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Diffusion in small time in incomplete sub-Riemannian manifolds

For incomplete sub-Riemannian manifolds, and for an associated second-order hypoelliptic operator, which need not be symmetric, we identify two alternative conditions for the validity of Gaussian-type upper bounds on heat kernels and transition probabilities, with optimal constant in the exponent. Under similar conditions, we obtain the small-time logarithmic asymptotics of the heat kernel, and show concentration of diffusion bridge measures near a path of minimal energy. The first condition requires that we consider points whose distance apart is no greater than the sum of their distances to infinity. The second condition requires only that the operator not be too asymmetric.

Introduction and summary of results

Let M be a connected C ∞ manifold, which is equipped with a C ∞ sub-Riemannian structure X 1 , . . . , X m and a positive C ∞ measure ν. Thus, X 1 , . . . , X m are C ∞ vector fields on M which, taken along with their commutator brackets of all orders, span the tangent space at every point, and ν has a positive C ∞ density with respect to Lebesgue measure in each coordinate chart. Consider the symmetric bilinear form a on T * M given by

a(x) = m =1 X (x) ⊗ X (x).
Let L be a second order differential operator on M with C ∞ coefficients, such that L1 = 0 and L has principal symbol a/2. In each coordinate chart, L takes the form

L = 1 2 d i,j=1 a ij (x) ∂ 2 ∂x i ∂x j + d i=1 b i (x) ∂ ∂x i (1) 
on Ω x,y by µ x,y t = µ t,x,y • σ -1 t .

We focus mainly on two problems, each associated with a choice of the endpoints x and y, and with the limit t → 0. The first is to give conditions for the validity of Varadhan's asymptotics for the heat kernel t log p(t, x, y) → -d(x, y) 2 /2

(2

)
where d is the sub-Riemannian distance. The second is to give conditions for the weak limit

µ x,y t → δ γ (3) 
where γ is a path of minimal energy in Ω x,y . We wish to understand, in particular, what can be said without symmetry or ellipticity of the operator L, and without compactness or even completeness of the underlying space M . The heat kernel and the bridge measures have a global dependence on L, while the limit objects have a more local character, so the limits depend on some localization of diffusion in small time. We will give two sufficient conditions for this localization, the first generalizing from the Riemannian case a criterion of Hsu [START_REF] Hsu | Heat kernel on noncomplete manifolds[END_REF] and the second requiring a 'sector condition' which ensures that the asymmetry in L is not too strong. We will thus give new conditions for the validity of ( 2) and (3), which do not require completeness, symmetry or ellipticity, nor do they require any condition on the measure ν. In a companion paper [START_REF] Bailleul | Small-time fluctuations for the bridge of a sub-Riemannian diffusion[END_REF], we have further investigated the small-time fluctuations of the diffusion bridge around the minimal path γ, which reveal a Gaussian limit process.

In this section, we state our three asymptotic results. In the next, we discuss related prior work. Later in the paper, we state three further results. The first of these, Proposition 4.1, shows that the dual characterization for complete sub-Riemannian metrics, proved by Jerison and Sanchez-Calle [START_REF] Jerison | Subelliptic, second order differential operators[END_REF], extends to the incomplete case. Then Propositions 5.1 and 5.2 give Gaussian-type upper bounds, for heat kernels and hitting probabilities respectively, from which the asymptotic results are deduced.

Let K be a closed set in M and set U = M \ K. Write p U for the Dirichlet heat kernel of L in U , extended by 0 outside U × U . Define p(t, x, K, y) = p(t, x, y) -p U (t, x, y).

Then

p(t, x, K, y) = p(t, x, y)µ x,y t ({ω ∈ Ω x,y : ω s ∈ K for some s ∈ [0, 1]}) . We call p(t, x, K, y) the heat kernel through K. In the case where U is relatively compact, we write p(t, x, K) for the hitting probability for K, given by 4

p(t, x, K) = P x (T t) = 1 - ¢ U p U (t, x, y)ν(dy) where T = inf{t ∈ [0, ζ) : B t ∈ K}.
Recall that the sub-Riemannian distance is given by

d(x, y) = inf{ I(γ) : γ ∈ Ω x,y }
where I(γ) denotes the energy 5 of γ associated to the bilinear form a. It is known that d defines a metric on M which is compatible with the topology of M . Set

d(x, K) = inf{d(x, z) : z ∈ K} d(x, K, y) = inf{d(x, z) + d(z, y) : z ∈ K}. 4 Note that p(t, x, K) ¢ M p(t, x, K, y)ν(dy) ¢ K p(t, x, y)ν(dy)
and the first inequality is strict if the process explodes, while the second inequality is always strict because the process returns to U with positive probability after hitting K. 5 For an absolutely continuous path γ : [0, 1] → M , the energy I(γ) is given by

I(γ) = inf ¢ 1 0 ξ t , a(γ t )ξ t dt
where the infimum is taken over all measurable paths ξ : [0, 1] → T * M such that ξ t ∈ T * γt M for all t and, for almost all t, γt = a(γ t )ξ t .

If γ is not absolutely continuous or there is no such path ξ, then we set

I(γ) = ∞.
Note that

d(x, K) + d(y, K) d(x, K, y). Define 6 d(x, ∞) = sup{d(x, K) : K closed and M \ K relatively compact}. Theorem 1.1. Suppose that there is a C ∞ 1-form β on M such that Lf = 1 2 div(a∇f ) + a(β, ∇f ) (4)
where the divergence is understood with respect to ν. Then, for all x, y ∈ M and any closed set K in M with M \ K relatively compact, we have

lim sup t→0 t log p(t, x, K) -d(x, K) 2 /2 (5) 
and lim sup

t→0 t log p(t, x, K, y) -(d(x, K) + d(y, K)) 2 /2. (6) Moreover, if there is a constant λ ∈ [0, ∞) such that sup x∈M a(β, β)(x) λ 2 (7) 
then, for any closed set K in M , lim sup

t→0 t log p(t, x, K, y) -d(x, K, y) 2 /2. ( 8 
)
Moreover, all the above upper limits hold uniformly in x and y in compact subsets of M \ ∂K.

