the integration operator BkI.

Proposition 19. Let pg,Πq be a usual model on T . We assume the commutation rule
ΠpIτq “ IpΠτq. (4.10)

Then, the usual property (4.4) holds for any τ P IB if and only if, for every τ P B, and x P Rd,
one has

gxpIe`k τq “
ÿ

σďτ ;|k|ă|σ|`θ

gxpτ{σq I
e
k

`

Πg
xσ

˘

pxq (4.11)

Proof – Since Ie`k τ “ Dk
eIτ ,

gxpIe`k τq “
´

Bky

!

φe
`

Π̊g
xPą|k| b gx

˘

∆Iτ
)

pyq
¯ˇ

ˇ

ˇ

y“x
.

“ Bky

!

φe

´

ÿ

σ;|σ|`θą|k|

pΠ̊g
xIσqgxpτ{σq

¯)

pyq
ˇ

ˇ

ˇ

y“x

“ Bky

!

φe

´

ÿ

σ,η;|σ|`θą|k|

pΠIηqg´1
x pσ{ηqgxpτ{σq

¯)

pyq
ˇ

ˇ

ˇ

y“x

“ Iek

¨

˝

ÿ

σ,η;|σ|ą|k|´θ

pΠηqg´1
x pσ{ηqgxpτ{σq

˛

‚pxq

“ Iek

¨

˝

ÿ

σ;|σ|`θą|k|

pΠg
xσqgxpτ{σq

˛

‚pxq.

B

Definition 20. A model pg,Πq on T is said to be admissible if the identities gxpX
k
eq “

ΠXk
epxq “ xke , the commutation rule (4.10), and (4.11) are satisfied.

Remark – Note that our notion of admissible model is more general than the corresponding
notion introduced by Bruned, Hairer and Zambotti in [7]; Definition 6.9 in that work. Their
admissible Π-maps, together with the positive twisted antipode from Proposition 6.2 in [7], are
used in definition 6.8 therein to build a g-map and models pg,Πq that are admissible model on
T in our sense, with all φe ” 1. This is a direct consequence of Lemma 6.10 in [7] and the
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following equalities.

Πg
xIτ “ IpΠg

xτq ´
ÿ

ePE,|k|ă|τ |`θ

pp¨qe ´ xeq
k

k!
IekpΠ

g
xτqpxq, (4.12)

g´1
x pIe`k τq “ ´

ÿ

`;|k``|ă|τ |`θ

p´xeq
`

`!
Iek``pΠ

g
xτqpxq, (4.13)

gyxpIe`k τq “
ÿ

σďτ,|k|ă|σ|`θ

gyxpτ{σqI
e
kpΠ

g
yσqpyq ´

ÿ

|k``|ă|τ |`θ

pye ´ xeq
`

`!
Iek``pΠ

g
xτqpxq. (4.14)

Let us show the above equalities. First we assume that (4.12) holds for any σ P B with σ ă τ .
Then by (4.10) and (4.11),

Πg
xIτ “ ΠIτ ´

ÿ

σăτ

gxpτ{σqΠ
g
xIσ ´

ÿ

e,k

pp¨qe ´ xeq
k

k!
gxpIe`k τq

“ IpΠτq ´
ÿ

σăτ

gxpτ{σq

¨

˝IpΠg
xσq ´

ÿ

ePE,|k|ă|σ|`θ

pp¨qe ´ xeq
k

k!
IekpΠ

g
xσqpxq

˛

‚

´
ÿ

e,|k|ă|τ |`θ

pp¨qe ´ xeq
k

k!

