On the definition of a solution to a rough differential equation

-Main result

a) Setting -Rough paths theory was introduced by T. Lyons in [START_REF] Lyons | Differential equations driven by rough signals[END_REF] as a theory of controlled differential equations 9

x t " Fpx t q 9 h t (1.1)

with F P LpR , R d q, and a non-differentiable control h with values in R . The path x takes here its values in R d . Variants of the Cauchy-Lipschitz theorem gives the wellposed character of this equation for an absolutely continuous control, and L.C. Young extended this analysis to controls that are α-Hölder, for α ą 1 2 ; the solution path is then a continuous function of the control h P C α pr0, 1s, R q, under proper regularity and boundedness conditions on F. Nothing better than that can be done in a deterministic setting in the Hölder class, on account of the fact that since the solution path x t is expected to be no better than α-Hölder, so is Fpx t q, so the equation involves making sense of the product Fpx t q 9 h t of an α-Hölder function with an pα´1q-Hölder distribution, either directly or in its integral form. It is known that no such product can be defined as a continuous function of its two arguments when the Hölder regularity exponents add up to a nonpositive real number -see e.g. [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]. Lyons' deep insight was to realize that what really controls the dynamics in (1.1) is not the path h, but rather the data of the path together with a number of its iterated integrals ż h i s dh j s , ij rďs h i r dh j r dh k s , . . . for all possible indices 1 ď i, j, k, ¨¨¨ď . The rougher the control h is, the more iterated integrals you need. This can be understood from the fact that these iterated integrals are the coefficients that appear in a Taylor expansion of the solution to equation (1.1) when the control is smooth, and this leads to the notion of solution adopted in [START_REF] Davie | Differential equations driven by rough paths: and approach via discrete approximations[END_REF][START_REF] Bailleul | Flows driven by rough paths[END_REF] by Davie and Bailleul. There is no miracle though, and one cannot still make sense of these iterated integrals when the control is not sufficiently regular. Lyons' considerable feat was to extract from these 'non-existing' quantities the analytic and algebraic properties that they should satisfy and to work directly with objects enjoying these properties as new controls. These are the weak geometric Hölder p-rough paths that we encounter below. We refer the reader to the gentle introductions [START_REF] Caruana | Differential equations driven by rough paths[END_REF][START_REF] Friz | A Course on Rough Paths[END_REF][START_REF] Bailleul | A flows-based approach to rough differential equations[END_REF] for different points of view on rough differential equations; one can learn everything from scratch in the first 19 pages of [START_REF] Bailleul | Flows driven by rough paths[END_REF].

b) Weak geometric Hölder p-rough paths and rough differential equations -We refer the reader to [START_REF] Lyons | Differential equations driven by rough signals[END_REF][START_REF] Baudoin | Diffusion Processes and Stochastic Calculus[END_REF][START_REF] Bailleul | Flows driven by rough paths[END_REF] for basics on rough paths and recall all we need in this section. Pick an integer p ě 1. Denote by pe i q i"1.. the canonical basis of R , and by T rps " À i"1 pR q bi the truncated tensor algebra over R ; it is equipped with the Lie bracket operation ra, bs :" ab ´ba, and endowed with a norm }a} :"

rps ÿ i"1 |a i | 1{i ,
for a ": ' rps i"1 a i ; denote by pa I q IP 1, k ,0ďkďrps the coordinates of a generic element a of T rps in the canonical basis of T rps . We sometimes write a " pa i q i"1..rps instead of a " ' 

}X i ts } ď O `|t ´s| i{p ˘.
The archetype of a weak geometric Hölder p-rough path is given by the canonical lift of a smooth R -valued path h under the form

H t :" ˜1, h t ´h0 , ż t 0 ph u 1 ´h0 q dh u 1 , . . . , ż 0ďu rps 﨨¨ďu 1 ďt dh u rps ¨¨¨dh u 1 ¸; (1.2)
it can be seen, after Chen [START_REF] Chen | Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula[END_REF], that H takes values in G rps and that

H ts :" H ´1 s H t " ˜1, h t ´hs , ż t s ph u 1 ´h0 q dh u 1 , . . . , ż sďu rps 﨨¨ďu 1 ďt dh u rps ¨¨¨dh u 1 ¸.
Denote by 1, the set of integers between 1 and . Define inductively on the size of the tuple J :" ti 1 , Iu P 1, k`1 , the element e rJs " " e i 1 , e rIs ‰ of g rps . Given 0 ď s ď t ď T , set

Λ ts :" log X ts " ÿ IP 1, k 0ďkďrps 
Λ I ts e rIs P g rps .