The sector condition (7) limits the strength of the asymmetry of L with respect to ν. We will deduce from Theorem 1.1 the small-time logarithmic asymptotics of the heat kernel. Theorem 1.2. Suppose that L has the form (4). Define

S = {(x, y) ∈ M × M : d(x, y) d(x, ∞) + d(y, ∞)}.
Then, as t → 0, uniformly on compacts in S,

t log p(t, x, y) → -d(x, y) 2 /2. ( 9 
)
Moreover, if L satisfies (7), then (9) holds uniformly on compacts in M × M .

We will deduce from Theorem 1.1 also the following concentration estimate for the bridge measures µ x,y t on Ω x,y . A path γ ∈ Ω x,y is minimal if I(γ) < ∞ and I(γ) I(ω) for all ω ∈ Ω x,y .

We will say that γ is strongly minimal if, in addition, there exist δ > 0 and a relatively compact open set U in M such that7 I(γ) + δ I(ω) for all ω ∈ Ω x,y which leave U .

(

) 10 
Theorem 1.3. Suppose that L has the form (4). Let x, y ∈ M and suppose that there is a unique minimal path γ ∈ Ω x,y . Suppose either that

d(x, y) < d(x, ∞) + d(y, ∞),
or that L satisfies (7) and γ is strongly minimal. Write δ γ for the unit mass at γ. Then µ x,y t → δ γ weakly on Ω x,y as t → 0.
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Discussion and review of related work

The small-time logarithmic asymptotics for the heat kernel (2) were proved by Varadhan [START_REF] Varadhan | On the behavior of the fundamental solution of the heat equation with variable coefficients[END_REF] in the case when M = R d and a is uniformly bounded and uniformly positive-definite. Azencott [START_REF] Azencott | Géodésiques et diffusions en temps petit[END_REF] considered the case where a is positive-definite but M is possibly incomplete for the associated metric d. He showed [START_REF] Azencott | Géodésiques et diffusions en temps petit[END_REF]Chapter 8,Proposition 4.4], that the condition

d(x, y) < max{d(x, ∞), d(y, ∞)} (11) 
is sufficient for a Gaussian-type upper bound which then implies [START_REF] Bailleul | Large deviation principle for bridges of sub-Riemannian diffusion processes[END_REF]. In particular, completeness is sufficient. He showed also [ fail without a suitable global condition on the operator L. Hsu [START_REF] Hsu | Heat kernel on noncomplete manifolds[END_REF] showed that Azencott's condition [START_REF] Jerison | Subelliptic, second order differential operators[END_REF] for (2) could be relaxed to

d(x, y) d(x, ∞) + d(y, ∞) (12) 
and gave an example to show that (2) can fail without this condition. The methods in [START_REF] Azencott | Géodésiques et diffusions en temps petit[END_REF] and [START_REF] Hsu | Heat kernel on noncomplete manifolds[END_REF] work 'outwards' from relatively compact subdomains U in M and make essential use of the following identity, which allows to control p in terms of p U . See [1, Chapter 2, Theorem 4.2]. Let U, V be open sets in M with V compactly contained in U . Then, for x ∈ M and y ∈ V , we have the decomposition

p(t, x, y) = 1 U (x)p U (t, x, y) + ¢ [0,t)×∂V p U (t -s, z, y)µ x (ds, dz) (13) 
where

µ x = ∞ n=1 µ n x , µ n x ([0, t] × A) = P x (B Tn ∈ A, T n t)
where we set S 0 = 0 and define recursively for n 1

T n = inf{t S n-1 : B t ∈ V }, S n = inf{t T n : B t ∈ U }.
This can be combined with the estimate

µ x ([0, t] × ∂V ) C(U, V )t, C(U, V ) < ∞
to obtain estimates on p(t, x, y) from estimates on p U (t, x, y). The same identity ( 13) is also used elsewhere to deduce estimates under local hypotheses from estimates requiring global hypotheses. See for example [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF] on hypoelliptic heat kernels, and [START_REF] Grigor | Localized upper bounds of heat kernels for diffusions via a multiple Dynkin-Hunt formula[END_REF] on Hunt processes. Varadhan's asymptotics (2) were extended to the sub-Riemannian case by Léandre [START_REF] Léandre | Majoration en temps petit de la densité d'une diffusion dégénérée[END_REF][START_REF] Léandre | Minoration en temps petit de la densité d'une diffusion dégénérée[END_REF] under the hypothesis M = R d and X 0 , X 1 , . . . , X m are bounded with bounded derivatives of all orders. [START_REF] Léandre | Minoration en temps petit de la densité d'une diffusion dégénérée[END_REF] Here, X 0 is the vector field on M which appears when we write L in Hörmander's form

L = 1 2 m =1 X 2 + X 0 .
Our Theorem 1.2 extends (2) to a general sub-Riemannian manifold, subject either to Hsu's condition [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF], understood for the sub-Riemannian metric, or to the sector condition [START_REF] Hsu | Brownian bridges on Riemannian manifolds[END_REF].

A powerful approach to analysis of the heat equation emerged in the work of Grigor'yan [START_REF] Grigor'yan | The heat equation on noncompact Riemannian manifolds[END_REF] and Saloff-Coste [START_REF] Saloff-Coste | A note on Poincaré, Sobolev, and Harnack inequalities[END_REF][START_REF] Saloff-Coste | Parabolic Harnack inequality for divergence-form second-order differential operators[END_REF]. They showed that a local volume-doubling inequality, combined with a local Poincaré inequality, implies a local Sobolev inequality, which then allows to prove regularity properties for solutions of the heat equation by Moser's procedure, and then heat kernel upper bounds by the Davies-Gaffney argument. This was taken up in the general context of Dirichlet forms by Sturm who proved a Gaussian upper bound [START_REF] Sturm | Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations[END_REF]Theorem 2.4] under such local conditions, without completeness and for non-symmetric operators. Moreover, in this bound, the intrinsic metric appears with the correct constant in the exponent, which allows to deduce the correct logarithmic asymptotic upper bound (2). This intrinsic metric corresponds in our context to the dual formulation of the sub-Riemannian metric. Our Gaussian upper bounds can be seen as applications of Sturm's result. For greater transparency, we will re-run part of the argument in our context, rather than embed in the general framework and check the necessary hypotheses. The approach thus adopted no longer relies on working outwards from well-behaved heat kernels using ( 13), but reduces the global aspect to a certain sort of L 2 -estimate for solutions of the heat equation, which requires no completeness in the underlying space. One finds that the sector condition ( 7) is enough to prevent pathologies in the L 2 -estimate, thus dispensing with the need for condition [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF]. This is a significant extension: for example, ( 7) is satisfied trivially by all symmetric operators Lf = 1 2 div(a∇f ), without any control on the diffusivity a or the symmetrizing measure ν near infinity.

