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Paracontrolled calculus and regularity structures (1)

[. BAILLEUL & M. HOSHINO

Abstract. We start in this work the study of the relation between the theory of regularity struc-
tures and paracontrolled calculus. We give a paracontrolled representation of the reconstruction
operator and provide a natural parametrization of the space of admissible models.

1 — Introduction

Starting with his groundbreaking work [12], M. Hairer has developed with his co-authors
[7, 8, 6] a theory of subcritical singular stochastic partial differential equations (PDEs) that
provides now an automated blackbox for the basic understanding of a whole class of stochastic
PDEs. Equations of this class all share the common feature of involving ill-defined products
of distributions with functions or distributions. The methodology of regularity structures for
the study of a given singular stochastic PDE takes its roots in T. Lyons’ theory of rough
paths, such as reshaped by M. Gubinelli [9, [10]. It requires first to identify a proper space
of enhanced noises. The raw random noise that appears in the equation needs to be lifted
into a random noise taking values in that enhanced space. This is typically a probabilistic
task, mostly independent of the details of the dynamics under study, once the appropriate
space of enhanced noises has been constructed from the equation. (That space happens to be
equation-independent in the rough differential equation setting, while it is equation-dependent
in a PDE setting.) The lifting task typically involves stochastic or Gaussian calculus in a rough
paths setting; it involves the difficult implementation of a renormalisation procedure in the
singular stochastic PDE setting. This step somehow takes care of the core problem: defining
the product of two random distributions as a random variable rather than taking the product
of two realizations of these random variables. These enhanced noises come under the form of a
model in reqularity structures. This is a deterministic object, and the previous step takes care of
constructing a random model. Having a model is somewhat equivalent to having a definition of
the product of a number of otherwise possibly ill-defined quantities. A restricted class of space-
time functions or distributions is then described in regularity structures theory under the form
of a space-time indexed family of jets describing them locally around each space-time point.
Given any choice of model, a consistency relation ensures that coherent jets describe indeed
true space-time functions or distributions. This is the role of the reconstruction operator;
coherent jets are modelled distributions. It happens then that one can reformulate the formal
ill-posed equation into the space of jets as a well-posed, model-dependent, fixed point equation
in a well-chosen space of jets. For the random model built from a renormalisation procedure
in [8], the space-time function/distribution associated with the solution of the fixed point
equation on the jet space can be shown to be the limit in probability of solutions of a family
of well-posed space-time stochastic PDEs driven by regularized noises, as the regularization
parameter tends to 0 — this is the content of [6]. The fact that some of the terms in these
modified and regularized stochastic PDEs blow up as the regularization parameter goes to 0
is a feature of the singular nature of the initial equation.

Let us emphasize that the multiplication problem is fundamentally dealt with on the ground
of the following heuristic argument. If one can make sense of the product of a number of
reference quantities, one can make sense of the product of quantities that look like the reference
quantities. This is what motivates the introduction of jets on scene.

The choice of a jet space to describe a possible solution to a singular stochastic PDE is
not the only possible. As a matter of fact, Gubinelli, Imkeller and Perkowski devised in [11]

a Fourier-based approach to the study of singular stochastic PDEs whose scope has been
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extended in [2, 3, 4]. The heuristic remains the same, but paraproducts are used as a mean of
making sense of what it means to look like a reference distribution or function. This choice of
representation makes the technical details of paracontrolled calculus rather different from their
regularity structures counterparts, and paracontrolled calculus remains to be systematized.
Despite that fact, it happens to be possible to make a close comparison between the two
settings. We start that comparison in this work by providing an ’explicit’ paracontrolled
representation of the reconstruction operator. This is the operator that associates to a coherent
jet a space-time distribution. All notions and notations in the statement are properly defined
below.

Theorem 1. Let a concrete reqularity structure 7 = (TT,T) be given, together with a model
M = (g, M) on it.
(1) One can construct functions [-]M : T+~ C%(R?) and [-]& : T+ — C°(R?), such that
— [eIM e Cl?l(RY), and [7]& € CI"I(R?), for every homogeneous o € T and 7€ T+,
— all [o]M, and [7]|8 are continuous function of the model (g, 1),
and the following holds true.

(2) One can associate to any modelled distribution

f= > [reD(7,5),

TEB;|T|<y
a distribution [fM € CY(R?) such that one defines a reconstruction Rf of f setting
Rfi= > PplrI™+[FI™. (1.1)
TEB;|T|<y

Each coefficient f7, also has a representation

= Pullw/rI®+ /718 (1.2)

T<pslpl<y
for some [f7]8 € C77ITI(R?). Moreover, the map

£ (LM (719), )
from DV (T ,g) to C'(RY) x [[,c5CT "I(RY), is continuous.

This is the content of Proposition and Theorem Any regularity exponent a € R is
allowed in the above statement. The inductive definition of [[-[M, Proposition will make it
clear that [0V can be understood as the ‘part’ of Mo of regularity C1?l(RY). The quantity [7]8
has a similar meaning for the function g(7). Theorem [1| provides a much refined version of the
paraproduct-based construction of the reconstruction operator from Gubinelli, Imkeller and
Perkowski’ seminal work [IT]. Notice that this statement is not related to any problem about
singular stochastic PDE. The treatment of such equations involves the additional ingredient
of an abstract integration operator and the additional notion of admissible model. We provide
an explicit paracontrolled-based parametrization of that set of models under some canonical
structure assumptions on the regularity structure.

Theorem 2. Given any family of distributions ([[7] € C|T‘(Rd)) there exists a unique

admissible model M = (g, 1) on 7 such that one has
Mr:= 2 Pg(T/o) [[U]] + [[T]]? (1'3)

o<T

TeB;|T|<0’

for all 7 € B with |T] < 0.

The fact that identity (T.3) holds true with [[-]™ in place of [[-] for any model M = (g, ),
is part of the proof of item (1) of Theorem



We work throughout with the usual isotropic Holder spaces. All the results presented here
have direct analogues involving anisotropic Holder spaces, such as required for applications to
parabolic singular stochastic PDEs. The proofs of all results are strictly identical. We refrain
from putting ourselves in that setting so as not to overload the reader with additional technical
details and keep focused on the main novelty. The reader will find relevant technical details
in the work [16] of Martin and Perkowski.

No previous knowledge of regularity structures or paracontrolled calculus is needed in this
work, that is mostly self-contained, with the exception of elementary facts on paraproducts
recalled in Appendix [Al] We have thus given at few places full proofs of statements that were
first proved elsewhere. The material has been organized as follows. Section [2| sets the scene of
regularity structures under a convenient form for us: Concrete regularity structures, models
and modelled distributions are introduced, together with a number of elementary identities
and examples. Theorem [1]is proved in Section [3] while Section [4] takes care of Theorem

Notations — We use exclusively the letters «, 3,7, 0 to denote real numbers, and use the letters
0,7, v to denote elements of T or Tt. We agree to use the shorthand notation s*) to mean
both the statement s and the statement s .

2 — Basics on regularity structures

Regularity structures are the backbone of expansion devices for the local description of
functions and distributions in R%. The usual notion of local description of a function, near a
point = € RY, involves Taylor expansion and amounts to comparing a function to a polynomial

centered at x
() ~ ka(x) (-—x)*, near z. (2.1)
k

The sum over k is finite and the approximation quantified. One gets a local description of f
near another point z’ writing

10 =3 1@ ()=o) -t = T 3 i () -0t 22)

i<k ¢ \kit<k

A more general local description device involves an R%indexed collection of functions or distri-
butions (IT,7)(-), with labels in a finite set B = {7}. Consider the real vector space T spanned
freely by B. Functions or distributions are locally described as

() ~ Z fT(x)(IL,7)(-), near each z € R%

This implicitely assumes that the coefficients f7(z) are function of z. One has {7} = {k} and
(IT.k)(-) = (- — 2)¥, in the polynomial setting. Like in the former setting, in a general local
description device the reference objects

(Hac’T)(') = (Hz(rzm’T))() (2'3)

at a different base point z’ are linear combinations of the II,o, for a linear map
Dy : T —>T,

and one can switch back and forth between local descriptions at different points. The linear
maps Iy, are thus invertible and one has a group action of an R? x R%indexed group on the
local description structure 7.

Whereas one uses the same polynomial-type local description for the f* as for f itself in
the usual C® setting, there is no reason in a more general local description device to use the
same reference objects for f and for its local coefficients, especially if the (II,7)(-) are meant
to describe distributions, among others, while it makes sense to use functions only as reference



objects to describe the functions f7. A simple setting consists in having all the f7 locally
described by a possibly different finite collection BT = {u} of labels, in terms of reference
functions gy, (), with

Z J™(x)gyz (1), near x.

neB
One thus has both

~ Y fT@ILT)) = Y H(Y)gye (W) (LT) () (2.4)

TEB TeB, ueB+

)= > 7 (y)([yo)().
oeB
Consistency dictates that the two expressions coincide, giving in particular the fact that the
coefficients f7#(y) are linear combinations of the f?(y). Re-indexing identity (2.4]) and using

the notation o/7 for the u Corresponding to T ~ o, one then has

~ > () gue(o/m)(TeT) (). (2.5)

oceB,TeB

and

The transition map I'yy : T'— T, from (2.3 is thus given in terms of the splitting map
AT —>TRTY, Ao=)>7®(0/7)
T

that appears in the above decomposition, with

IIyo = Z 8yx(0/T) T

TeB

[pyo = Z 8yx(0/T)T
TeB

If one further expands f7(y) in around another reference point z, one gets

Z fl/ gzy V/U)gyx(a/T)( T)()

T,0,VEB

~ Y L)) = Y f(2) gea(v/T)(TaT)(-).

veB T,VvEB

SO

(2.6)

Here again, consistency requires that the two expressions coincide, giving the identity

2, €:y(V/0)84a(0/7) = gea(v/7)

oeB
in terms of another splitting map

AT:TH S THtTT
satisfying by construction the itendity
[dR®ATA = (A®Id)A

encoded in identity . Developing f¥(z) in in terms of another reference point leads
by consistency to the identity

(MR ANAT = (AT @Id)AT.