Let F " `V1 , . . . , V ˘stand for a collection of smooth enough vector fields on R d , and X stand for a weak geometric Hölder p-rough path over R . There are several definitions of a solution to the rough differential equation dz t " Fpz t q dX t .

(1.3) Besides Lyons' original definition [START_REF] Lyons | Differential equations driven by rough signals[END_REF] and Gubinelli's formulation in terms of controlled paths [START_REF] Gubinelli | Controlling rough paths[END_REF], Davie gave in [START_REF] Davie | Differential equations driven by rough paths: and approach via discrete approximations[END_REF] a formulation of a solution in terms of Taylor expansion for the time increment of a solution. We identify freely a vector field to a first order differential operator via the expression

V i f " pDf qpV i q
for any C 1 function f on R d . For a tuple I " pi 1 , . . . , i k q P 1, k , we write |I| :" k, and define a k th order differential operator setting

V I " V i 1 ¨¨¨V i k , that is to say V I f " V i 1 `¨¨¨pV i k f q ˘.
With a slight abuse of notation, we write V I pxq for `VI Id ˘pxq. An R d -valued path pz t q 0ďtďT defined on some finite time interval r0, T s is a solution to the rough differential equation (1.3) in the sense of Davie if one has

z t " z s `ÿ I;|I|ďrps X I ts pV I qpz s q `O`| t ´s| a ˘, (1.4) 
for any 0 ď s ď t ď T , for some exponent a ą 1. The function Op¨q is allowed to depend on F. Two paths satisfying that condition with different exponents a, a 1 ą 1 coincide if they start from the same point. This definition is a priori not well suited to make sense of a solution to a rough differential taking values in a manifold -an expression like m `V pmq, for a point m of a manifold M and a vector V pmq P T m M , has for instance no intrinsic meaning. Bailleul gave in [START_REF] Bailleul | Flows driven by rough paths[END_REF] a more general notion of solution to a rough differential equation by requiring from a potential solution that it satisfies the estimate f pz t q " f pz s q `ÿ I;|I|ďrps X I ts pV I f qpz s q `Of `|t ´s| a ˘, for any real-valued sufficiently regular function f defined on the state space. The function O f p¨q is allowed to depend on f . The exponent a that appears here may be different from the exponent that appears in equation (1.4); this makes no difference as long as a ą 1, as noted above. This definition makes perfect sense in a manifold setting, and taking f to be a coordinate function in the above equation recovers the notion of solution in the sense of Davie.

c) Main result -Cass and Weidner proved in Theorem 5.3 of their recent work [START_REF] Cass | Tree algebras over topological vector spaces in rough path theory[END_REF] that the two notions are actually equivalent using some deep insights from algebra based on the use of Grossman-Larson and Connes-Kreimer Hopf algebras. That point can be proved by elementary means. We assume as usual that the vector fields V i in (1.3) are C γ , for some γ ą p.

Theorem -An R d -valued path z is a solution to the rough differential equation (1.3) in the sense of Davie if and only if it is a solution of that equation in the sense of Bailleul.

Proof -We only need to prove that solutions to equation (1.3) in Davie' sense are solutions in Bailleul' sense. Given a globally Lipschitz vector field V on R d , we denote by exppV q the time 1 map of the differential equation

9 y u " V py u q,
that associates to x the value at time 1 of the solution to the equation started from x. Also, define inductively on the size of the tuple ti 1 , Iu P 1, k`1 , the vector fields

V rti 1 ,Ius :" " V i 1 , V rIs ‰ ,
starting with V ris :" V i . Given 0 ď s ď t ď T , recall we write Λ ts for log X ts ; this is an element of g rps . It is proved in Proposition 9 of [START_REF] Bailleul | Flows driven by rough paths[END_REF] that one has