The small-time convergence of bridge measures is known in the case of Brownian motion in a complete Riemannian manifold by a result of Hsu [START_REF] Hsu | Brownian bridges on Riemannian manifolds[END_REF]. For a compact sub-Riemannian manifold, it was shown by Bailleul [START_REF] Bailleul | Large deviation principle for bridges of sub-Riemannian diffusion processes[END_REF]. It is also known under the assumption [START_REF] Léandre | Minoration en temps petit de la densité d'une diffusion dégénérée[END_REF] and subject to the condition that a(x) is positive-definite by work of Inahama [START_REF] Inahama | Large deviation principle of Freidlin-Wentzell type for pinned diffusion processes[END_REF]. While the limit is the expected one, given the well-known small-time large deviations behaviour of diffusions, a statement such as Theorem 1.3 appears new, both for incomplete manifolds and in the non-compact sub-Riemannian case.

We have not attempted to minimize regularity assumptions for coefficients but note that their use for upper bounds is limited to certain basic tools. The analysis [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF] of metric balls, in particular the volume-doubling inequality [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF], is done for the case where X 1 , . . . , X m are C ∞ . Also the Poincaré inequality [START_REF] Sturm | Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations[END_REF] is proved in [START_REF] Jerison | The Poincaré inequality for vector fields satisfying Hörmander's condition[END_REF] in this framework. These points aside, for upper bounds, the C ∞ assumptions on a, ν and β are used only to imply local boundedness. While the dual characterization of the distance function is unaffected by modification of a on a Lebesgue null set, the definition as an infimum over paths is more fragile, and current proofs that these give the same quantity rely on the continuity of a. In contrast to the Riemannian case [START_REF] Norris | Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds[END_REF], for lower bounds in the sub-Riemannian case, in particular for Léandre's argument using Malliavin calculus, current methods demand more regularity.

Review of some analytic prerequisites

The set-up of Section 1 is assumed. Nagel, Stein & Wainger's analysis [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF] of the sub-Riemannian distance and of the volume of sub-Riemannian metric balls implies the following statements. There is a covering of M by charts φ : U → R d such that, for some constants α(U ) ∈ (0, 1] and

C(U ) ∈ [1, ∞), for all x, y ∈ U , C -1 |φ(x) -φ(y)| d(x, y) C|φ(x) -φ(y)| α . ( 15 
)
Moreover, there is a covering of M by open sets U such that, for some constant C(U ) ∈ (1, ∞), for all x ∈ U and all r ∈ (0, ∞) such that B(x, 2r) ⊆ U , we have the volume-doubling inequality ν(B(x, 2r)) Cν(B(x, r)).

Moreover, in [16, Theorem 1], a uniform local equivalent for ν(B(x, r)) is obtained, which implies that, for all x ∈ M ,

lim r→0 log(ν(B(x, r))) log r = N (x). (17) 
Here, N (x) is given by

N (x) = N 1 (x) + 2N 2 (x) + 3N 3 (x) + . . . (18) 
where

N 1 (x) + • • • + N k (x)
is the dimension of the space spanned at x by brackets of the vector fields X 1 , . . . , X m of length at most k. While the limit ( 17) is in general not locally uniform, there is also the following uniform asymptotic lower bound on the volume of small balls, for any compact set F in M , lim sup

r→0 sup x∈F log(ν(B(x, r))) log r N (F ) (19) 
where

N (F ) = sup x∈F N (x) < ∞.
We recall also the local Poincaré inequality proved by Jerison [START_REF] Jerison | The Poincaré inequality for vector fields satisfying Hörmander's condition[END_REF]. There is a covering of M by open sets U such that, for some constant C(U ) < ∞, for all x ∈ U and all r ∈ (0, ∞) such that B(x, 2r) ⊆ U , for all f ∈ C ∞ c (M ), we have

¢ B(x,r) |f -f B(x,r) | 2 dν Cr 2 ¢ B(x,2r) a(∇f, ∇f )dν ( 20 
)
where

f B = ¡ B f dν/ν(B)
is the average value of f on B. As Saloff-Coste claimed [START_REF] Saloff-Coste | Parabolic Harnack inequality for divergence-form second-order differential operators[END_REF]Theorem 7.1], the validity of Moser's argument, given [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF] and [START_REF] Sturm | Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations[END_REF], extends with minor modifications to suitable non-symmetric operators. This leads to the following parabolic mean-value inequality. Proposition 3.1. Let L be given as in equation (4) and let U be a relatively compact open set in M . Then there is a constant C(U ) < ∞ with the following property. For any non-negative weak solution u of the equation (∂/∂t)u t = Lu t on (0, ∞) × U , for all x ∈ U , all t ∈ (0, ∞) and all r ∈ (0, ∞) such that B(x, 2r) ⊆ U and r 2 t/2, we have

u t (x) 2 C 2 t t-r 2 2 B(x,r) u 2 s dνds. (21) 
Moreover, the same estimate holds if L is replaced by its adjoint L under ν.

For a detailed proof, the reader may check the applicability of the more general results [4, Theorem 1.2] or [START_REF] Lierl | Parabolic Harnack inequality for time-dependent nonsymmetric Dirichlet forms[END_REF]Theorem 4.6].