If we insist that the family of reference functions gy, (1), u € B, be sufficiently rich to describe
locally an algebra of functions, it is convenient to assume that the linear span T" of Bt has
an algebra structure and the maps gy, on T are characters of the algebra — multiplicative
maps. Building on the example of the polynomials, it is also natural to assume that 7' has
a grading structure; an elementary fact from algebra then leads directly to the Hopf algebra
structure that appears below in the definition of a concrete regularity structure.



We choose to record the essential features of this discussion in the definition of a concrete
regularity structure given below; this is a special form of the more general notion of regularity
structure from Hairer’ seminal work [I2]. The reader should keep in mind that the entire
algebraic setting can be understood at a basic level from the above consistency requirements
on a given local description device. We refer the reader to Sweedler’s book [I8] for an accessible
reference on Hopf algebras. Given two statements s and sT, recall the convention that we agree
to write s(*) to mean both the statement s and the statement s+.

Concrete regularity structures

Definition — A concrete regularity structure .7 = (T T) is the pair of graded vector spaces

TH= P T, T=PT;
acAt BeA
such that the following holds.

o The index set AT < Ry contains the point 0, and AT + AT < A*; the index set A= R
is bounded below, and both AT and A have no accumulation points in R. Set

B := min A.
o The vector spaces TS and Tg are finite dimensional.
o The set T" is an algebra with unit 1, with a Hopf structure with coproduct
AT TH - THQTT,
such that At1 =1®1, and, for T € T.F,

Afredr®l+1@7+ Y, T T ¢, (2.7)
0<f<a
e One has Ty = (1), and for any o, B € AT, one has T(jTgr c T;rﬁ.

e One has a splitting map
AT >TRTT,
of the form

AredT®1+ Y ThRT) , (2.8)
B<a

for each T € Ty, with the right comodule property
(ARIA = (Id® AT)A. (2.9)
Let B} and Bg be bases of T, and T, respectively. We assume By = {1}. Set

B = ) Bi, B:=|]Bs

acAt BeA
An element T of Té” is said to be homogeneous and is assigned homogeneity |7| := . The
homogeneity of a generic element T € T(H) is defined as |7| := max{a}, such that T has a

non-null component in TO(CJF). We sometimes denote by
T = (T, A%), (T, A))

a concrete regqularity structure.

Note that we do not assume any relation between the linear spaces T, and T at that stage.
Note also that the parameter 5 in (2.8]) can be non-positive, unlike in (2.7]). For an arbitrary

element h in T, set
h= > hge @ Tps.
B<|h| <



We use a similar notation for elements of 7. For v € R, set
Tey:=PT, TL,:=PT)

B<y a<y
The homogeneous spaces T and T,f being finite dimensional, all norms on them are equivalent;
we use a generic notation | - |g or || - || for norms on these spaces. For simplicity, we write
|7l := [Pala- (2.10)

To have a picture in mind, think of 7" and T't as sets of possibly labelled rooted trees, with
T+ consisting only of trees with positive tree homogeneities — a homogeneity is assigned to
each labelled tree. This notion of homogeneity induces the decomposition of T into
linear spaces spanned by trees with the same homogeneity; a similar decomposition holds for
T+. The coproduct A*7 is typically a sum over subtrees o of 7 with the same root as 7, and
7/0 is the quotient tree obtained from 7 by identifying o with the root. One understands the
splitting A7 of an element 7 € T in similar terms. See e.g. Section 2 and Section 3 of [7].

Notation. Given o,7 € B, we use the notation o <) 7 to mean that o appears as a left
hand side of one of the tensor products in the sum defining A7 we write T/(+)O' for the
corresponding right hand side, so we have, for T € B(H)

A = Z c®(r/Ho).
oeB(+)

Write 0 <() 7 to mean further that o is different from 7. The notations 7/No and o <) 7
are only used for T and o in B,

Decomposing A7 in the basis BQ BT of TQT™ as
AT =: Z (A1) 0 ®0,

oeB,0eB+
one has
T/o = Z (AT)7% 0.
OeB+
We have a similar expression for 7/%¢; for o, 7 € Bt
/7o = 2 (ATT)7%9. (2.11)
0eB+

With these notations, the right comodule property (2.9)) writes for all 7 € B
DUATIT(A0)™ = > (AT)™ (ATh)b* (2.12)
oeB 0B+t

for all @ € B and b,c € BY. The identity from Lemma |3|is a direct consequence of the
co-associativity property

(AT ®IDAT = (IdR AT)AT,
of the coproduct A*, and the right comodule identity .

Lemma 3. Foro <™ 7 in BT, we have

Af(r/To)= Y (n/To)®(r/"n)

o<tn<tr

=(r/t)@1+10(r/fo)+ 3 (/fo)® (/).

o<tn<tr

(2.13)

For o <7 in B, we have

At(rfo) = ) (n/o) @ (7/n). (2.14)

O<N<T



A character g on the algebra Tt is a linear map g : T — R such that g(r172) = g(71)g(m2)
for any 7,70 € TT. The antipode A of the Hopf algebra structure turns the set of characters
of the algebra T into a group G for the convolution law * defined by

(1 *g2)7 = (1 ®@g)ATT, 7T,

The identity of the group is the counit 1/, the dual basis vector of the unit 1, and the inverse
g~ ' = go A. One associates to a character g of 7 the map

=(d®gA:T—T,
from T to itself. We have
gL*g2=g100
for any g1,92 € GT, as a consequence of the comodule property (2.9). Also, for any 7€ T,
<.’g\(7—) - 7—) € T<|7'|a

as a consequence of the structural identity (2.8)). Remark that for any concrete regularity
structure 7 = ((I'",A"), (T, A)), then

Tt = (T, A7), (T",A7))
is also a concrete regularity structure. For g € G, set
gt = (1d®g)At; (2.15)

this map sends Tt into itself.

Remark. For g € G, the map g is denoted by 'y in Hairer’s work [12]; we prefer the former
Fourier-like notation.

We now come to the definition of the reference objects N§7 and g, (o) used to give local de-
scriptions of distributions and functions in a regularity structure setting, as in the introduction
to this section. They come under the form of a model.

Models
Recall By = min A € R. Given a function ¢ on R%, and z € R, 0 < A < 1, set
P2 () == A (A (- —2)).
Definition — A model over a regularity structure .7 is a pair (g,1) of maps
g:RI> G,  N:T - %R
with the following properties.
o Set
Byr = 8y * 8,
for each x,y € R%. One has
|g| := sup sup |g(7)| + sup sup EL(T?" < 0. (2.16)
TeBT zeRd TeBt ,yeRd |y - ‘T| T
e The map I is linear. Set
nt:= (Nee, ')A
for each x € R, Fizr > |y A 0|. One has
Néo,
[M]|8 := sup M| eso + sup sup K ° SOIN (2.17)
o€B p,0<A<1,zeRd Al

where o runs over all functions ¢ € C"(RY), with associated norm no greater than 1
and support in the unit ball.



In Hairer’s original work [I2], the notations II, and I'y, are used instead of M§ and gy,
respectively. In (2.16)) and (2.17)), we assume global bounds over R?, while Hairer only assumes
in [12] the previous bounds in any compact subset of R<. In this paper, we work on the globally
bounded case for simplicity. Our result may be extended into the locally bounded case using
the weighted norms | f|zz = sup,epa w™' ()| f(x)| instead of | f| .

For comparison, and given a < 0, note that a distribution © on R? is an element of C%(R%)
iff one has a bound

[0, ¢2) < A%,
for any 0 < A < 1, uniformly in 2 € R% and ¢ € C"(RY), of unit norm in that space and support
in the unit ball, for r = ||a]|. We stress that M7 is only an element of C%0(R%); identity
conveys the idea that M&7 behaves at point = like an element of CI7/(R?). Emphasize that g
acts on T, while N acts on T, and note that g plays on T" the same role as [ on T; For
7€T" and o € T, one has

gye(1) = ()W) @8, )ATT, (Méo)(y) = (N()(y) ®e, ") Ao, (2.18)
in a distributional sense for the latter. Note also the fundamental relation
I'Ig =M&o g/:,;\y, (2.19)

for all z,y € R?; it comes from the comodule property (2.9). The map I can be recovered
from each map M, as we have

M= (N ®e)A, (2.20)
as a consequence of the comodule property
(MPE®eg)A = (Mg, ®g.)(ARI)A
= (Neeg,'®g,)Id®AN)A
=(N®1)A =1.