¨

˝Iek
`

Πg
xτ
˘

pxq `
ÿ

σăτ,|k|ă|σ|`θ

gxpτ{σq I
e
k

`

Πg
xσ

˘

pxq

˛

‚

“ I
`

Πτ ´
ÿ

σăτ

gxpτ{σqΠ
g
xσ

˘

´
ÿ

e,|k|ăτ`θ

pp¨qe ´ xeq
k

k!
Iek
`

Πg
xτ
˘

pxq,

where by using Πτ ´
ř

σăτ gxpτ{σqΠ
g
x “ Πg

xτ we have (4.12). On the other hand, by (4.8),

0 “ gxxpIe`k``τq “
ÿ

σďτ

gxpIe`k``σqg
´1
x pτ{σq `

ÿ

m;|k```m|ă|τ |`θ

xme
m!

g´1
x pIe`k```mτq

From this identity and (4.11),

g´1
x pIe`k τq “

ÿ

`,m

p´xeq
`

`!

xme
m!

g´1
x pIe`k```mτq “ ´

ÿ

σďτ,`

p´xeq
`

`!
gxpIe`k``σqg

´1
x pτ{σq

“ ´
ÿ

σďτ,`

p´xeq
`

`!
g´1
x pτ{σq

ÿ

ηďσ,|k``|ă|η|`θ

gxpσ{ηq I
e
k``

`

Πg
xη
˘

pxq

“ ´
ÿ

ηďτ,|k``|ă|η|`θ

p´xeq
`

`!
gxxpτ{ηqI

e
k``pΠ

g
xηqpxq,

where gxxpτ{ηq “ 1η“τ , which yields (4.13). Moreover, we have (4.14) as follows.

gyxpIe`k τq “
ÿ

σďτ

gypIe`k σqg´1
x pτ{σq `

ÿ

`

y`e
`!

g´1
x pIe`k``τq

“
ÿ

ηďσďτ,|k|ă|η|`θ

gypσ{ηqg
´1
x pτ{σqI

e
kpΠ

g
yηqpyq

´
ÿ

`,m;|k```m|ă|τ |`θ

y`e
`!

p´xeq
m

m!
Iek```mpΠ

g
xτqpxq

“
ÿ

ηďτ,|k|ă|η|`θ

gyxpτ{ηqI
e
kpΠ

g
yηqpyq ´

ÿ

|k``|ă|τ |`θ

pye ´ xeq
`

`!
Iek``pΠ

g
xτqpxq.
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4.3 Parametrization of the set of admissible models

We prove Theorem 2 in this section, giving a parametrization of the set of admissible models
by a product of Hölder spaces of non-positive regularity exponent. A similar parametrization of
the space of branched rough paths was achieved in the recent work [19] of Tapia and Zambotti,
with very different tools. The next result applies in particular in the former setting, when
formulated in terms of regularity structures. We need the following structural assumptions on
T` and T .

Assumption (C)

‚ The basis B` of T` is a commutative monoid with unit 1, freely generated by the set
tXi

euePE,i“1,...,d Y
 

Ie`k τ
(

τPB,ePE,kPNd,|τ |`θ´|k|ą0
,

‚ For any τ, σ P B, the element τ{σ P T` is contained in the subalgebra generated by the
set

tXi
euePE,i“1,...,d Y

 

Ie`k η
(

ηPB,ePE,kPNd;|η|ă|τ |,|η|`θ´|k|ą0
,

Theorem 21. Let a regularity structure T equipped with an abstract integration map satisfy
assumptions (A), (B) and (C). Given any family of distributions

`

rrτ ss P C|τ |pRdq
˘

τPB;|τ |ď0
,

there exists a unique admissible model pg,Πq on T such that one has

Πτ :“
ÿ

σăτ

Pgpτ{σqrrσss ` rrτ ss, (4.15)

for all τ P B with |τ | ď 0.

Proof – For α P A, define T`
pαq as the subalgebra of T` generated by

tXi
euePE,i“1..d Y

 

Ie`k τ
(

τPB,ePE,kPNd,|τ |ăα.