Dual formulation of the sub-Riemannian distance

In Riemannian geometry, the distance function has a well known dual formulation in terms of functions of sub-unit gradient. Jerison & Sanchez-Calle [START_REF] Jerison | Subelliptic, second order differential operators[END_REF] showed that this dual formulation extends to complete sub-Riemannian manifolds. We now show that such a dual formulation holds without completeness, and for the distances to and through a given closed set. where F is the set of all locally Lipschitz functions w on M such that a(∇w, ∇w) 1 almost everywhere.

Proof. Denote the right hand sides of ( 22) and (23) by δ(x, K, y) and δ(x, K) for now. First we will show that δ(x, K, y) d(x, K, y). Let ω ∈ Ω x,y and suppose that ω is absolutely continuous with driving path ξ and that ω t ∈ K. Let w -, w + ∈ F, with w + = w -on K. It will suffice to consider the case where ω| [0,t] and ω| [t,1] are simple, and then to choose relatively compact charts U 0 and U 1 for M containing ω| [0,t] and ω| [t,1] respectively. Then, given ε > 0, since a is continuous, for i = 1, 2, we can find

C ∞ functions f - i , f + i on U i such that |f ± i (z) -w ± (z)| ε and a(∇f ± i , ∇f ± i )(z) 1 + ε for all z ∈ U i . Then w + (y) -w -(x) = w + (y) -w + (ω t ) + w -(ω t ) -w -(x) f + 1 (y) -f + 1 (ω t ) + f - 0 (ω t ) -f - 0 (x) + 4ε and f + 1 (y) -f + 1 (ω t ) + f - 0 (ω t ) -f - 0 (x) = ¢ t 0 ∇f - 0 (ω s ), ωs ds + ¢ 1 t ∇f + 1 (ω s ), ωs ds = ¢ t 0 ∇f - 0 (ω s ), a(ω s )ξ s ds + ¢ 1 t ∇f + 1 (ω s ), a(ω s )ξ s ds ¢ t 0 a(∇f - 0 , ∇f - 0 )(ω s )ds + ¢ 1 t a(∇f + 1 , ∇f + 1 )(ω s )ds 1/2 ¢ 1 0 a(ξ s , ξ s )ds 1/2
(1 + ε)I(ω).

Hence w + (y) -w -(x) I(ω). On taking the supremum over w ± and the infimum over ω, we deduce that δ(x, K, y) d(x, K, y).

For w ∈ F with w = 0 on K and for y ∈ K, we can take w -= -w and w + = 0 in (22) to see that δ(x, K) δ(x, K, y). Hence, on taking the infimum over y ∈ K in (24), we obtain δ(x, K) d(x, K).

Now we prove the reverse inequalities. Consider a C ∞ symmetric bilinear form ā on T * M such that ā a and ā is everywhere positive-definite. Write Ī for the associated energy function and write d and δ for the distance functions obtained by replacing a by ā in the definitions of d and δ. Set

w + (z) = d(x, K, z), w -(z) = d(x, z), w(x) = d(x, K).
Note that w + = w -and w = 0 on K. Since ā is positive-definite, the functions w -, w + and w are locally Lipschitz, and their weak gradients ∇w ± and ∇w satisfy, almost everywhere,

ā(∇w ± , ∇w ± ) 1, ā(∇w, ∇w) 1. Hence d(x, K, y) = w + (y) -w -(x) δ(x, K, y) δ(x, K, y), d(x, K) = w(x) δ(x, K) δ(x, K).
We will show that, for all ε > 0 and all d * ∈ [1, ∞), we can choose ā so that, for all x, y ∈ M with d(x, y) d * , d(x, y) d(x, y) + ε.

Then, for this choice of ā, we have also, for all closed sets K with d(x, K), d(y, K) d * -1,

d(x, K, y) d(x, K, y) + 2ε, d(x, K) d(x, K) + ε.
Since ε and d * are arbitrary, this completes the proof. The idea in choosing ā is as follows.

While we have no control over the behaviour of a near ∞, neither do we have any constraint on how small we can choose ā -a near ∞. Given ε > 0, this will allow us to choose ā so that, for any path γ ∈ Ω x,y with Ī(γ) < ∞, we can construct another path γ ∈ Ω x,y with I(γ) Ī(γ) + ε.

It will be convenient to fix C ∞ vector fields Y 1 , . . . , Y p on M which span the tangent space at every point, so that

a 0 (x) = p i=1 Y i (x) ⊗ Y i (x)
is a positive-definite symmetric bilinear form on T * M . There exists an exhaustion of M by open sets (U n : n ∈ N), such that U n is compactly contained in U n+1 for all n. Set U 0 = ∅. Let (δ n : n ∈ N) be a sequence of constants, such that δ n ∈ (0, 1] for all n, to be determined. There exists a positive C ∞ function f on M such that f δ n on M \ U n-2 for all n. We take ā = a + f 2 a 0 . Write d 0 and I 0 for the distance and energy functions associated with a + a 0 . Recall that we write d and Ī for the distance and energy functions associated with ā. Then 

[0, 1] → R p such that, for almost all t, ωt = m =1 X (ω t ) ḣ t + p i=1 f (ω t )Y i (ω t ) ki t and ¢ 1 0 | ḣt | 2 dt + ¢ 1 0 | kt | 2 dt = Ī(ω).
By reparametrizing ω if necessary, we may assume that

| ḣt | 2 + | kt | 2 = Ī(ω)
for almost all t.