› › › › › › exp ¨ÿ I;|I|ďrps Λ I ts V rIs '´!Id `ÿ I;|I|ďrps X I ts pV I q ) › › › › › › L 8 ď O ´|t ´s| γ p ¯(1.5)
for a Op¨q depending only on the vector fields V i . (See also [START_REF] Boutaib | Dimension-free Euler estimates of rough differential equations[END_REF] for a similar statement.) A path z is thus a solution to the rough differential equation (1.3) in the sense of Davie if and only if

z t " exp ¨ÿ I;|I|ďrps Λ I ts V rIs 'pz s q `O`| t ´s| a 1 ˘,
for some exponent 1 ă a 1 ď γ p . Let y stand now for a solution path to the ordinary differential equation 9 y u " ÿ I;|I|ďrps Λ I ts V rIs py u q, started from z s at time 0. We use in the computation below the notation O `|t ´s| a 1 for a function whose value may change from line to line. For a γ-Hölder real-valued function f on R d one has

f pz t q " f py 1 q `O`| t ´s| a 1 " f pz s q `ż 1 0 d du f py u q du `O`| t ´s| a 1 " f pz s q `ÿ |I 1 |ďrps Λ I 1 ts ż 1 0 V I 1 py u 1 q du 1 `O`| t ´s| a 1 " f pz s q `ÿ |I 1 |ďrps Λ I 1 ts V I 1 pz s q `ÿ |I 1 |ďrps,|I 2 |ďrps |I 1 |`|I 2 |ďrps ż 1 0 V I 2 V I 1 py u 2 q du 2 du 1 `O`| t ´s| a 1 ˘,
and, after repeating rps times the same computation giving a function as the integral of its derivative, one eventually has

f pz t q " f pz s q `rps ÿ k"1 1 k! Λ I 1 ts ¨¨¨Λ I k ts `VI k ¨¨¨V I 1 ˘pz s q `O`| t ´s| a 1 " f pz s q `ÿ I;|I|ďrps X I ts pV I f qpz s q `Of `|t ´s| a 1 ˘,
from the fact that Λ ts " logX ts . We repeat that computation in Section 2 in a more general setting.

The following remarks emphasize the robust character of the above proof.

' One can weaken the regularity assumptions on the vector fields V i by only requiring that they are C rγs in the usual sense and the rγs-derivative of V i is pγ ´rγsq-Hölder continuous, without requiring that the V i or their derivatives be bounded. Indeed, given a solution z of (1.3) in the sense of Davie, and a time s, the classical Cauchy Lipschitz theory ensures that exp ´řI;|I|ďrps Λ ts V rIs ¯pz s q is well-defined for t close enough to s, possibly depending on z s .

' For a non-necessarily Hölder weak geometric p-rough path X controlled by a general control wps, tq rather than by |t ´s| 1{p , one replaces pt ´sq 1{p by wps, tq in the definitions of a solution to a rough differential equation driven by X, and requires in both definitions that the remainder is of order wps, tq ap , for some exponent a ą 1. The proof of Theorem 1 remains the same. The equivalence problem for the different definitions of a solution to a rough differential equation is further explored in the very recent work [START_REF] Brault | The nonlinear sewing lemma II: Lipschitz continuous formulation[END_REF] of Brault and Lejay.

' Let E stand for a Banach space. For dynamics driven by an E-valued rough paths, following [START_REF] Cass | On the integration of weakly geometric rough paths[END_REF] and [START_REF] Cass | Tree algebras over topological vector spaces in rough path theory[END_REF], one needs to define T pnq pEq as the completion of the truncated algebraic tensor algebra with respect to a system of cross (semi)norms.

One then defines the n-step free Lie algebra over E as the closure in T pnq pEq of the algebraic free Lie algebra. The n-step free nilpotent Lie group is then indeed the image by the exponential map of the closed Lie algebra. An appropriate formalism where vector fields are indexed by the elements of E is required, as in [START_REF] Bailleul | Flows driven by Banach space valued rough paths[END_REF][START_REF] Boutaib | Dimension-free Euler estimates of rough differential equations[END_REF] or [START_REF] Cass | Tree algebras over topological vector spaces in rough path theory[END_REF]. Identity (1.5) is proved in this setting in [START_REF] Bailleul | Flows driven by Banach space valued rough paths[END_REF] by elementary means similar to their finite dimensional analogues. (We erronously worked in the non-complete versions of the Lie and truncated tensor algebras in [START_REF] Bailleul | Flows driven by Banach space valued rough paths[END_REF]. The complete setting should be adopted, and nothing is changed to the story told in [START_REF] Bailleul | Flows driven by Banach space valued rough paths[END_REF] in this extended setting. Thanks to T. Cass for pointing this out.)