Examples. 1. Bounded polynomials structure. For any smooth function f on R%, and r > 0,
the Taylor expansion property

k x
s - Y Dy = ofly ).

|k|<r

is usually lifted to a modelled distribution

" f (=)

L k
|k|<r
over the canonical polynomial regularity structure, under the model (MX*)(z) = z* and

g.(X k) = 2. Since they are not bounded functions, we modify this expansion by using smooth
and bounded functions behaving like polynomials in local sets. The following elementary claim
is proved in Appendix

Proposition 4. There erists a finite set E, an open covering {U.}eer of R, and a family
{gzﬁe, {x — :cé}le}eeE of functions enjoying the following properties.

(a) The functions ¢. : RY — [0,00), belong to C;°(R), ¢e(z) = 0 for any z € UE, and

> cr e(x) =1 for any x € RY.
b) The functions x — zt, belong to C°(R%), and yb — x = y* — a* for any =,y on the
e b e e
connected component of Us.
(c) For any f € C{°(RY) and r > 0, we have

k xr
- Y FDE g < By -l (221)

eeE |k|<r



where By(f) := | flcy, if €N, or By(f) := | fler, if r € (0,90)\N.

We lift expansion (2.21]) to an appropriate regularity structure as follows. Let

= {X }eer1<i<d

be a family of symbols, and let 7" (X) be the commutative free algebra with unit 1, generated
by these symbols. We define a coproduct A" : T7(X) - TH(X)® T+ (X) by

A*1=1®1, ATX!=X/®1+1®X],
which turns 7+ (X) into a Hopf algebra. By defining the homogeneity | - | by |X!| = 1, we
have the graded Hopf algebra T (X). Let T(X) be the subspace spanned by the bounded

polynomials {X*} B keNd, Where
d

xE=TT(xH", k= (k)L eN
i=1
Denote by
A:T(X)->T(X)QTH(X)
the restriction of A" to T'(X), which turns 7'(X) into a right comodule over T%(X). By
definition, we have the concrete regularity structure 7 (X) := (T (X),T(X)). The canonical
model (g, M) on .7 (X) is defined by

g.(X5) = (NXF)(2) = o (2.22)

The following elementary result, proved in Appendix [B] provides the canonical lift of a smooth
function to this bounded polynomials regularity structure. See the paragraph on modelled
distributions for the definition of D" (7 (X),g) and the associated norm || - ||pr.

Proposition 5. For any given f € CgO(Rd) and r > 0, define the T'(X)-valued function
Z Z zeR%
eel |k|<r

Then f € D"(F(X),g), and ||flor < Br(f)-

2. Canonical model on .7 *. As another example of model over some regularity structure,
consider the regularity structure .7 associated with any regularity structure .7, and assume
we are given a function g : RY — G that satisfies estimate (2.16). For 7 € T, set

Mér(x) := gu(7). (2.23)
Estimate (2.17) holds as a consequence of (2.16]), so (g, M8) is a model on I+ = (T, TT).
This justifies to say simply that g is a model on . O

Equation ([2.20) giving M in terms of N§ and g, writes explicitly
MNr = Z Né(o)gx(7/0),

O<T

Ner =MNr— ) ga(r/o)NEo. (2.24)

o<T

for 7 € B, that is

Furthermore expanding M%o, one has
Ner =MNr— Y go(r/o0)Nor+ D gu(7/01)8a(01/02)NE0.
o01<T 09<01<T
Iterating this expansion gives a representation of M§ in terms of g, and I

niT =TIr — Z (_1)7171 Z gx(T/Ul) T gx(an—l/an) MNop; (2'25)

n=1 op<--<01<T
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the sum is finite. Similarly, since gy, = gy, * g, by definition, Lemma |§| provides for any
o <) 7€ BM) the relation

gy (1/ M) = g, (1/ Do) — g (r/Pa) - Z g (1/Mo1) gy (01/ o).

o<(Hag<(H)r

A repeated expansion then gives a representation of gy, (7/ (t)g) in terms of gy and g,
gya(1/ o) = gy (r/Mo) — gz (r/ o)
- 2(_1)71—1 2 gx(T/(+)Ul) e 'gz(Un—l/(+)Un) (gy(an/(+)a) —g$(0n/(+)0')>.

n=1 o<(Hap<(H) < (H) 1

(2.26)

Modelled distributions
Recall notation (2.10) for the notation |kl for « € A and he T.

Definition — Let g : R? — G satisfy [2.16). Fix a regularity exponent v € R. One defines the
space DV(7,g) of distributions modelled on the regularity structure .7, with transition g,
as the space of functions f : R4 — T~ such that

170 = e e IF @l <=

|f () — & f(2)] 5
o = S y=ep

Set || fllor := 1 fllor + [l

For a basis element o € B, and an arbitrary element h in T', denote by h? its component
along the o direction. For a modelled distribution f(-) = > .z f7(-)o in DV(7,g), and
oo € B, we have

e oo (o (o4
(f) —gnf(@)" = FoW) = £@) = Y gualr/o0) £7(). (2.27)
T>00
As an example, given a basis element 7 € B, set

)= ) g(r/0)0. (2.28)

o<T

Then, it follows from identity (2.14) giving A*(7/0), in Lemma [3] that
Gahr(x) = ) gye(o/m)ga(r/o)n = D (gy(7/1) — gya(7/m))n

nN<o<t n<t

y) — Z gy (T/0)N

n<r
The size estimate |gy.(7/n)| < |y — z|I71=Il then shows that h, is a modelled distribution in
DITl(7,g). Here is another example.

Lemma 6. Let f =) 3f°(-)0, be an element of DV(T,g). Then, for each T € B, the

T+ -valued function
WAL

o=T

is an element of DV II(7+ g).
Proof — This comes from the identity

(F/M) — & (F@) = X, (170) = Y @) /o)) o/,

o=T pu=o
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and the fact that f is a modelled distribution. >
Recall fp = min A, and fix r > |5y A 0].

Theorem 7. (Hairer’s reconstruction theorem) Let (g, ) be a model over 7. Fiz a reqularity
exponent v € R. There exists a linear continuous operator
R:DV(7,g) — C™(RY)
satisfying the property
(RF = MEf(2), 2] < INE[ £ N, (2.29)

uniformly in f € DV(7,g), p € C"(RY) with unit norm and support in the unit ball, x € R? and
0 < A< 1. Such an operator is unique if the exponent v is positive.

A distribution satisfying identity is called a reconstruction of the modelled distribution
f. See Theorem 3.10 in Hairer’ seminal work [12]. We provide in Theorem [14] below an explicit
representation for the reconstruction operator R building on paracontrolled calculus. Notice
from the definition of M% that the constraint |<I'I§7'7 go%>| < A7l that needs to be satisfied by
a model, is equivalent to the estimate

‘<I—IT — Z gz (1/0)NEa, cp;\>

o<T

< A7l

This means that 7, with 7 € B, is a reconstruction of the modelled distribution h, €
DITl(7,g) defined above in ([2.28). Recall that uniqueness in the reconstruction theorem im-
plies that if f takes values in a function-like sector of T', then Rf = 1'(f) — see e.g. Proposition
3.28 in Section 3.4 of [12].

3 — Explicit formula for the reconstruction operator

We prove Theorem [1] giving an explicit description of the reconstruction operator in this
section.

3.1 From Taylor local description to global paracontrolled representation

We describe here some simple properties of a natural two-parameter extension of the ele-
mentary paraproduct built from Littlewood-Paley blocks, and refer the reader to Appendix
for background on Littlewood-Paley decomposition. The notations A; and Q; for the !
Littlewood-Paley block and its kernel are recalled in Appendix [A] For j > 1, define the oper-
ator Sj := Zigjq A;, and its smooth kernel P; := >, _. ,@Q;. The Holder spaces C%(R?) are
defined as Besov spaces BS . (R?) — see Appendix

i<j

For a two-variable real-valued distribution A on R% x R?, and j > 1, set

@M@ = [[ Pile =9y - 2) Ay, )y
we abuse notations using the integral notation. Set
PA:= > QA
j=1
We often write
PA=P,, (A(y, z))

in order to display the integrated variables. With that notation, we have the consistency
relation

Prg="P,.(f)9(2), [fgel”,
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between the paraproduct operator P and its two-parameter extension. For o > 0, and a
measurable real-valued function F' on R? x R?, set

[F(y, 2)]
IElleg := sup F—=—2".
y,2€R4 ‘ Z’
Proposition 8. (a) Let A be a real-valued distribution on R x R, If |Q Al L= < 2779,

for all j =1, for some ac € R, then PA € C*(RY), and

[PAfca < sup 2% QA oo
j=1

(b) Let a > 0, and a real-valued measurable function F on R x R? be given, with I Flles <
0. Then PF € C*(RY), and [PF|ca < [|Fllcg-

Proof — (a) Since .#P; is supported in {a: e R |z| < 27 x %} and .#(); is supported in
{:L‘ e R%: 27 x % <|z| <29 x %} the integral

| @it = wPiw - 1)@~ i
vanishes if i — j| = 5. Hence A;(PA) = Z‘Fﬂ@ A;(Q;A) and we have
[AiPA) e < X7 [Ai(QiA) = < Y] QA= < ) 27% s 27%
li—jl<4 li—jl<4 li—j|<4

(b) Tt is sufficient to show that |Q;F|» < 27 for all j > 2. By the scaling properties
P;(-) = 20724 Py(2772.) and Q;(-) = 20724Qy(2772 ), we have

QF@) < [[17,6 - 0@ — 2)lly - 2dyds
—a(j-2) ﬂ|p2(2j ) Qa(2 20 — )|y — 2| dyd=
<0 ([P0 Qa(ally - ol dydz < 27

>

The next proposition is the key step to the representation of the reconstruction operator
given in Theorem 6.10 of [ITI]. We state it and prove it here under a slightly more general
form. See the proofs of Lemma 6.8, Lemma 6.9 and Theorem 6.10 therein.