Consider for now the case where ω t ∈ U n+1 \ U n-1 for all t for some n and define a new path

γ by γt = m =1 X (γ t ) ḣ t , γ 0 = x.
Then I(γ) Ī(ω). By Gronwall's lemma, there is a constant A n ∈ [1, ∞), depending only on n and on the open sets (U n : n ∈ N) and the vector fields X 1 , . . . , X m and Y 1 , . . . , Y p , such that

d 0 (γ 1 , y) d * A n δ n provided that d * A n δ n ε n-2 ∧ ε n+1 . ( 25 
)
We will ensure that (25) holds, and hence that γ 1 ∈ U n+2 . Then

d(x, y) d(x, γ 1 ) + d(γ 1 , y) Ī(ω) + C n d 0 (γ 1 , y) αn Ī(ω) + C n d * A n δ αn n .
We return to the general case. Then there is an integer k 1 and there is a sequence of times t 0 t 1 . . . t k and there is a sequence of positive integers n 1 , . . . , n k such that t 0 = 0, t k = 1, and |n j+1 -n j | = 1 and ω t j ∈ ∂U n j+1 for j = 1, . . . , k -1, and

ω t ∈ Ūn j +1 \ U n j -1 for all t ∈ [t j-1 , t j ] and all j = 1, . . . , k, and, if k 2, ω t ∈ ∂U n 1 for some t ∈ [t 0 , t 1 ]. Set S n = {t j : j ∈ {1, . . . , k -1} and n j+1 = n}, χ n = |S n |.
Since ω must hit either ∂U n+1 or ∂U n-1 immediately prior to any time in S n , we have

(ε n-1 ∧ ε n )χ n d * .
We have shown that

d(ω t j-1 , ω t j ) (t j -t j-1 ) Ī(ω) + C n j d * A n j δ αn j n j so d(x, y) k j=1 d(ω t j-1 , ω t j ) Ī(ω) + C n 1 d * A n 1 δ αn 1 n 1 + ∞ n=1 C n d * A n χ n δ αn n .
Now we can choose the sequence (δ n : n ∈ N) so that (25) holds and

2 ∞ n=1 C n d * 2 A n δ αn n ε n-1 ∧ ε n ε.
Then, on optimizing over ω, we see that d(x, y) d(x, y) + ε whenever d(x, y) d * , as required.

Gaussian-type upper bounds

Recall from Section 1 the notions of distance and heat kernel through a given closed set K. Proposition 5.1. Let L be given as in equation (4) and suppose that L satisfies [START_REF] Hsu | Brownian bridges on Riemannian manifolds[END_REF]. Then there is a continuous function C : M × M → (0, ∞) such that, for all x, y ∈ M and all t ∈ (0, ∞), for

r = min t d(x, y) , t 4 , d(x, ∞) 4 , d(y, ∞) 4 
we have

p(t, x, y) C(x, y) ν(B(x, r)) ν(B(y, r)) exp - d(x, y) 2 2t + λ 2 t 2 . ( 26 
)
Moreover, for any closed set K = M \ D in M , there is a continuous function C(., ., K) : D × D → (0, ∞) such that, for all x, y ∈ D and all t ∈ (0, ∞), for

r = min t d(x, K, y) , t 4 , r(x, K) 4 , r(y, K) 4 , r(x, 
K) = min{d(x, ∞), d(x, K)} we have p(t, x, K, y) C(x, y, K) ν(B(x, r)) ν(B(y, r)) exp - d(x, K, y) 2 2t + λ 2 t 2 . ( 27 
)
The statements above remain true with the constant 4 replaced by 2, by the local volumedoubling inequality. The value 4 will be convenient for the proof.

Proof. We omit the proof of (26), which is a simpler version of the proof of (27). For (27), we will show that the argument used in [17, Theorem 1.2], for the case where a is positivedefinite and β = 0, generalizes to the present context8 . Consider the set M = M -∪ M + , where M ± = K ∪ D ± and D -, D + are disjoint copies of D = M \ K. Write π for the obvious projection M → M . For functions f defined on M , we will write f also for the function f • π on M . Thus we will sometimes consider a as a symmetric bilinear form on T * D ± and β as a 1-form on D ± . Define a measure ν on M by

ν(A) = ν(A ∩ K) + 1 2 ν(π(A ∩ D -)) + 1 2 ν(π(A ∩ D + )). Note that ν = ν • π -1 . Now define p(t, x, y) =      p(t, x, y) + p D (t, x, y), if x, y ∈ D ± , p(t, x, y) -p D (t, x, y), if x ∈ D ± and y ∈ D ∓ , p(t, x, y), if x ∈ K or y ∈ K.
Given bounded measurable functions f -, f + on M with f -= f + on K, write f for the function on M such that f = f ± • π on M ± , and set f = (f -+ f + )/2 and 

f D = (f + -f -)/2
¢ D φ D u D t dν = - 1 2 ¢ M a(∇ φ, ∇ū t )dν + ¢ M a( φβ, ∇ū t )dν - 1 2 ¢ D a(∇φ D , ∇u D t )dν + ¢ D a(φ D β, ∇u D t )dν = - 1 2 ¢ M a(∇φ, ∇u t )dν + ¢ M a(φβ, ∇u t )dν. (28) 
Let (w -, w + ) be a pair of bounded locally Lipschitz functions on M such that w -= w + on K and a(∇w ± , ∇w ± ) 1 almost everywhere. Define a function w on M by setting w = w ± • π on M ± . Fix θ ∈ (0, ∞) and set ψ = θw. We deduce from (28) by a standard argument that

d dt ¢ M (e -ψ u t ) 2 dν = - ¢ M a(∇(e -2ψ u t ), ∇u t )dν + 2 ¢ M a(βe -2ψ u t , ∇u t )dν = - ¢ M a(∇u t , ∇u t )e -2ψ dν + 2 ¢ M a((β + ∇ψ)u t , ∇u t )e -2ψ dν ¢ M a(β + ∇ψ, β + ∇ψ)(e -ψ u t ) 2 dν ρ ¢ M (e -ψ u t ) 2 dν
Recall that r 2 t/4. For each s ∈ [t -r 2 , t], we can take f + = cp(s, x, K, .)1 B(y,r) , where c is chosen so that ¡ M f 2 dν = 1. For this choice of f + , we have

u s (x -) 2 = ¢ B + p(s, x -, z) 2 ν(dz).
Hence

p(t, x, K, y) 2 C(V ) ν(B(y, r)) 2 t t-r 2 u s (x -) 2 ds C(U )C(V ) ν(B(x, r))ν(B(y, r))
e -2θ(w + (y)-w -(x)-2r)+ρt .