By Assumption (C), T`
pαq is closed under ∆`. Start by noting that Tăα :“ pT`

pαq, Tăαq is
a regularity structure for any α P A. Define inductively on α P A the maps

Πăα : Tăα ÞÑ Cβ0pRdq,
and

gpαq : T`
pαq ÞÑ CbpR

dq,

with g
pαq
x pXk

eq “ xke , initializing the induction. Write Măα for the model pgpαq,Πăαq
on Tăα. Set α` :“ mintβ ą α;β P Au. Given a basis vector τ P Bα, the function
hτ :“

ř

σăτ gpαqpτ{σqσ is an element of DαpTăα, gpαqq. Define Πăα`τ as equal to either
ÿ

σăτ

Pgpαqpτ{σqrrσss ` rrτ ss,

if |τ | ď 0, or
RMăαphτ q,

if |τ | ą 0, where RMăα stands for the reconstruction operator on Dα
`

Tăα, gpαq
˘

associated
with the model Măα. We have in both cases

ˇ

ˇ

@

pΠăα`q
gpαq
x τ, ϕλx

Dˇ

ˇ À λα, from Corollary 15.
Define then an extension gpα

`q of gpαq onto T`
pα`q

by requiring that it is multiplicative and
by defining gpα

`qpIe`k τq from identity (4.11), with Πăα` in the role of Π. Boundedness
of gpα

`q is checked by induction. Given Assumption (C) on the regularity structure T ,
closing the induction step amounts to proving that

ˇ

ˇgpα
`q

yx pIe`k τq
ˇ

ˇ À |y ´ x||τ |`θ´|k|,
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for every k P Nd and e P E. Set
`

Υe
αhτ

˘

pxq :“ Ie`0 hτ pxq `
ÿ

kPNd

gxpIe`k τq
Xk

e

k!
.

Proposition 19 is used to prove the following fact, proved below.

Lemma 22. One has Υe
αhτ P Dα`θ

`

T `
ăα, g

pαq
˘

.

But
`

Υe
αhτ

˘

pyq ´
y

g
pαq
yx

`

Υe
αhτ

˘

pxq

has Xk
e component equal to

ˇ

ˇ

ˇ

ˇ

ˇ

gypIe`` τq ´
ÿ

ηăτ

gxpτ{ηqgyxpIe`` ηq ´
ÿ

m

gxpIe```mτq
pye ´ xeq

m

m!

ˇ

ˇ

ˇ

ˇ

ˇ

À |y ´ x||τ |`θ´|`|,

from lemma 22; we recognize
ˇ

ˇg
pα`q
yx pIe`k τq

ˇ

ˇ in the left hand side, which closes the induction.
B

Proof of Lemma 22 – We follow closely the proof of Schauder estimates for modelled distri-
butions – Theorem 5.12 of [12]. Note first that by (4.11) one can decompose Υe

αhτ under the
form

`

Υe
αhτ

˘

pxq “ Ie`0 hτ pxq ` J epxqphτ pxqq ` pN ehτ qpxq,

with
J epxqhτ pxq :“

ÿ

σăτ

gxpτ{σq
ÿ

|k|ă|σ|`θ

Xk
e

k!
IekpΠ

g
xσqpxq

and
`

N ehτ
˘

pxq :“
ÿ

|k|ă|τ |`θ

Xk
e

k!
Iek
`

Rphτ q ´ Πg
xhτ pxq

˘

pxq “
ÿ

|k|ă|τ |`θ

Xk
e

k!
Iek
`

Πg
xτ
˘

pxq,

with |τ | “ α, where J epxq is an operator on T rather than on DγpT , gq, defined by

J epxqσ “
ÿ

|k|ă|σ|`θ

Xk
e

k!
IekpΠ

g
xσqpxq.

Remark then, as in Lemma 5.16 of [12], that we have for any x, y P Rd

xgyx
`
`

Ie` ` J epxq
˘

“
`

Ie` ` J epyq
˘

xgyx. (4.16)
We give a direct proof. By definition, we have

xgyx
`
`

Ie` ` J epxq
˘

τ “
ÿ

σ

gyxpτ{σqIe`σ `
ÿ

k

Xk
e

k!
gyxpIe`k τq

`
ÿ

k,`;|k``|ă|τ |`θ

Xk
e

k!

pye ´ xeq
`

`!
Iek``pΠ

g
xτqpxq

and

pIe` ` J epyqqxgyxτ “
ÿ

σ

gyxpτ{σqIe`σ `
ÿ

k,σ;|k|ă|σ|`θ

Xk
e

k!
gyxpτ{σqI

e
kpΠ

g
yσqpyq.

