

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author's version published in: http://oatao.univ-toulouse.fr/24594

Official URL: <u>http://ciem.energ.pub.ro</u>

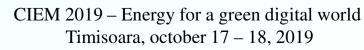
To cite this version:

Duquenne, Philippe Biomass as a helpful support to sun and wind for insulated small electrical networks. (2019) In: Energy for a green digital world, 17 October 2019 - 18 October 2019 (Timisoara, Romania). (Unpublished)

Biomass as a helpful support to sun and wind for insulated small electrical networks

Philippe DUQUENNE

INPT / ENSIACET / Dép. GI Laboratoire de Génie Chimique LGC CNRS UMR 5503 4, allée Émile Monso BP 44362 F - 31030 Toulouse cedex 4 FRANCE


Content

Context

- **Renewable energies overview**
- □ Intermittent energies
- **Ensuring continuous power delivery**
- **Conclusions**

Context

✤The aim is to generate electricity ...

- \succ ... with minimal consumption of fossil fuels
- > and maximal use of local resources

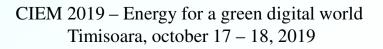
✤We focus on little islands:

- Little : Small population
- ➢ Islands : no connection to any other electrical network

Small population : production units will be modest
 Small territory : no smoothing effect related to geographic extent
 Isolated : no smoothing opportunity from neighboring networks

CIEM 2019 – Energy for a green digital world Timisoara, october 17 – 18, 2019

Département « Génie Industriel »


Assumption: if no oil or gas resources

Energy drawn from water, sun, wind or biomass

Concurring with a minimal use of fossil fuel

- ➢ Hence a « greener » energy mix
- ➤ ... and incidentally lower imports and energy dependence ...

Most popular ones : wind energy

*Assets:

- Very trendy
- ➤ Reasonable investment (≈ 1.5 M€/MW in Europe)
- Appropriate power range
- Well-mastered technology and engineering
- ➤ « Free » energy

* Drawbacks

- Erratic behaviour
- Unpredictable behaviour
- Quick variations (wind gusts)
- ▶ Poor load factor ($\approx 22\%$ in France)
- ≻ « Not that green » ...

Département « Génie Industriel »

- *Assets:
 - > Very trendy
 - > Reasonable investment (\approx [0.8 2] M€/MW in Europe)
 - Appropriate power range
 - Well-mastered technology and engineering
 - « Free » energy
- * Drawbacks
 - Erratic behaviour
 - Unpredictable behaviour
 - Quick variations

Not that green »

- > Poor conversion rates ($\approx 15-20\%$ of the incident solar radiation)
- > Poor capacity factor ($\approx 15\%$ in France)

Département « Génie Industriei »

Concentrated solar power

*Assets:

- Better conversion rates and capacity factors
- More stable behaviour than PV
- \succ High temperatures \rightarrow thermal inertia
- \succ Allows a form of storage \rightarrow continuous operation

Drawbacks :

- Performance heavily dependent on sunshine
- Significantly more expensive than PV

Energy from water

Hydroelectric dams

Require important water flowrates

PHES – Pumped Hydroelectric Energy Storage

Département « Génie Industriel »

Requires significant level differences

In both cases : great dependance on geography

You don't do what you want where you want Much less fashionable

Tidal power

- Mechanical energy of waves
- Ocean thermal energy conversion

✤In all cases :

- Strong dependance on geography
- Significant investments
- Development still at an experimental stage

Biomass as a fuel

*Assets:

- Well-mastered and proven technology
- Neutral carbon balance
- Offers valorization of agricultural by-products
- Easy storage of raw materials
- Can be coupled with fossil fuels
- Small engineering efforts

✤Drawbacks :

- > Furnace \rightarrow boiler \rightarrow steam \rightarrow gas turbine : great inertia
- \succ All that could be done has already been done ...

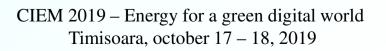
Biofuels

Three main families:

- > Ethanol / methanol, resulting from alcoholic fermentation
- Methyl-esters, resulting from transesterification of vegetable oils
- Vegetable oils, used « as is >

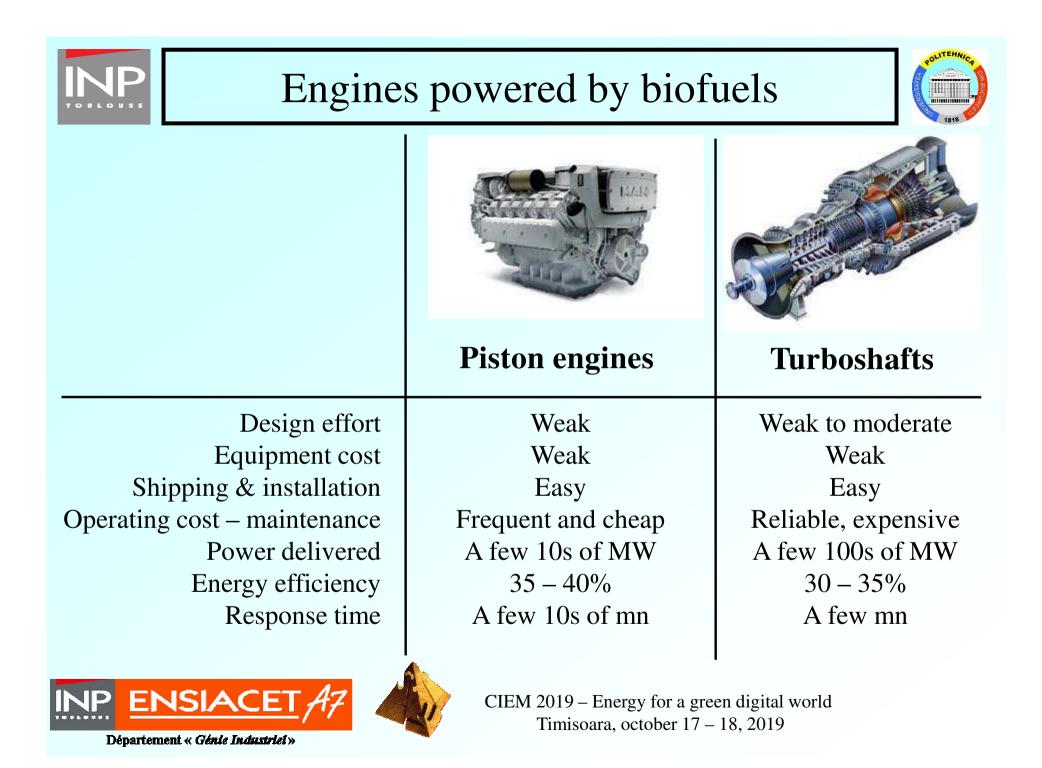
Characteristics :