Here, we applied (31) with τ = s, noting that s 3t/4, so r 2 t/4 s/2. We optimize over (w -, w + ) and take θ = d(x, K, y)/t to obtain

p(t, x, K, y) C(U, V, x, y) ν(B(x, r)) ν(B(y, r)) exp - d(x, K, y) 2 2t + λ 2 t 2 where C(U, V, x, y) = e 2+λd(x,K,y)/2 C(U )C(V ).
Finally, since U is locally finite, there is a continuous function C(., ., K) : D × D → (0, ∞) such that C(U, V, x, y) C(x, y, K) for all U, V ∈ U and all x ∈ U and y ∈ V .

Proposition 5.2. Let L be given as in equation (4). Let U be a relatively compact open set in M and set K = M \ U . There is a constant C(U ) < ∞ with the following property. For all x ∈ U and all t ∈ (0, ∞), and for r = t/d(x, K),

p(t, x, K) C ν(B(x, r)) exp - d(x, K) 2 2t . (32) 
Proof. We adapt the argument of the proof of Proposition 5.1. Since ν(U ) < ∞ and p(t, x, K) 1, it will suffice to consider the case where d(x, K) 2 2t. We modify the measure ν and the 1-form β on K, if necessary, by multiplication by suitable C ∞ functions, so that ν(K) 1 and a(β, β)(x) λ 2 for all x ∈ M , for some λ < ∞. This does not affect the value of p(t, x, K) for

x ∈ U . Set f = 1 + 1 U + -1 U -and define, for x ∈ M , u t (x) = ¢ M p(t, x, y)f (y)ν(dy).
Then p(t, x, K) = u t (x -) for x ∈ U . Fix a locally Lipschitz function w on M such that w = 0 on K ∪ U + and a(∇w, ∇w)

1 almost everywhere. Then, as we showed at (30), for all For t > 0 sufficiently small, we have r(t, z) = t/d(z, y) for all z ∈ ∂U , and then ν(B(z, r(t, z))) ν(B(y, r(t, z))) t C(U, y)

θ ∈ [0, ∞), ¢ M (e θw u t ) 2 dν e ρt ¢ M f 2 dν = e ρt (2ν(U ) + ν(K)) where µ x ([0, t] × ∂U ) C(U, V )t, C(U, V ) < ∞. For all z ∈ ∂U , p V (t, z, y) C V (z, y) ν(B(z, r(t, z))) ν(B(y, r(t, z))) exp - d(z, y) 2 2t + λ 2 V t 2 where r(t, z) = min t d(z, y) , t 4 , d(z, ∂V ) 4 , d(y, ∂V ) 4 , λ 2 V = sup z∈V a(β, β)(z) < ∞.
N ( Ū )+1
.

Hence, for t > 0 sufficiently small, and all z ∈ ∂U ,

p V (t, z, y) C U,V (y) t N ( Ū )+1 exp - d(y, K) 2 2t + λ 2 V t 2 where C U,V (y) = sup z∈∂U C V (z, y) × C(U, y) N ( Ū )+1 .
This estimate, along with (32), allows us to short-cut some steps in Hsu's argument. On substituting the estimates into (33) and using the elementary [8, Lemma In the following proof, we introduce an auxiliary real Brownian bridge, from 0 to 1 of speed ε. This is known to converge weakly to a uniform drift as ε → 0. So this auxiliary process provides a new coordinate which acts as a surrogate for time, thereby allowing us to lift the small-time estimate for the heat kernel to a weak convergence result for the associated bridge.

Proof of Theorem 1.3. Consider first the case where L satisfies [START_REF] Hsu | Brownian bridges on Riemannian manifolds[END_REF] and γ is strongly minimal. We will show, for all δ > 0, for Γ t (δ) = {ω t : ω ∈ Ω x,y , I(ω) < d(x, y) 2 + δ} and for r = δ 1/4 (d(x, y) 2 + δ) 1/2 that we have lim sup ε→0 ε log µ x,y ε ({ω ∈ Ω x,y : d(ω t , Γ t (δ)) r for some t ∈ [0, 1]}) -δ/2. (38)

Then, since γ is the unique minimal path in Ω x,y and γ is strongly minimal, for all ρ > 0, there exists δ > 0 such that, for all ω ∈ Ω x,y , we have I(ω) d(x, y) 2 + δ whenever d(ω t , γ t ) ρ for some t ∈ [0, 1]. Hence d(z, γ t ) < ρ for all z ∈ Γ t (δ) and all t ∈ [0, 1]. Then it follows from (38) that, as ε → 0, µ x,y ε ({ω ∈ Ω x,y : d(ω t , γ t ) < r + ρ for all t ∈ [0, 1]}) → 1

showing that µ x,y ε → δ γ weakly on Ω x,y . Consider the operator L and measure ν on M = M × R given by L = L + 1 2

∂ ∂τ Then K is closed in M . Write β 0,1 ε for the law on Ω 0,1 (R) of a Brownian bridge from 0 to 1 of speed ε. Then, with obvious notation, p(t, x, ỹ) = p(t, x, y) 1 √ 2π e -1/(2t) , μx,ỹ ε (dω, dτ ) = µ x,y ε (dω)β 0,1 ε (dτ ).

Proposition 4 . 1 .