They are equal because of (4.14). We use the interwining relation (4.16) to write
`

Υe
αhτ

˘

pyq ´ xgyx
`
`

Υe
αhτ

˘

pxq “
`

Υe
αhτ

˘

pyq ´ xgyx
`
`

Ie` ` J epxq
˘

hτ pxq ´ xgyx
`
pN ehτ qpxq

“
`

Υe
αhτ

˘

pyq ´
`

Ie` ` J epyq
˘

xgyxhτ pxq ´ xgyx
`
pN ehτ qpxq

“ Ie`
´

hτ pyq ´ xgyxhτ pxq
¯

` J epyq
´

hτ pyq ´ xgyxhτ pxq
¯

`

´

pN ehτ qpyq ´ xgyx
`
pN ehτ qpxq

¯

.
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For the Ie` term, one has the elementary estimate
›

›Ie`
`

hτ pyq ´ xgyxhτ pxq
˘›

›

β
À

›

›hτ pyq ´ xgyxhτ pxq
›

›

β´θ
ď }hτ }Dα |y ´ x|

α`θ´β.

The J e and N e terms take values in the polynomial part of T`. Write τX
k
e for the Xk

e -
component of τ P T`. Decompose Kpy, zq “

ř8
n“0Knpy, zq, and let J e “:

ř

n J e
n and

N e “:
ř

nN e
n, be the corresponding operators. We have

´

J e
n pyq

`

hτ pyq ´ xgyxhτ pxq
˘

`
`

N e
nhτ qpyq ´ xgyx

`
pN e

nhτ qpxq
¯Xk

e

“

´

J e
n pyq

`

hτ pyq ´ xgyxhτ pxq
˘

¯Xk
e
`

´

`

N e
nhτ qpyq ´ xgyx

`
pN e

nhτ qpxq
¯Xk

e
“: p˚q1n ` p˚q

2
n

and
´

J e
n pyq

`

hτ pyq ´ xgyxhτ pxq
˘

`
`

N e
nhτ qpyq ´ xgyx

`
pN e

nhτ qpxq
¯Xk

e

“
ÿ

βPA,|k|ăβ`θ

ż

Rd

1

k!
Bky

`

φepyqKnpy, zq
˘

Πg
y

`

hτ pyq ´ xgyxhτ pxq
˘

β
pzq dz

`

ż

Rd

1

k!
BkpφeKnq

α`θ´|k|
y,x pzq pΠg

xτqpzq dz

`

ż

Rd

1

k!
Bky pφepyqKnpy, zqqΠg

y

`

xgyxhτ pxq ´ hτ pyq
˘

pzq dz

“

ż

Rd

1

k!
BkpφeKnq

α`θ´|k|
y,x pzq pΠg

xτqpzq dz

`
ÿ

βPA,|k|ěβ`θ

ż

Rd

1

k!
Bky

`

φepyqKnpy, zq
˘

Πg
y

`

xgyxhτ pxq ´ hτ pyq
˘

β
pzq dz

“: p‹q1n ` p‹q
2
n,

where

BkpφeKnq
α`θ´|k|
y,x pzq :“ Bky

`

φepyqKnpy, zq
˘

´
ÿ

|`|ăα`θ´|k|

pye ´ xeq
`

`!
Bk``x

`

φepxqKnpx, zq
˘

.

Write |y ´ x| » 2´N . We use the p˚q-decomposition, with J n and N n separated, to estimate
the sum over n ą N , and the p‹q-decomposition to estimate the sum over n ď N . Each
decomposition is well-adapted to get N -independent upper bounds.
‚ For n ą N , we have from the bound (4.7) and its derivatives the estimate

ÿ

nąN

ˇ

ˇp˚q1n

ˇ

ˇ À
ÿ

nąN

ÿ

βPA,|k|ăβ`θ

|y ´ x|α´β 2p|k|´β´θqn À |y ´ x|α`θ´|k|.