Proposition 9. Let v € R and By € R be given together with a family A, of distributions on
RY, indexed by x € R?. Assume that one has

sup [[Ag e, < 00

zeRd

and one can decompose (A, — Ay) under the form

N
Ay—Ay =)l Of (3.1)
/=1
for N finite, R%-indexed distributions ©, and real-valued coefficients c » depending measurably
on x and y, such that
sup sup 2OOL P(x— | <o, ]

zeRd j=—1

for regularity exponents fy <y, for all1 < ¢ < N. Denote P(A) = P, ,(Ay(z)) below.

C;—Bl < 007
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e Ify >0, then there exists a unique function fy € CY(R?) such that
{{P@) ~ fa} ~ Au Pile — )| 5 277, (3.2)
uniformly in x € R,
o [f~v <0, then we have
[(P(A) = Ay, Pz — )| £ 277, (3.3)

uniformly in x € R?.

Proof — (i) We prove that one has

A5 (P(A) = A,) (@) s 2777, (3.4)
uniformly in = € R4, We write for that purpose

PO - A0) = 3 || Pl = 00, = 0)(Au(v) ~ A,(0) dudo — #(4)
>—1

- Z Z Jf Pi(y —u)Q;(y — v)c' 05 (v) dudv — .7 (Ay).

1<U<N j=-1
Here the operator . is defined by
Sfi=f=Pif =f=Py.(1(»)f(2)) (3.5)

for any f € S’(R?). This is a smooth function that depends continuously on f; if f € C%(R?)
with « € R, then for any r > 0,

17 fller < [ fllee

Hence we have for any ¢ > 1,

|A’L (P(A) - Ax) (SU)| < Z Z JJ |Qz($ — y)P](y — u)| |u _ x|’Y—B£2—iﬁe dudy + 0(2—1'”/).

li—il<4 £
Then (3.4) follows from elementary estimates and the bounds
| Pl de <2 | @yl ol do < 27 (3.

that holds for any positive exponent 7.

(ii) If v > 0, estimate (3.4]) implies that the sum
a(x) = 30 8(P(A) = Ag) (),
j>—1

defines an element fx of C7(R?); this is proved in point (iii) below. Then we have, for any
z € RY,

[(P(A) = fa = Aas Pz —))| = | D0 AG(P(A) — Ay) — Si(fa)(x)

j<i—2

= falz) = D A;(P(A) = Ar) — Si(fa) (@)

j>i—2

S 2 A U@+ Y AP = Ay)(2)| s 277

j>i—2 j>i—2

Uniqueness of fj follows from the fact that P; converges to a Dirac mass at 0, so if f}
were another C7 function satisfying estimate (3.2)), one would have

[fa = fo, Pz =) <277,
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uniformly in z, for all ¢ > —1, giving indeed f} = fa.
If v < 0, we directly have from (3.4]) that
[KP(A) = Aw, Pz — )] € D0 KP(A) = Ap, Qs ))| s D) 277 s277.

J<i—2 J<i—2

(iii) We follow the argument in Section 6 of [II]. We decompose fn = <J+1 + f>j+1,

where
<]+1 Z A )(l’)
1<j+1
We consider Ajfa = A; f<JJr1 +A; f>JJrl For the second term, by the estimate (3.4)) one
has
- » i
|85 F 5 o = D0 277 5270,

i>5+1
For the first term, since Q); * Q<;j+1 = (;, one has

770 = [ @y = 2)Qzi1 (P) ~ A, (@)
~ [ @ty = 00Qes1 (PA) - 4, + Y b0l ()
l

=Q;i(P(A) —Ay)(y) + ZJQJ‘(Q — ) ¢y (Q<j+10%) (z) da.
7

The first term is estimated by (3.4). The second term is bounded by 2777 by assumption.
In the end, we have
|2, 157 e s 277

>

If A, stand for N&f(z), for a modelled distribution f € D7(7,g) and a model (g, M), one

has
g
Ay—Ap =), (f(y) - ém\yf(y)) Mo,
oeB

and A satisfies the assumptions of Proposition |§|, from condition on models and the
definition of a modelled distribution. As in Lemma 6.3 of [I1], we can extend the condition
for any rapidly decreasing smooth functions ¢. Identities and are equivalent
to saying that P(A) — faly~o is a reconstruction of f — see Lemma 6.6 of [I1]. This is the
content of Theorem 6.10 in [I1].

We prove in Theorem [14] below that P, .((N§f(y))(z)) has an explicit form, up to some
remainder in C7(R?). The mechanism at work in the proof of this fact lies in Proposition
Following [4], set

Ro(a, b, C) = Pa(PbC) — Pabc-
It was proved in Appendix C1 of [4] that the map R® is continuous from L*(R?) x C™(R%) x
C"2(R%) into C"1*72(R%), for r1 € (0,1) and ry any regularity exponent in R. The next propo-
sition provides a refined continuity result for the operator R.

Proposition 10. Pick a positive reqularity exponent «. Assume we are given a function
fe L®RY) and a finite family (an,bn)1<n<n of elements of L°(R?) x L®(R?) such that one
has

fly 2] —bu(2)) + fL,, (3.7)

n=1
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for any x,y € R, for a two-parameter remainder f* with finite a-Hélder norm |Hfﬁ|||c§ < 0.
Then, for any regularity emponent B eR and g € CP(RY), we have

Z R°(an, by, g) € C*FP(RY).
Proof — Recall from equation (3.5) the definition of the smooth function /g, for any g €
CA(RY), with 8 € R, and note the identity
R (a,b,¢) = P(a(@) (Py-sa)0) (1)) — Pan(7).

Applying the two-parameter P-operator to identity ., we see that

N
> R(ansbasg) = RX(1, £,9) + Py (#9) - 21 Pasn(79) = Pay (P2 )W)

7 (Pyg) + Py(Sg) - zpanbn (79) = Puy (P 9)(v) )

The first three terms on the right hand side are smooth. To prove that the last term on
the right hand side is an element of C**#(R?), it is sufficient, from Proposition [8, to see

that
‘Qj((przg) (y))‘ < 279t

for all 7 > 1. Recall for that purpose the bound (3.6). Then we have for ’Qj ((Pf‘)j g) (y))’
the upper bound

S ([ re-00e-0 ([ po-ve- o) dxdy\

isli—j|<4

< % f\P =)@yt = )| ([17 = ]l af* ) 18cat0)] dacy

iili—jl<4

Z 27 1ﬂj|p z—2)Qj(z —v)| (ly — =|* + 27*) dady
ili—jl<4
Z 9 iﬂ(Q—ja _I_Q—ia) < 2—j(a+5)‘

isli—j|<4

>

Condition (3.7) is reminiscent of Gubinelli’s notion of controlled path [9]. Recall from
Proposition 35 in [4] that for f € C** and g € C*2, with a1, ag positive and a3 + ag € (0,1),
one has

‘(Pm)(y) — (Pg)(x) — f(z)(9(y) — g(x))‘ < |y — afortor.
It follows from Proposition [10| above that R°(f, g, h) € C*1+*2+8 for any h e C?, with 5 € R.

Identity (2.26)) provides another example of a setting where Proposition applies, as it
states that one has for any 7,0 € B™

6(r/"0) ~ &:(r/*0)
SNET N e/ ) gony/ o) (80w 0) ~ galon/" )

n=1 o<top,<to-<tr
+8ye(7/70),
with |gy. (7/%0)| < |y — |11l



16

Corollary 11. For any family (h(,)0.63+\{1}, with he € C1°!, the sum
DUt Y R(e(/ o) g(onn/ ou). Bon/0). ho)
n=1 l<to<top,<t.-<tr

defines an element of CI™I(R%).

3.2 Paracontrolled representations

Proposition 12. Fix a regularity structure 7 and a model M = (g, 1) on 7. Define recursively
on |7| and |o| the families of real-valued functions {[[T]8} _s, and {[[U]]M}aes on RY, by the
formulas

g(T) = Z Pg(T/+u)[[V]]g + [[T]]g7 TE B+,
1<ty<tr (38)

Mo = Y Po/wllpl™ + [V, oeB.

pu<o

Then [[7]8 € CI"I(R?), for all T € B*, and [o]M € CI°/(RY), for all o € B. Furthermore, the
maps

M [r]¢ e CTI(RY), M — [o]™ e Cl”l(RY),
are continuous, for any T € BT and o € B.