 41 For all x, y ∈ M and any closed subset K of M , we have d(x, K, y) = sup{w + (y) -w -(x) : w -, w + ∈ F with w + = w -on K} (22) and d(x, K) = sup{w(x) : w ∈ F with w = 0 on K} (23)

d 0 d d .

 d Set ε n = d 0 (∂U n , ∂U n+1 ). By the sub-Riemannian distance estimate[START_REF] Lierl | Parabolic Harnack inequality for time-dependent nonsymmetric Dirichlet forms[END_REF], there are constants α n ∈ (0, 1] and C n < ∞, depending only on n and on the open sets (U n : n ∈ N) and the vector fields X 1 , . . . , X m and Y 1 , . . . , Y p , such that, for all x, y ∈ U n+2 , d(x, y) C n d 0 (x, y) αn .Fix a constant d * ∈ [1, ∞). Fix x, y ∈ M with d(x, y) d * and suppose that ω ∈ Ω x,y satisfies Ī(ω) d * 2 . There exist absolutely continuous paths h : [0, 1] → R m and k :

  Now inf z∈∂U d(z, y) = d(y, K), sup z∈∂U d(z, y) = C(U, y) < ∞ and, for r > 0 sufficiently small inf z∈ Ū ν(B(z, r)) r N ( Ū )+1 .

2 ,|

 2 ν(dx, dτ ) = ν(dx)dτ where τ denotes the coordinate in R.Then Lf = 1 2 div(ã∇f ) + ã( β, ∇f )where div is the divergence associated to ν and whereã(x, τ ) = a(x) + ∂ ∂τ ⊗ ∂ ∂τ , β(x, τ ), v ± ∂ ∂τ = β(x), v , v ∈ T x M.Moreover, ã has a sub-Riemannian structure andã( β, β)(x, τ ) = a(β, β)(x) λ 2Write Ω 0,1 (R) for the set of continuous paths σ : [0, 1] → R such that σ 0 = 0 and σ 1 = 1. Forσ ∈ Ω 0,1 (R), define σt | 2 dt, if σ is absolutely continuous, ∞, otherwise.Set x = (x, 0) and ỹ = (y, 1), and defineK = M \ Ũ , Ũ = {(γ t , σ t ) : (γ, σ) ∈ Γ(δ), t ∈ [0, 1]}where Γ(δ) = (γ, σ) ∈ Ω x,y × Ω 0,1 (R) : I(γ) + I(σ) < d(x, y) 2 + 1 + δ .

  . Let φ -and φ + be C ∞ functions on M , of compact support, with φ -= φ + on K and define φ on M and φ and φ D on M similarly. For t ∈ (0, ∞), define functions u t on M , ūt on M and Then ūt and u D t solve the heat equation with Dirichlet boundary conditions in M and D respectively. It is straightforward to check that u t = u ± t • π on M ± , where u ±

	u D t on D by					¢
						u t (x) =	M p(t, x, y)f (y)ν(dy)
	and			¢			¢
		ūt (x) =		p(t, x, y) f (y)ν(dy), u D t (x) =	p D (t, x, y)f D (y)ν(dy).
					M			M
								t = ūt ± u D t and
	we extend u D t by 0 on K. Hence ¢	¢	¢
						M φu t dν =	M	φū t dν +	D	φ D u D t dν
	and so d dt ¢	M φu t dν =	d dt	¢	M	φū t dν +	d dt

  This implies (34), since p U (t, x, y) p(t, x, y) and ε and η may be chosen arbitrarily small. In the case where L satisfies[START_REF] Hsu | Brownian bridges on Riemannian manifolds[END_REF], this follows from Theorem 1.1 by taking K = M . On the other hand, given ε > 0 and a compact set F in S, there is a relatively compact open set U in M such that, for K = M \ U and all (x, y) ∈ F ,

	It remains to show the upper bound
		lim sup	t log p(t, x, y) -d(x, y) 2 /2	(35)
		t→0	
	locally uniformly in x and y. d(x, y) -ε d(x, K) + d(y, K).
	Now the restriction of L to U satisfies (7), so
	lim sup		
				2.1], we conclude as
	claimed that		
	lim sup	t log p(t, x, K, y) -(d(x, K) + d(y, K)) 2 /2.
	t→0		

t→0 t log p U (t, x, y) -d U (x, y) 2 /2 -d(x, y) 2 /2 (36) uniformly in (x, y) ∈ F , while, by Theorem 1.1, lim sup t→0 t log p(t, x, K, y) -(d(x, K) + d(y, K)) 2 /2

(37)

also uniformly in (x, y) ∈ F . Since p(t, x, y) = p U (t, x, y) + p(t, x, K, y) and ε is arbitrary, (35) follows from (36) and (37).

It is clear that d(., ∞) is either finite or identically infinite. By the sub-Riemannian version of the Hopf-Rinow theorem, the second case occurs if and only if M is complete for the sub-Riemannian metric. Note that the triangle inequality does not apply 'at K' or 'at ∞', and d(x, K) may exceed d(x, ∞) if M \ K is not relatively compact.

When M is complete for the sub-Riemannian distance, all metric balls are relatively compact, so every minimal path is strongly minimal. Also, if there is a unique minimal path γ ∈ Ω x,y , which is strongly minimal, then, by a weak compactness argument, for all relatively compact domains U containing γ, there is a δ > 0 such that (10) holds.

The idea is to combine a standard argument for heat kernel upper bounds with a reflection trick. In terms of Markov processes, we give a random sign to each excursion of the diffusion process into D, viewing it as taking values in D -or D + . Then a generalization of the classical reflection principle for Brownian motion allows to express the density for paths from x to y via K in terms of this enhanced process. In fact the heat kernel p for this process may be written in terms of p and p D , and we find it technically simpler to define p in those terms, rather than set up the enhanced process.

 [START_REF] Bailleul | Small-time fluctuations for the bridge of a sub-Riemannian diffusion[END_REF]Research supported by EPSRC grant EP/103372X/1 1 for some C ∞ functions b i .

where ρ = a(β + ∇ψ, β + ∇ψ) ∞ (λ + θ) 2 .

Then, by Gronwall's inequality, ¢ M (e -ψ u t ) 2 dν e ρt ¢ M (e -ψ f ) 2 dν.