By the definition of N , we get
ÿ

nąN

ˇ

ˇp˚q2n

ˇ

ˇ ď
ÿ

nąN

ˇ

ˇ

ˇ

ˇ

ż

Rd

1

k!
Bky

`

φepyqKnpy, zq
˘

pΠg
yτqpzqdz

ˇ

ˇ

ˇ

ˇ

`
ÿ

nąN

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|`|`|k|ăα`θ

pye ´ xeq
`

`!

ż

Rd

1

k!
Bk``x

`

φepxqKnpx, zq
˘

pΠg
xτqpzqdz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À
ÿ

nąN

¨

˝2p|k|´α´θqn `
ÿ

|`|ăα`θ´|k|

|y ´ x|`2p|`|´α´θqn

˛

‚À |y ´ x|α`θ´|k|

‚ To deal with the sum over n ď N , we use the p‹q-decomposition. For p‹qn1 , note that since
|y´x| » 2´N ď 2´n, the function BkpφeKnq

α`θ´|k|
y,x is supported on a ball Bpx,C2´nq, for some

positive constant C. From Taylor formula with bounded polynomials proved in Appendix B,
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we have
ˇ

ˇ

ˇ
Bmz B

kpφeKnq
α`θ´|k|
y,x pzq

ˇ

ˇ

ˇ
À Bα`θpB

m
z Knp¨, zqq |y ´ x|

α`θ´|k|, (4.17)

with Br
`

Bmz Knp¨, zq
˘

À 2pd`|m|`r´θ´εqn, from either (4.5) or the interpolation theorem 2.80 in
[1]. Hence

ˇ

ˇ

ˇ
Bmz B

kpφeKnq
α`θ´|k|
y,x pzq

ˇ

ˇ

ˇ
À 2pd`|m|`α´εqn|y ´ x|α`θ´|k|.

It follows then from the proof of Lemma 18 that we have

|p‹q1n| “

ˇ

ˇ

ˇ
pΠg

xτq
`

BkpφeKnq
α`θ´|k|
y,x

˘

ˇ

ˇ

ˇ
À 2´εn|y ´ x|α`θ´|k|,

so the sum over n ď N is independent of N , of order |y ´ x|α`θ´|k|. As for the p‹qn2 -terms,
they involve some indices ζ with |k| ě ζ ` θ, so the same elementary bounds as above give

|p‹q2n| À
ÿ

ζPA,|k|ěζ`θ

|y ´ x|α´ζ 2p|k|´ζ´θ´εqn À 2´εn |y ´ x|α`θ´|k|,

since 2n ď |y ´ x|´1. The sum over n ď N of the p‹qn2 is thus independent of N , of order
|y ´ x|α`θ´|k|. B

Remark – If pT`, T q satisfies |τ | ` θ R N for any τ P B, then we can choose ε “ 0 for the
estimate (4.5) on the kernel Kn. We need to modify the argument for the sum over n ď N .
For p‹q1n, since BkpφeKnq

α`θ´|k|
y,x “ BkpφeKnq

α`θ`δ´|k|
y,x in (4.17) for small δ ą 0 such that

pα` θ, α` θ ` δq X N “ H, we have
|p‹q1n| À 2δn|y ´ x|α`θ`δ´|k|,

so the sum over n ď N is of order |y ´ x|α`θ´|k|. For p‹q2n, since they involve indices ζ with
|k| ą ζ ` θ, we have

ÿ

nďN

|p‹q2n| À
ÿ

ζPA,|k|ąζ`θ

|y ´ x|α´ζ2p|k|´ζ´θqN À |y ´ x|α`θ´|k|.

A – Paraproducts

We summarize in this section some basic concepts and results of the Littlewood-Paley theory.
Let tρiu8i“´1 be a dyadic partition of unity of Rd, i.e., ρi : Rd Ñ r0, 1s is a compactly supported
smooth radial function with the following properties.