Proof — First we construct the family {[7]&;7 e B*}.

e The proof proceeds by induction on the homogeneity || of 7, starting with the case
7 = 1, for which we set [1]® := g(1) = 1, the constant function on RY, equal to 1.
Let |7| > 0 and assume that the functions [o]|¢ € Cl°l(R?) satisfying have been
constructed for any o € B with |o| < |7|. Applying the two-parameter extension of the
paraproduct operator P to identity with ¢ = 1 and <™ order, we have

)
Plg(T) = Z (_1)n71 Z Pg('r/‘*'01)-~~g(an_1/+an)g(0n) + P:c,y (gyx(T))'
n=1

1<top<-<oi<tr

We used the fact that Py1 = 0, for any f € §’(R%), to remove the zero-contribution from
the 0, = 1 term in the sum. Note that

Pig(r) = g(7) — Z&(7),
is the sum of g(7) and a smooth term depending continuously in any Hélder topology on
g(r) € L*(R%). Expanding g(o,,) by induction, we have

0
Z (=)t Z Pe(r/to1)-glon1/+0n)8(0n)

n=1 1<top<to<oyi<tr

o0
= > (= 2 Pe(r/+01)g(0nn/+om [on]®

n=1 1<to,<t<toi<tr

0
+ 2, (=0 2 Pecosan)estans/*ow (Paten /o [ons11¥)

=1 1<+0'n+1<+"'<+0'1<+7—

= Z Pg(T/O’) [[U]]g

l<o<T

+ M-yt > R (g(r/* 1)+ g(on-1/" on), 80w/ onsr). [on i1 ]E).
n=1

1<toppi<t-<tor<tr
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from a (wonderful) telescopic sum simplification. This is where something is happening.
Define then [[7]|& by the formula

Lg(T) + Pay (gya (7))

£ (-1t > R (8(r/* 1)+ 8(0n-1/00). 8(0n/ i), [own I€).
n=1

I<toppi<t<tor<tr

It follows from the estimate |g,.(7)| < |y — #|I"l, and Proposition I § that P, v(8ye(7)) €

CI"l(RY). Corollary . takes care of the sum and shows that it defines an element of
CITI(R?).

e The proof of the regularity statement for [7]M, for 7 € B, proceeds by induction, similarly
as above, using identity ([2.25) glVlng M&7 in terms of M only, as an input. Applying the
two-parameter operator P to , gives . ) for a choice of [[T]]M equal to

FT(T) + Py (NE(T)(y))

FREDT Y R(er/o0)gont/on). 8 ons) T ]™).
n=1

1<op41<-<01<T

Since N&7 = M8, gonm = N&,7+ Y, _. gua(7/0)ME, 0, one can use Pr0p081t10n|§|to conclude
that P, (M§(7)(y)) belongs to CITI(RY). >

Recall from Example 2 in Section [2| that given a model (g, ) on .7, the concrete regularity
structure .7 T is endowed with an associated canonical model

ME = (g, M%) = (g, 8)-
Remark that
1M = 1%
on T, so the above statement is really about [-[M* and [[-]M. The proof makes it clear that

the g-brackets [[7]|® depend only on g. We extend by linearity the operators [-]&, [-]™ to T*
and T, respectively.

Remark. One can make the link with the setting introduced in [4], and give a different represen-
tation of the brackets under the assumption that we are given an operator I that acts on smooth
functions and an abstract integration operator I : T — T, on the regqularity structure 7, to-
gether with a naive interpretation operator N, such that N is multiplicative and N(Z7) = I(MN7),
for all T € T — see Section @ Let then ¢ : R* — R, stand for a smooth ‘noise’ and o stand
for an element of T' such that MN(o) = (. We assign homogeneity o — 6 to o, and |T|+ 6 to any
Ir, and |1 -1 = |1+ - + |7l, for all 7; € T. Set g(Zo) := N(Zo) :=I(¢) =: Z. Denote
by the unconventional sign © the resonant operator from the paraproduct decomposition of a
product — see Appendiz[4. Then

N(cZ(e)) = (Z = Pz(+ PcZ +6(Z,0),
and we read on this expression that
[oZ(o)]™ = PcZ +O(Z, ().
Compute [oZ(0)*M as another example. We have
MN(0Z(0)%) = Z°¢ =P +2PPZ + P (©(Z,2)) +O(2P2Z + ©(Z, Z),().
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To make the link with the defining relation (3.8) for [0Z(0)?M, we use the corrector operator
C and the operator S from []. This gives for N( o Z(0)?) the expression

Py +2P4(PcZ) +25(C, 2, Z2) + Pe(© (2, 2)) + 22 ©(Z,¢) +2C(Z, Z,¢) +©(© (2, Z),¢)
= P2(+ Pz (2P Z +O(Z,Q)) + {25((, Z,2)+Pc(©(Z,2)) + 2Pg2,0Z + 20 (2,6(Z,())

+2C(Z,2,¢)+o(e(Z,2), C)},

s0 the term inside the brackets {---} defines [oZ(0)* M. As can be seen from these examples,
these expressions of the brackets using the operators from [4] quickly get seemingly complicated.

Proposition 13. We have
g(r/o) = D Pgmln/ol® + /o],
neB, o<n<T

for all o,7 € B with o < T.

Proof — With 7/0 = >y 5+ (A7)0, and 0/7p = >, 5+ (AT0)?"k, we have on the one hand,
from Proposition

g(r/o) = > (AT)7g(0) = D (AT)7 Pgios+ ol + D, (A7) [6]®
eB+ 0,peBT 1<t p<t6 OB+
= 2 (AT)G'Q(A+6)PK Pg(/{) [[p]]g 4 [[7-/0-]]%7

0,p,kEBT, 1<t p<t6
and on the other hand, and since Py1 = 0, for any f € S'(RY),
Z Pg(f/n) [[77/0]]’% = Z (AT)TW(A”)UP Pg(n) [[p]]g.
o<n<T o<n<Tt,k,peBt 1<Fp

The statement then follows from the right comodule identity (2.9)), such as expressed in
coordinates in identity (2.12]), and the structural assumption (2.8)) on the splitting map
A. >

Theorem 14. Fix a reqularity exponent v € R, and a model M = (g,M) on the regularity
structure . One can associate to any modelled distribution

f= > [freD(7,y),

TeB;|T|<y
a distribution [fIM € C7(R?) such that one defines a reconstruction Rf of f setting
Rf:= > Pu[rI™+ [FI. (3.9)
TEB;|T| <Yy

Each coefficient f7 also has a representation

=" > Pulw/rI+ 1171, (3.10)

T<pus| pl <y
for some [f7]|g € C7"ITI(R?). Moreover, the map

7 (LM (L 19), o)
from DV(T,g) to CY(RY) x [],.5CY~ITI(RY), is continuous.

Proof — Recall from Proposition |§| that, there exists a function g € C7(R?) such that
Po, ((ME£(@)) () ~ 91,20 (3.11)
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is the reconstruction Rf. We have from identity ([2.25) giving M% in terms of g and I, the
finite expansion

o0
(MEF@)() = D=1 > (Fg(oo/on) - -glon-1/on) ) (@) (Mo)().
n=0 on<-<01<0g
So applying the two-parameter paraproduct operator P on both sides, and using the
same (fantastic) telescopic sum as in the proof of Proposition we get, with an obvious
notation,

Py ((MEF@) (@) =€)+ Y] Pyeolloo]™

0’06[5

+ (1) 3 R (/g (00/01) - &(0n-1/00) 8(0n/Tns1); [ons1]™).
n=1

Ont+1<opn<-<01<00

From , for each o € B we have
f7) = f(z)
= (f(y) — guf(@)7 + X [ (@)gya(00/0)

= (f(y) — guf (@)’
+ (=" >, (fg(o0/o1) -~ glon-1/0n)) (z) (gy(on/0) — 8z(0w/)).

n=0 o<op<--<01<00
Proposition applies and tells us that the sum of the R°-terms defines an element of
Holder regularity (v — |on+t1|) + |ont+1] = 7. The claim of the theorem on Rf comes
from this fact and identity (3.11)). To get the paracontrolled representation of f7, note
from Lemma@that f/m= ZM>T§|M|<7 (/7)€ DYITI(F+ g), and apply the result just
proved to the reconstructions of the modelled distribution. >

Theorem [14] refines over the paraproduct-based construction of the reconstruction operator
given by Gubinelli, Imkeller and Perkowski in [I1], where Rf is proved to be of the form
P,y ((MEf(2))(y)), up to a C?'(RY) term. See our extension in Proposition |§| above. The
point of our refined representation of the family (R I, fT) as a paracontrolled system lies in
Theorem [2], proved in the next section. It parametrizes the class of “admissible” models used
for the study of singular stochastic PDEs, in terms of the brackets [7]]M, with |7| < 0. The
forthcoming work [5] will give a similar description of more general models (g, 1) and modelled
distributions in D7(.7,g), in terms only of the bracket data, extending the main result of [16]
on Besov-type characterizations D7 (.7, g).

One advantage of the explicit construction of the reconstruction operator given by Theorem
is that this representation is flexible enough to work in other functional settings than the
present BJ,,-type space D7(.7,g). The continuity properties of the paraproduct operator on
Besov, Triebel-Lizorkin or Sobolev-Slobodeckij spaces are well-known, and allow for a direct
approach to reconstruction in these spaces, in the line of the recent works [13], [14}, [15] [I7].

Before giving the next statement, note that the restriction to T« of the splitting A turns
Teo 1= ((TH,07), (T, A))

into a regularity structure. The next statement is essentially contained in Proposition 3.31
from [12]; we give the details here to provide a self-contained document.

Corollary 15. Assume we are given a map g : R* — G such that the bound (2.16)) is satisfied.
Let a family ([] € C|T|(Rd)) be given. For any T € B with || <0, set

TeB,|T|<0

MNr:= 2 Pg(T/U)[[U]] + [[T]]

o<T
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Then (g, M) is a model on the regularity structure J<o, and it has a unique extension into a
model on 7.