The two first :


- Diruted in fossil fuels (\approx 5-30%) without changes in existing engines - Heavy engine modifications if used as is.
- > The third kind can run diesel or kerosene engines with slight adjustments

Qualitative summary						RIB REAL
1 – Easy 2 – Average 3 – Tough Energy sources	trojner	ort installatio	operatin		diness pred	ictability
WindMill Farms	• 1	1	1	3	3	9
Solar – PhotoVoltaic	1	1	1	3	3	9
Solar – Concentrated Power	1	2	1	2	2	8
Water – Hydoelec. Dams	2	3	2	2	1	10
Water – Pumped Storage	2	3	2	1	1	9
Water – Sea Energy	3	3	2	1	1	9
BioMass – as a Fuel	1	1	2	1	1	6
BioFuel – Alcohol	1	2	3	1	1	8
BioFuel – Diesel	1	2	3	1	1	8
BioFuel – Oil	1	1	2	1	1	6

- ✤ According to the previous synthesis :
 - Windmill farms and photovoltaic solar energy are easy to implement and to operate
 - > This mainly explains their popularity
 - But they both suffer from serious defects :
 - \checkmark They can vary or simply vanish from times to times ...
 - \checkmark Changes in their production can be brutal
 - ✓ Without long-term forecasts
 - ➤ If no compensation is available :
 - ✓ Need for an alternative means of electricity generation
 - \checkmark Ideally, should require reasonable investments



Considered as an auxiliary electricity provider :

- Must be economic (double investment, often at rest)
- Must be adapted to various ranges of power delivered
- > Must be responsive
- \succ ... must be green ...
- The synthesis table indicates engines running with vegetable oils
 Piston engines (diesel) or turbines according to the desired power

Context :

- ➢ Low population → Minimize investments
- \succ Ecology + importations + independence \rightarrow green local resourses
- \succ Remoteness \rightarrow full-time reliability
- ✤ Solar and wind :
 - ➤ Winmills + PV collectors satisfy the first 2 constraints ...
 - ➤ ... but require responsive auxilliary power generation
- Seen from another point of view :
 - Vegetable oils as biofuels would match all the requirements
 - > ... but require huge cultivated area :
 - Limited to sparcely populated territories
 - Limited to poorly industrialized territories

CIEM 2019 – Energy for a green digital world Timisoara, october 17 – 18, 2019

Département « Génie Industriel »

Thank you for attention.

Any question?

- •Akhtar Saeed, « Prospects of Bagasse as a feasible bio-fuel for electricity generation in Pakistan A realistic approach », conference on Power Generation System and Renewable Energy Technologies, 10-11 june 2015, Islamabad, Pakistan, IEEE, 2015.
- Antoine Aurousseau, Valery Vuillerme, Jean-Jacques Bezian, « Control systems for direct steam generation in linear concentrating solar power plants: a review », Renewable and Sustainable Energy Reviews, Elsevier, 56, pp. 611-630, 2016.
- •Fengzhen Chen, Neven Duic, Luis Manuel Alves, Maria da Graça Carvalho, « Renewislands—Renewable energy solutions for islands », Renewable and Sustainable Energy Reviews, 11, pp. 1888–1902, Elsevier, 2007
- •Shafiqur Rehman, Luai M. Al-Hadhrami, Md. MahbubAlam, « Pumped hydroenergy storage systems: A technological review », Renewable and Sustainable Energy Reviews, 44, pp. 586–598, Elsevier, 2015
- •Abdelrahman Azzuni, Christian Breyer, « Energy security and energy storage technologies », 12th International Renewable Energy Storage Conference IRES, Energy Procedia, 155, pp. 237-258, Elsevier, 2018
- •Jean-Pierre Favennec, Yves Mathieu, « Atlas Mondial des énergies Ressources, consommation et scénarios d'avenir », Armand Colin, 2014
- Robert Scott, « Historical Trends in Turboshaft Engine Procurement Cost », Journal of the American Helicopter Society, Volume 62, Number 3, July 2017, pp. 1-9, Vertical Flight Society, 2017
- Alain Chauvel, Gilles Fournier, Claude Raimbaud, « Manuel d'évaluation économique des procédés », Technip, 2001
- •Agneta Forslund, Fabrice Levert, Alexandre Gohin, Chantal Le Mouël, « La base de données du modèle MATSIMLUCA », ADEME, 2013