‚ supppρ´1q Ă
 

x P Rd; |x| ă 4
3

(

and supppρ0q Ă
 

x P Rd; 3
4 ă |x| ă

8
3

(

.
‚ ρipxq “ ρ0p2

´ixq for any x P Rd and i ě 0.
‚
ř8
i“´1 ρipxq “ 1 for any x P Rd.

We define the Littlewood-Paley blocks t∆iu
8
i“´1 by

∆if :“ F´1pρiFfq, f P S 1pRdq,
where F is a Fourier transform on Rd defined by

Fϕpξq :“

ż

Rd
ϕpxqe´2π

?
´1xx,ξydx, ϕ P SpRdq.

Now we define the Hölder-Besov spaces. For any α P R and f P S 1pRdq, we define
}f}Cα :“ sup

iě´1
2αi}∆if}L8pRdq.

We denote by CαpRdq the space of all f P S 1pRdq with }f}Cα ă 8. This definition does
not ensure the separability of CαpRdq, so it may be better to consider the space Cβ0 pRdq, the
completion of SpRdq under the norm } ¨ }Cα . However, it does not matter because CαpRdq
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is embedded into the space Cβ0 pRdq for any β ă α – see e.g. [1, Proposition 2.74]. For
α P p0,8qzN, the norm }f}Cα is equivalent to the Hölder norm

}f}Cα :“
ÿ

kPNd,|k|ăα

}Bkf}L8 `
ÿ

kPNd,|k|“rαs

}Bkf}(α´ rαs)-Hölder,

where }Bkf}(α´ rαs)-Hölder is the infimum of constants C such that the property

|Bkfpyq ´ Bkfpxq| ď C|y ´ x|α´rαs,

holds for any x, y P Rd. For α P N, the space CαpRdq is strictly larger than the space Cαb pRdq
with the norm

}f}Cαb :“
ÿ

kPNd,|k|ďα

}Bkf}L8 ;

see e.g. [1, page 99]. Bony’s paraproduct P and resonant operator a are defined by

Pfg :“
ÿ

i,jě´1
iďj´2

∆if∆jg, apf, gq :“
ÿ

i,jě´1
|i´j|ď1

∆if∆jg,

for any f, g P S 1pRdq, as long as they converge. We then have formally
fg “ Pfg ` Pgf `apf, gq.

The basic continuity results for these operators are summarized as follows.

Proposition 23. Let α, β P R.

(a) }Pfg}Cβ À }f}L8}g}Cβ .
(b) If α ă 0, then }Pfg}Cα`β À }f}Cα}g}Cβ .
(c) If α` β ą 0, then

›

›a pf, gq
›

›

Cα`β À }f}Cα}g}Cβ .

B – Bounded polynomials

This appendix is a follow-up of example 1 in Section 2 describing bounded polynomials and
their associated regularity structure. We give the proofs of Proposition 4 and Proposition 5.
Set Λ :“ p1

4Zqd, and, for any λ “ pλiqi“1..d P Λ, define Uλ :“
śd
i“1

`

λi ´
3
16 , λi `

3
16

˘

. This
family of bounded open subsets of Rd cover Rd, and are uniformly locally finite covering, i.e.,

sup
xPRd

#
 

λ P Λ;x P Uλ
(

ă 8.

For x P Rd and A Ă Rd, set dpx,Aq :“ inf
 

|x´ y|; y P A
(

.

Lemma – One can construct tuples
`

ϕλ, pψ
i
λqi“1..d

˘

λPΛ
of smooth real-valued functions on Rd,

with compact support, with the following properties.

(a1) One has ϕλpxq ě 0, for any x P Rd, and ϕλpxq “ 0 for any x P U cλ, for any λ P Λ.
(a2) One has

ř

λPΛ ϕλpxq “ 1, for any x P Rd.
(a3) For any N ą 0, there is a constant CN independent of α such that

ˇ

ˇpB`ϕλqpxq
ˇ

ˇ ď CN dpx, U
c
λq
N ,

for any λ P Λ, x P Rd, and |`| ď N .