Proof — e Pick a basis vector 7 € B with |7| < 0, and assume that (g, 1) is a model on the
sector T||. Set for all x € R4

hr(z) := Z g.(7/0)0;

o<T

this defines a modelled distribution in DI"l(.7,g). Then the bound [(M&r, ) < A
is equivalent to that N7 is (one of) the reconstructions of h,. From Theorem (14 . the

distribution
}: Pg@ja)ﬂaﬂ +'[hTH

o<T
is a reconstruction of h,. Since

Nr —h, = [7] - [h-] € CI"/(RY),
the distribution N7 appears then as another reconstruction of h..
o If one picks now a basis vector u € B, with |u| > 0, then h, € DI*I(7,g) has a unique
reconstruction, equal to My, that is characterized by the data (M0, g.(1/0);2z € R% 0 <
,u), from the defining property (2.29) of a reconstruction. An elementary induction then

shows the existence of a unique extension of 1 to 7" that satisfies the property M7 = Rh.,
for every 7 € B with positive homogeneity. >

4 — Parametrization of the set of admissible models

4.1 Usual models

We introduce in this section a notion of usual model on a concrete regularity structure,
motivated by some identity satisfied by g(7/X*) in the usual setting; see Equation below.
Its introduction is motivated by the fact that usual models (g, 1) are entirely determined by
the I map, under a mild structure assumption on 7" and A. The definition of a usual model
requires that we work with concrete regularity structures where T and T are related with
one another, unlike the results of the previous section.

Let 7 = ((I'",A"),(T,A)) be a concrete regularity structure. If 7' contains the usual
polynomial structure 7'(X), one can expand the coproduct A7 of any 7 € B\{X*};, as

AT = AT + Z —@Dk Ar = Z o® (1/0),
keNd : orXF

where
DFr .= k‘!(T/Xk).
Applying N ® g, !, we have

k
Ner = N&r + Z e (D), NE=(Neg A

keNd
Setting
f(DFr)=- Y 7 g' g_l D"*r),
LeNd
or equivalently,
g, (DFr) = f,(DVH7),

feNd
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gives a Taylor-like expansion formula for M&7, under the form of the identity

Mner = N&r — Z (- x)k f (DkT)
x x k! xT .
keNd
Since the derivatives 8’;(“%7)(3/) vanishes at y = x for any |k| < |7|, one has
k k(m

fo (D7) = 1)< Oy (MET) ()], _,,-

Given « € R, define a linear projection map P~ : T — T setting
P>a(T) =T 1\7’|>o¢7

for every 7 € B.

Lemma 16. For any 7 € B\{X*},, one has

& (D7) = (A{(NEPoy © &) ATHW))| (4.2)

Proof — It suffices to show that

gx(DkT): Z fm(DkU)gx(T/U); (4'3)
075XZ

we get (4.2) by inserting (4.1 into (4.3). We start from the formula

A+(T/Xk+£) _ Z (U/Xk+e)®(7'/o')+2<k +f;L+ m> Xm®(7_/Xk+Z+m)‘
o#EX™ m

Since 7/X ¥+ e TH\(1), applying g;! ® g, to the preceding identity gives

0= Y &' O (/o) + 3

gx(DkJréerT)’

that is

0= _Z (—x)m ( Z fw(Dk+€+mJ)gx(7_/U) _ gx(Dk+Z+m7_)> )

o#xX™
Identity (4.3) is obtained as a consequence, since

iL’E —z)m
0= Z gl( m') ( Z fx(Dk-&-E-&-mo_)gx(T/o_) _ gz(Dk‘+€+m7_)>
£m o#=X™

= 2 f.(D*o)g.(7/0) — g (D*7).
o#EX™

>

We use in the present work the bounded polynomial structure rather than the usual polyno-
mial structure. We work with concrete regularity structures for which the following assump-
tions hold true.

Assumption (A) The bounded polynomial structure T(X) = (X¥). . is contained in T, and
the polynomial ring T*(X) = <X§11 e X§Z>517---7€n7k17---7k is included in T .

n

We do not make a difference in the notations between the two copies in 7" and T'" of the
bounded polynomial structure.

Definition 17. Let .7 be a concrete regularity structure satisfying Assumption (Al). We say
that the model (g, M) is usual if one has g,(X¥) = (NX*)(z) = 2%, and

g:(DE7) = (0 {0 (MEP. @) AT} ()

) (4.4)
y=x
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for any T € B\{X*}. 1, where D1 := El(1/XF).

4.2 Abstract integration operator and admissible models

Fix a positive regularity exponent 8, and let .7 be a concrete regularity structure. Assume

for simplicity that
BO > _97

so all the elements of T" have homogeneity strictly greater than —6. We consider in this section
concrete regularity structures .7 equipped with an abstract integration operator Z, that is a
regularity structure counterpart of an operator I that is typically an integral operator given by
a kernel that is singular on the diagonal, such as the Green function of a differential operator.
The exponent 6 quantifies the regularizing properties of the operator I in the Holder or Besov
scale.

Remark — The dynamical @% equation
0P =AD — P + ¢

seems not to satisfy the above assumption. Indeed, one should choose [y = % €, and
0 = 2 for the heat kernel in any dimension. However, if we decompose ® = ¥ + v, where
oV =AWV + ¢ and

O = Av — (v + )3,

then one can choose By = 3(—% — ¢) instead, so the equation for v satisfies By > —0. A

general da Prato-Debussche trick is described in Section 6 of [6], that allows to set the study
of a gemeric subcritical singular partial differential equation, within the setting of regularity
structures, under the assumption By > —6.

Integration operator

Let K,, : R? x R? — R, be a sequence of kernels on R%, with support in
{(z,y) eR* x R% |y — x| <277},
and such that one has, for all n € N and z,y € R,
|0kl Ko (2, y)| < Ci 9 n(O+e—d—[k|—|t]) (4.5)

for some (small) positive e. (Thls ¢ is only needed in the proof of Lemma see the remark
following that lemma.) The converging sum

= Z Kn(way)
n=0
defines a kernel
K :R? x R\{(z,z);z € R1} — R,
and, for each = € R%, an integration map
Tp)w) := | K(y)ely)dy,
for ¢ € D(R¥\{x}). The archetypal example is the smoothly localized Green kernel

K(z,y) = x(ly —2|) [y — 24,
for x a smooth real-valued function with compact support identically equal to 1 in a neigh-
bourhood of 0, in dimension at least d > 3, for which one can take any # < 2. The associated
integration map sends any C?(R?), into C5*2(R?), for 3 ¢ Z — these are Schauder estimates.
Note however that (I()(z) is not defined for a generic distribution (.
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Lemma 18. Let {(;},ere © S'(RY) be a family of distributions. If there exist & € R and a
positive constant C' such that one has

KCa )| < €%,

uniformly over ¢ € C"(RY), with unit norm and support in the unit ball, A € (0,1] and x € RY,
then the sum

TG @) = (G B (B0 K () = 3 (Gt (0e@) Kl ) ) (46)

n=0

converges for any |k| < a+0, ee E and x € R,

Proof — Pick z € R%. Let ¢ be any smooth function with support in {y € R% |y — 2| < A},

such that one has

sup A3 o < 1,

[f|<r
for some A € (0,1]. Since ¢, () := Ap(z + Ay) has unit norm in C"(R?) and ¢ = (p,1)2,
we have [((z, )| < CA?, from the assumption of the lemma. Pick k& € N¢. Since ¢(y) :=
O (pe(x) K (x,y)) is supported in {y € R% |y — | < 27"} and [[0lp|pe < 2(¢HFIFI=0n
we thus have

(s 5 (0e(@) En(a, ) )| < 20700, (4.7)
and a converging sum in if |k] <a+6. >

Note that we cannot even make sense of {54 K(z,1)((y) dy, for z # x. Were we able to
define that function as a regular function of z, it would have a regularity structure lift in the
canonical polynomial structure. Lemma [18] allows to define an avatar for the lift at point x
only of the non-existing function ((ngeI)Cx) (+), under the form of the quantity

k
2 ),jf (DG (2)-

eeE | k|<a+0

It follows from Lemma (18 and the assumption By > —6, that one can make sense of I(I7)(x)
for any x € R%, under the form of the converging sum

I(N7)(x) := > (N7, Ky (x,-)).

n=0

Regularity structures with an abstract integration operator

In addition to Assumption (A), we make the following set of assumptions on the concrete
regularity structure 7.

Assumption (B) The sets T and T are related via the integral operators in the following

sense.
o There exist operators IEJF : T — T7%, indexed by e € E and k € N?, with positive
homogeneities .
| X! =1, ’IE+T’ = 7|+ 6 — |k|.
e One has

At1=1®1, ATX! =X/ ®1+1®X/,
and the operators A and AT are related by the intertwining relations
(& (& Xﬁ (&
AT ) = (I @I)AT + ) S OLLT (4.8)
feNd

In addition, T satisfies the following assumptions.
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e There exists an operator L : T — T, with

‘IT‘ = |r| + 6.
e For any T € B, one has
X€
AZr) = (ZQI)AT+ ) i QI T. (4.9)
ecE leNd

Note that identity identifies Z; "7 as Tr/X", for any k e N% e € E. The operators i
are the regularity structure counterparts of the operators 0*(¢.I). Note that the restrictions on
the index sets in identities and to indices ¢ with |k|+|¢| < |7|+6, are redundant with
the fact that Z;", is null on T, for 5 < —|k| — [¢|. In applications to the study of stochastic
PDEs with derivatives of unknown functions, such as the KPZ equation, we can also assume
the existence of other operators Z, : T'— T, associated with the integration operator o*I.