(29) There exists a locally finite cover U of D by sets of the form B(x, r(x, K)/4), where we recall that r(x, K) = min{d(x, ∞), d(x, K)}. For U = B(x, r(x, K)/4) ∈ U, set Ũ = B(x, 7r(x, K)/8). Then Ũ is a relatively compact open subset of D. By the triangle inequality, for all U ∈ U and all x ∈ U , we have B(x, r(x, K)/2) ⊆ Ũ . Fix U, V ∈ U and write C(U ) and C(V ) for the constants appearing in the parabolic mean-value inequality for L on Ũ and for L on Ṽ . Fix x ∈ U , y ∈ V and t ∈ (0, ∞), and recall that we set

Write x -and y + for the unique points in D -and D + respectively such that π(x -) = x and π(y + ) = y. Set

Take f -= 0 and choose f + 0 supported on B(y, r) and such that

Note that w w -(x) + r on B -and w w + (y) -r on B + . Hence we obtain from (29), for all s 0,

s dν e ρs e -2θ(w + (y)-r) .

Since u - t 0 and (∂/∂t)u - t = Lu - t on (0, ∞) × D, by the parabolic mean-value inequality, for all τ ∈ (0, ∞) such that r 2 τ /2,

Set v s (z) = p(s, x, K, z), then v s 0 and (∂/∂s)v s = Lv s on (0, ∞) × D. By the parabolic mean-value inequality again,

where

By the same argument as that leading to (31), there is a constant C(U ) < ∞ with the following property. For all x ∈ U and all t ∈ (0, ∞), for all r ∈ (0, ∞) such that B(x, 2r) ⊆ U and r 2 t/2, we have

where

and, by optimizing over ε, θ and w, using Proposition 4.1, we obtain

6 Proofs of Theorems 1.1, 1.2 and 1.3

Proof of Theorem 1.1. The asymptotic upper bound [START_REF] Hsu | Heat kernel on noncomplete manifolds[END_REF] for the heat kernel through K, under condition [START_REF] Hsu | Brownian bridges on Riemannian manifolds[END_REF], follows directly from the Gaussian upper bound (27) and the asymptotic lower bound [START_REF] Saloff-Coste | Parabolic Harnack inequality for divergence-form second-order differential operators[END_REF] for the volume of small balls, on letting t → ∞. Similarly, the asymptotic upper bound (5) for the hitting probability for K, when M \ K is relatively compact, follows from (32) and [START_REF] Saloff-Coste | Parabolic Harnack inequality for divergence-form second-order differential operators[END_REF]. It remains to show [START_REF] Grigor | Localized upper bounds of heat kernels for diffusions via a multiple Dynkin-Hunt formula[END_REF]. For this, we adapt an argument of Hsu [START_REF] Hsu | Heat kernel on noncomplete manifolds[END_REF] for the Riemannian case. Consider the L-diffusion process (B t :

We use the identity

Note that P x (T t) = p(t, x, K) and the estimate (32) applies. We estimate p(t, z, y) for z ∈ K using [START_REF] Léandre | Majoration en temps petit de la densité d'une diffusion dégénérée[END_REF]. Choose V relatively compact containing the closure of U . Then, for z ∈ ∂U ,

Proof of Theorem 1.2. First we will show the lower bound lim inf t→0 t log p(t, x, y) -d(x, y) 2 /2 (34) locally uniformly in x and y. Given ε > 0, there exists a simple path γ ∈ Ω x,y , with driving path ξ say, such that I(γ) d(x, y)+ε. We can and do parametrize γ so that a(ξ t , ξ t ) = I(γ) for almost all t ∈ [0, 1]. Fix δ > 0 and consider the open set

We can and do choose δ so that U is compactly contained in the domain of a chart. Choose n 1 such that d(x, y) + ε n δ and fix η ∈ (0, δ/4). For k = 0, 1, . . . , n, set t k = k/n and x k = γ t k and suppose that

We can identify the chart with a subset of R d and choose extensions X0 , X1 , . . . , Xm to R d of the restrictions of X 0 , X 1 , . . . , X m to U such that the extended vector fields are all bounded with bounded derivatives of all orders, such that X1 , . . . , Xm is a sub-Riemannian structure on R d , and such that X0 = χX 0 for some C ∞ function χ vanishing outside the chart. Then, by Léandre's lower bound [START_REF] Léandre | Minoration en temps petit de la densité d'une diffusion dégénérée[END_REF]Theorem II.3] in R d , for k = 1, . . . , n, uniformly in y k-1 and y k , lim inf

On the other hand, by Theorem 1.1, for k = 1, . . . , n, uniformly in y k-1 and y k , lim sup

Hence, by our choice of n and η, uniformly in y k-1 and y k , lim inf

Now, by a standard chaining procedure, we obtain, uniformly in y 0 and y n , lim inf

By Theorem 1.1, we have lim sup

where we have used the lower bound from Theorem 1.2. By standard estimates, we also have

Suppose then that ω ∈ Ω x,y and τ ∈ Ω 0,1 (R) satisfy (ω t , τ t ) ∈ Ũ and |τ t -t| < √ δ/2 for all t ∈ [0, 1]. Then, for each t ∈ [0, 1], there exist s ∈ [0, 1] and γ ∈ Ω x,y and σ ∈ Ω 0,1 (R) such that ω t = γ s , τ t = σ s , I(γ) < d(x, y) 2 + δ, I(σ) < 1 + δ.

Then |σ s -s| √ δ/2 so |t -s| √ δ and so

The estimates (39) and ( 40 

Set Ω x,y U = {ω ∈ Ω x,y : ω t ∈ U for all t ∈ [0, 1]}. Then γ is the unique minimal path in Ω x,y U , γ is strongly minimal in Ω x,y U , and p(ε, x, y)1 Ω x,y U (ω)µ x,y ε (dω) = p U (ε, x, y)µ x,y,U ε (dω). (43)

Consider the limit ε → 0. Since the restriction of L to U satisfies [START_REF] Hsu | Brownian bridges on Riemannian manifolds[END_REF], by the first part of the proof, we have µ x,y,U ε → δ γ weakly on Ω x,y U . Since p(ε, x, y) = p U (ε, x, y) + p(ε, x, K, y) it follows from (41) and (42) that p U (ε, x, y)/p(ε, x, y) → 1. Hence, on letting ε → 0 in (43), we see that also µ x,y ε → δ γ weakly on Ω x,y .