(b) The functions ψiλ are uniformly bounded and ψiλpyq´ψiλpxq “ yi´xi, for any x, y P Uλ.
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Proof – We let the reader construct a partition of unity tϕλu satisfying assumptions a1 to a3.
The third property is ensured if we impose

ϕλpxq » exp

˜

´
1

ˇ

ˇxi ´ pλi ˘
3
16q

ˇ

ˇ

¸

when x P Uλ is near BUλ X
 

xi “ λi ˘
3
16

(

. For each λ P Λ, we choose a smooth function
ψiλ such that

ψiλpxq “

#

xi ´ λi x P Uλ,

0 x R Vλ :“
śd
i“1

`

λi ´
1
4 , λi `

1
4

˘

,

and |ψiλpxq| ď 1, for any x P Rd. B

Recall we define Brpfq :“ }f}Crb if r P N, and Brpfq :“ }f}Cr if r P p0,8qzN.

Lemma – For any f P C8b pRdq and r ą 0, we have the estimate
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pϕλfqpyq ´
ÿ

|k|ăr

Bkpϕλfqpxq

k!

`

ψλpyq ´ ψλpxq
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À Brpfq|y ´ x|
r. (B.1)

Proof – For x, y P Uλ, since pψλpyq´ψλpxqqk “ py´xqk, equation (B.1) is just a usual Taylor
expansion. For x, y R Uλ, the left hand side of (B.1) is equal to 0. Let y P Uλ and x R Uλ.
Then the left hand side of (B.1) is equal to |pϕλfqpyq|. By assumptions, we have

ˇ

ˇpϕλfqpyq
ˇ

ˇ À }f}L8 d
`

y, U cλ
˘r
ď }f}L8 |y ´ x|

r,

with an implicit constant in the first inequality depending only on r. We have the same
estimate when x P Uλ and y R Uλ. B

Define now E :“
 

0, 1
4 ,

1
2 ,

3
4

(d and set

φe :“
ÿ

λ”emod Zd

ϕλ, xie :“
ÿ

λ”emod Zd

ψiλ.

Since they are sums of functions with disjoint supports, we have φe, xie P C8b pRdq.
Proof of Proposition 4 – For x “ pxiqdi“1, we define |x|8 :“ supi“1,...,d |xi|. If |y ´ x|8 ě 1

2 ,
then the left hand side of (2.21) is bounded by CBrpfq À CBrpfq|y´x|8, with some constant
C depending on Φλ̄ and ψi

λ̄
. If |y´ x|8 ă 1

2 , then there is no pair pλ, λ1q such that λ ‰ λ1 and
px, yq P Vλ ˆ Vλ1 . Hence there exists λ P Λ such that the left hand side of (2.21) is equal to
that of (B.1), so the required estimate follows. B

Proof of Proposition 5 – We need to show that the component of fpyq ´ xgyxfpxq on Xk
e is

no greater than a constant multiple of Brpfq |y ´ x|r´|k|. Note that xgyxfpxq is given by

xgyxfpxq “
ÿ

ePE

ÿ

|``m|ăr

B``mpφefqpxq

`!m!

`

xepyq ´ xepxq
˘`
Xm
e .

The 1-coefficient of fpyq ´ xgyxfpxq is
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ePE

pφefqpyq ´
ÿ

ePE

ÿ

|k|ăr

Bk
`

φefqpxq

k!
pxepyq ´ xepxq

˘k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À Brpfq |y ´ x|
r.

This is estimate (2.21). For the Xk
e -coefficient of fpyq ´ xgyxfpxq, with k ‰ 0, one has

1

k!

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bkpφefqpxq ´
ÿ

|`|ăr´|k|

B`Bkpφefqpxq

`!

`

xepyq ´ xepxq
˘`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À Brpfq |y ´ x|
r´|k|. (B.2)
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This is shown by the similar argument to the proof of the estimate (B.1). B
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