Proposition 19. Let (g, M) be a usual model on 7. We assume the commutation rule
MN(Zr) = I(N7). (4.10)

Then, the usual property ([&.4) holds for any T € IB if and only if, for every T € B, and x € R,
one has

eI = ) (/o) (M) (x) (4.11)
o<T;lk|<|o|+6
Proof — Since Z; " = D*Zr,

g (T 7) = (05 {0c (MEP- 1y @ 8) AT} ()|

y:m'

= X (MEIo)e(r/o) jw)|
o;lo|+6>|k|
=apfo( X (NI o/men(/o) )

=x
om;lo|+0>k| Y

Y, (Mgt (o/n)gs(r/o) | (z)

o.m;lo|>|k[—0

Y, (MEo)gu(r/o) | ().

o;|o|+6>|k|

[l

[—

0
N~ -

Definition 20. A model (g,1) on .7 is said to be admissible if the identities g,(X¥) =
NX*x) = z*, the commutation rule (£.10), and (E11)) are satisfied.

Remark — Note that our notion of admissible model is more general than the corresponding
notion introduced by Bruned, Hairer and Zambotti in [7]; Definition 6.9 in that work. Their
admissible TN-maps, together with the positive twisted antipode from Proposition 6.2 in [7], are
used in definition 6.8 therein to build a g-map and models (g, M) that are admissible model on
T in our sense, with all ¢p. = 1. This is a direct consequence of Lemma 6.10 in [7] and the
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following equalities.

g _ g o ((')E_xe)k e(ne
NezZr = I(MNér) > S T (ME ) (), (4.12)
ecE,|k|<|7|+0 ’
(_CCE)Z
g, (Tt =—- > o Lere(MET) (@), (4.13)
blk+L)<|T]+0 ’
BT = Y el - Y Y M), (1)
o<r,|k|<|o|+6 |k+2|<|T|+6 )

Let us show the above equalities. First we assume that (4.12)) holds for any o € B with o < 7.

Then by (E10) and (E11),
L

Nezr = NZr - Y g, (r/o)neze — 3 e = 2elt

o e T)

o<T ek

Ve — )k
B N B (027 T S B 0 i D 7, FP T

| x
o<T ecE |k|<|o|+0 k!
(e — z0)*
-y Ol e Y elronno)w
e |k|<|T|+0 ' o<t,|k|<|o|+0
B g ((+)e _xe)k e(ne
=I(Nr - Z go(7/0)NE0) — Z le(ﬂxﬂ (x),
o<t e,|k|<T+0 ’
where by using N — Y __g,(7/0)N = N&7 we have [(A.12). On the other hand, by (4.8),
xt
0= gzx ]H_gT Z gz IZ.MO- 8s (7-/0-) + Z ﬁgw I(I/iif-‘rmT)
o<T m;|k+L+m|<|T|4+0
From this identity and (4.11)),
] (e ar (~z)
gxl(I]§+T) = 2 Ele ﬁgaj 1(I]ji£+m7_) = - Z el g (I]§+£0—)gx (T/U)
Lm ’ ’ o<Tl ’
_ (_xe)f —1 I¢ e
= - Z /1 g, (7/0) 2 gz(o/n) k+€( xﬁ)(x)
o<TL ’ n<o,|k+£|<|n|+06

= — (_xe)f e g
2 g (/)T (M) (),

n<T,|k+L|<|n|+6
where 8o (T/N) = 1y—r, which yields (4.13). Moreover, we have (4.14)) as follows.

€ € — ye — e
8T 7) = ) gL 0)e, (/o) + 3 e (L)

O<T
= > eylo/me! (T/U It (M&n) (y)
n<o<,|k|<|n|+6
12 m
Ye (=)
- Z ?T me, Ly opm(NET)(2)
L |k+e+m|<|T|+0 )

= (8 _ M
= D> gelr/mILNEY)(y) > Lo (NE7) ().

n<m,|k|<|n|+6 |k+2|<|T|+6
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4.3 Parametrization of the set of admissible models

We prove Theorem [2]in this section, giving a parametrization of the set of admissible models
by a product of Holder spaces of non-positive regularity exponent. A similar parametrization of
the space of branched rough paths was achieved in the recent work [19] of Tapia and Zambotti,
with very different tools. The next result applies in particular in the former setting, when

formulated in terms of regularity structures. We need the following structural assumptions on
Tt and T.

Assumption (C)
o The basis BT of Tt is a commutative monoid with unit 1, freely generated by the set
% e+
{Xeleeri=..a v {T T}TGB,eeE,keNd,\T|+6‘—|k:|>0’

e For any 7,0 € B, the element 7/o € T is contained in the subalgebra generated by the
set

% . e+
{(Xeleemiz1,..a v {Z} n}neB,eeE,keNd;\m<\T|,\n|+9—|k|>0’

Theorem 21. Let a regularity structure J equipped with an abstract integration map satisfy
assumptions (A), (B) and (C). Given any family of distributions ([7] € CI"(R%))
there exists a unique admissible model (g,M) on 7 such that one has

Mr .= Z Pg(T/O') [[0]] + [[T]]’ (415)

o<T

TeB;|T|<0’

for all T € B with |7| < 0.

Proof — For a € A, define T(J(;) as the subalgebra of T generated by

{Xé}EEEJ:L-d v {II§+T}TEB,eeE,keNd,|T|<a'
By Assumption (C), T(J;) is closed under A™. Start by noting that I, := (T(J;), T.o) is
a regularity structure for any o € A. Define inductively on « € A the maps
MNea : Taq — C™(RY),
and
gl Ty = Co(RY),
with g;“)(X’g) = ¥, initializing the induction. Write M-, for the model (g(®,M_,)

e’
on 4. Set at = min{f > «a;5 € A}. Given a basis vector 7 € B, the function

+
h, =Y _ g®(r/o)o is an element of D*( T4, ™). Define M_,+7 as equal to either

> Pt /oy llol + 711,

o<T
if [7] <0, or
RY=(hy),
if |7| > 0, where RM<e stands for the reconstruction operator on D® (<7<a, g(o‘)) associated
with the model M—,. We have in both cases |<(I'I<a+)§(a)7', e < A%, from Corollary

Define then an extension g(a+) of g(® onto TJ(; ) by requiring that it is multiplicative and

by defining g(“ﬂ(l}jﬂ') from identity (4.11)), with M_,+ in the role of M. Boundedness

of g(a+) is checked by induction. Given Assumption (C) on the regularity structure .7,
closing the induction step amounts to proving that

+ _
8o (T )] < ly — 1O,
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for every ke N% and e € E. Set

Xk
(Tohe)(2) =I5 he(2) + D) ga(ZHT) o
keNd
Proposition [I9 is used to prove the following fact, proved below.

Lemma 22. One has Y&h, € DoH0( T4, g@).

But

(Yaho) () - &1 (Toho) (@)
has X ’g component equal to

(ye — )™ o
gy (T ) = Y. galr/meye( T ) = Y. ga(Ti )| < |y — IO,
n<rt m m:
. (a®) e+ . . . . .
from lemma 22 we recognize ]gyx (Zy 7')’ in the left hand side, which closes the induction.
>

Proof of Lemma [22]— We follow closely the proof of Schauder estimates for modelled distri-
butions — Theorem 5.12 of [I2]. Note first that by (4.11)) one can decompose Y¢h, under the
form

(Yohr) () =I5 he(2) + T°(2) (hr(2)) + (N *he) (@),

with -
= ;Tgm(f/a) " |Z|+6 o Le(M20)(2)
and
k k
(Neh) (@) = ) )]f P (R(hy) — MEh,(2))(z) = D] X w (N&7) (2),
|k|<|T|+6 " |k|<|7|+6

with || = a, where J¢(z) is an operator on 7' rather than on D7(.7,g), defined by

k
T@r= Y M) ),

|k|<|o|+6

Remark then, as in Lemma 5.16 of [I2], that we have for any x,y € R?
8o (7 +T(2)) = (Z°7 + T°(v)) 8ya- (4.16)

We give a direct proof. By definition, we have

xF
8o (Z7 + T(2))T = Zgym (1/0)L" o + Z I gy (T T)

Xk (ye - xe)é
+ }: f““zr“* ke (NET) (2)
k6| k+e|<|T|+0 )

and
k

(Ie+ +J6(y))g@\ﬂ — Zgyz(T/U)Ie+U+ Z %gym(r/g)lz(ﬂga)(y).

ko k| <|o|+6
They are equal because of . We use the interwininlg|relation to write
(Tehe) (W) = &u " (Tohe) (@) = (Tohe)(y) — € (I + T°(2)) he(2) — €0 (Nh:) (@)
= (Tehe) (W) — (I + T°(0)) gahr (2) — €ya” (N ) (2)
= I (hely) = ggahr (2)) + T ) (Br () — Eabr (@) + ((NR2) () — €2 " (N °Ro) (@) )
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For the Z¢* term, one has the elementary estimate
HIe+ (hr(y) — gyzhr( )H,B < Hh — gyzh( ”5 o < |hzlpe |y — x|a+9_5,

The J¢ and N® terms take values in the polynomial part of T%. Write 7% ¢ for the X lg—

component of 7 € Tt. Decompose K(y,z) = > o Kn(y,2), and let J¢ =: Y J¢ and
=: > N¢, be the corresponding operators. We have

k

Xe
(Ze@) (he(v) = Ehe (@) + (Niho)(v) — g " (iR )(@))

— (T () — b))+ (R @) — 52" WER (@) = ()] + ()2
and
() (e (w) — b () + (NeRD)() — 5" W) (@)
= 3| K 2) M (e ) — i 0)) )
BeA,|k|<B+0
+fde,a’f<¢e Ka)j1? W(z) (MEr) (2) s
[ K ) T (e (o) — B (1) (2)
— [ R ) (e o)
Rd k"
e N | R 2) Mg @) — ke (0) () 0
BeA,|k|=5+6
=: (k) + (%7,
where
)t
(OB M) = el 2) — Y TR g )R, ).
|t <a+6—|k| '

Write |y — x| ~ 27V, We use the (s)-decomposition, with J” and N™ separated, to estimate
the sum over n > N, and the (%)-decomposition to estimate the sum over n < N. Each
decomposition is well-adapted to get N-independent upper bounds.

e For n > N, we have from the bound and its derivatives the estimate
PICAESD WD VI "R bt L i VR e}
n>N n>N BeA,|k|<B+6
By the definition of A/, we get

2160 < 3 || o e K 2) (M) )

n>N n>N

Y.
ey et L o @R ) (M) )

n>N ||¢|+]|k|<a+0

< Z o([k—a—O)n | Z |y — m|€2(|f\—a—9)n <ly— $|a+6—\k\
n>N || <a+6—|k|
e To deal with the sum over n < N, we use the (%)-decomposition. For (%)}, note that since

ly—x| ~ 27N < 27" the function % (¢ K )a+9 * i supported on a ball B(z, C2~™), for some
positive constant C. From Taylor formula with bounded polynomials proved in Appendix
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we have

amak(¢e n)a+9 ‘k‘( )‘ < Ba+0(5;nKn<'7Z)) |y - $|a+9_|k|7 (4~17)

with B, (07"Ky (-, 2)) < (dtml+r=0=e)n from either (4.5)) or the interpolation theorem 2.80 in
[1]. Hence

amak((be )oHrG |k|( )‘ < 2(d+|m|+a75)n|y . x|a+07\k\.

It follows then from the proof of Lemma [I§| that we have
(G4 = |(MEr) (2F (@ )53 ) | < 275ny — afr+0- I,

so the sum over n < N is independent of N, of order |y — z|**?~IF. As for the (%)3-terms,
they involve some indices ¢ with |k| > ¢ + 6, so the same elementary bounds as above give

’(*)%‘ < Z ’y o x,a—( 2(|k|—(—9—5)n <9 en ‘y _ x‘a+0—|k|,
CeA,|k|=C+0
since 2" < |y — z|~!. The sum over n < N of the ()3 is thus independent of N, of order
|y _ x|o¢+9—|k|‘ >
Remark — If (T, T) satisfies |T| + 60 ¢ N for any T € B, then we can choose € = 0 for the
estimate (4.5)) on the kernel K,. We need to modify the argument for the sum over n < N.

For (%)}, since 0¥(¢. K )g;a Ikl (P K. )a+9+6 Ikl for small § > 0 such that
(a+0,a+60+9) nN=¢, we have

|(*)1’ < 2§n|y _ $|a+9+§f\k\7

so the sum over n < N is of order [y — z|*T0=I¥. For (%)2, since they involve indices ¢ with
|k| > ¢ + 0, we have

DI Yy a2l ON gy et ok,
n<N CeA|k|>C+0

A — Paraproducts

We summarize in this section some basic concepts and results of the Littlewood-Paley theory.
Let {p;}°_, be a dyadic partition of unity of R%, i.e., p; : R? — [0, 1] is a compactly supported
smooth radlal function with the following propertles

e supp(p—1) < {z € R x| < %} and supp(pp) < {z € Rd;% < lz| < %}

e pi(z) = po(27'2) for any x € R? and i > 0.

e > | pi(z) =1 for any x € RY.
We define the Littlewood-Paley blocks {A;}2 _; by

Aif =7 T f), feS R,
where .Z is a Fourier transform on R? defined by
Fol0)i= | e 0da, pe SRY,
Rd

Now we define the Holder-Besov spaces. For any o € R and f € S’(R?), we define

[fllca := sup 2% A £l oo (rey-
i>-1

We denote by C%(RY) the space of all f € S’(R?) with |f|ca < oo. This definition does
not ensure the separability of C*(R?), so it may be better to consider the space Cg (R%), the
completion of S(RY) under the norm | - |ca. However, it does not matter because C%(R%)
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is embedded into the space Cg(Rd) for any f < a — see e.g. [l Proposition 2.74]. For
a € (0,00)\N, the norm | f]ca is equivalent to the Holder norm

o= S 1+ 3 1o - fol-soer
keN |k|<a keN< |k|=[a]
where ||0" fll(a = [a])-Holder 18 the infimum of constants C' such that the property
0% F (y) = 0" ()] < Cly — w1,
holds for any z,y € R%. For o € N, the space C*(R%) is strictly larger than the space C'ba(Rd)

with the norm
Ifleg == X5 16*fllue=s
keN?,|k|<a
see e.g. [I, page 99]. Bony’s paraproduct P and resonant operator © are defined by
Prg:= Y, Niffjg, ©(f.9):= Y, Aifdg,

ij=—1 i,j=—1
i<j—2 li—jl<1

for any f, g € S'(RY), as long as they converge. We then have formally

fa="Prg+Pyf+0(f.9).
The basic continuity results for these operators are summarized as follows.

Proposition 23. Let o, 3 € R.

(a) [Prgles < [flz=llglcs-
(b) If a <0, then [Prglcares < | flcelgles-

(c) Ifa+ B3>0, then | © (f,9)]pass < | £lcolglcs-

B — Bounded polynomials

This appendix is a follow-up of example 1 in Section 2| describing bounded polynomials and
their associated regularity structure. We give the proofs of Proposition [ and Proposition [5
Set A = (iZ)d, and, for any A = (\;);=1.4 € A, define U, := 1_[?:1 (/\i — %,/\i + 1%) This
family of bounded open subsets of R? cover R%, and are uniformly locally finite covering, i.e.,

sup #{)\ eNxe U,\} < 0.

xeRd
For z € RY and A < R%, set d(z, A) := inf {|z — y|;y € A}.

Lemma — One can construct tuples (go)\, (wi)izlnd) of smooth real-valued functions on R,

with compact support, with the following properties.

AEA

(a1) One has py(x) = 0, for any € R, and py(x) = 0 for any x € U, for any X € A.

(az) One has ¥ \cp ¢a(x) =1, for any x € R,
(as) For any N > 0, there is a constant C independent of o such that

|(0°pa)(2)] < Cn d(z, US)Y,
for any Ae A,z e R, and || < N.

(b) The functions ¥ are uniformly bounded and ¥4 (y) — 4 () = yi — i, for any x,y € U,.
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Proof — We let the reader construct a partition of unity {¢,} satisfying assumptions a; to as.
The third property is ensured if we impose

1

when x € Uy is near oUy N {a:z =\t 16} For each A € A, we choose a smooth function
¢A such that

WA (z) = x; — N x €Uy,
A 0 ¢ V)= ngl ()\i—i,)\i‘Fi)a
and |y (z)| < 1, for any x € RY. >

Recall we define B, (f) := | fl|cy if 7 € N, and B,(f) := || fller if r € (0,00)\N.

Lemma — For any f € C{°(RY) and r > 0, we have the estimate

(SOAf)( )(

(ea)y) = > Yaly) — oa@)*| < Be(H)ly — . (B.1)

|k|<r

Proof — For z,y € Uy, since (¥x(y) —¥a(x))* = (y — ), equation is just a usual Taylor
expansion. For z,y ¢ U,, the left hand side of is equal to 0. Let y € Uy and x ¢ U.
Then the left hand side of is equal to |(¢xf)(y)|. By assumptions, we have

(AW < [ fl=d(y, US)" <[ flre ly — =],
with an implicit constant in the first inequality depending only on r. We have the same
estimate when x € Uy and y ¢ U,. >

Define now E := {0, 1 2, 4} and set
Gei= D pn,  wi= > W
A=emod Z¢ A=emod Z¢
Since they are sums of functions with disjoint supports, we have ¢, x% € Cgo(Rd).

Proof of Proposition @ — For x = (), we define || 1= sup;_y g4 l@;|. If |y — x| = 2,
then the left hand side of (2.21)) is bounded by CB,(f) < CB,(f)|y — x|, with some constant
C depending on ®5 and w;\ If ly — x| < 5, then there is no pair (A, ') such that A # XN and
(z,y) € V) x V. Hence there exists A € A such that the left hand side of is equal to
that of -, so the required estimate follows. >

Proof of Proposition |§| — We need to show that the component of f(y) — gy f(z) on X¥ is
no greater than a constant multiple of B,.(f) |y — 2|"7I¥l. Note that g, f(z) is given by

é-i—m
gyx.f Z Z d g'ﬁf;' ( )(JUe(y) - me($))gxgb'

eeE |[{+m|<r

The 1-coefficient of f(y) — g/y\mf(w) is

Senm-3 5 TP ) a @) < BHIy—al

eeF eel |k|<r
This is estimate (2:21)). For the X¥-coefficient of f(y) — g,»f(x), with k # 0, one has
o'o" e x L r—
L@ - Y FECDW ) a@)| s B W - B2

€] <r—|k|
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This is shown by the similar argument to the proof of the estimate (B.1]). >
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