' One of the nice points of Cass and Weidner's work [START_REF] Cass | Tree algebras over topological vector spaces in rough path theory[END_REF] is the fact that they can also handle differential equations driven by a more general notion of rouhg path called branched rough paths. In a finite dimensional setting, one can appeal to Hairer and Kelly's result [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF] stating that a solution to a rough differential equation driven by a branched rough path over R is also the solution to a differential equation driven by a weak geometric rough path over a larger space R 1 , with driving vector fields built from the initial V i . The equivalence of the two notions of solution for equations driven by weak geometric rough paths implies the equivalence of the two notions of solution for the equation driven by a branched rough path, since the Taylor expansion of f py t q from the branched rough path and from the weak geometric rough path point of views coincide, by Theorem 5.8 in [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF]. We give a self-contained proof of the equivalence of a Davie-type and Bailleul-type notion of a solution to a rough differential equation driven by a branched rough path in Section 2.

-Branched rough paths and their associated flows in a nutshell

We prove in this section the following analogue of Theorem 1.

Theorem -An R d -valued path z is a solution to a rough differential equation driven by a branched rough path in the sense of Davie if and only if it is a solution of that equation in the sense of Bailleul.

Theorem 2 gives an alternative proof of Theorem 5.3 of [START_REF] Cass | Tree algebras over topological vector spaces in rough path theory[END_REF] in the setting of dynamics driven by branched rough paths. We include in this section a short self-containted introduction to finite dimensional branched rough paths before proving Theorem 2 in Section 2.2. We refer to Gubinelli's original paper [START_REF] Gubinelli | Ramification of rough paths[END_REF] and Hairer and Kelly's paper [START_REF] Hairer | Geometric versus non-geometric rough paths[END_REF] for alternative accounts on branched rough paths in a finite dimensional setting, and to [START_REF] Cass | Tree algebras over topological vector spaces in rough path theory[END_REF] for an account of the theory in an infinite dimensional setting.

What are branched rough paths good for? Together with Equation (1.2) giving the lift of a smooth R -valued path to the rps-step free nilpotent Lie group, the definition of a weak geometric rough path X makes it clear that the higher order levels of X play the role of the non-existing integrals ş X i dX j , ť X i dX j dX k , etc. The archetypal example of a non-smooth weak geometric p-rough path is given by realizations of the Brownian rough path B " pB, Bq, for 2 ă p ă 3, defined by B jk ts :"

ż t s pB u ´Bs q ˝dB u .
Note the use of Stratonovich integration. If one defines instead the iterated integral B with an Itô integral, the corresponding object B no longer takes values in the rps-step free nilpotent Lie group G rps . This is related to the fact that Itô integration procedure does not satisfy the usual chain rule. A different algebraic setting is needed to handle the integration theory of such controls; this is precisely what branched rough paths provide us with. The name "branched rough paths" come from the fact that these objects are indexed by trees.

-Branched rough paths

1. The starting point -Consider an ordinary controlled R d -valued differential equation

9 x r " ÿ i"1 V i px r q 9 h i r
driven by some smooth R -valued path h. Given any tuple I P 1, k , write H I ts for the iterated integral ş sďs 1 﨨¨ďs k ďt dh i 1 s 1 . . . dh i k s k . Branched rough path appears naturally if one expands in the Taylor formula

f px t q " f px s q `ÿ |I|ďk 0 H I ts pV I f qpx s q `O`| t ´s| k 0 `1˘( 2.1)
all the iterated derivatives V I f in terms of the derivatives of its different terms. We have for instance

V 1 `V2 f ˘pxq " pD x f q `pV 1 V 2 qpxq ˘`pD 2 x f q `V1 pxq, V 2 pxq ˘. (2.
2) The best way to represent the resulting sum in (2.1) is to index it by labelled rooted trees. Let T stand for the set of possibly empty rooted labelled trees, with labels in t1, . . . , u. Given some trees τ 1 , . . . , τ k in T and a P t1, . . . , u, denote by rτ 1 . . . τ k s a the element of T obtained by attaching the trees τ 1 , . . . , τ k to a new root with label a. Any element of T can be constructed in this way starting from the empty tree 1. We denote by |τ | the number of vertices of a tree τ , and define its symmetry factor σpτ q recursively

σ `rτ n 1 1 . . . τ n k k s a ˘" n 1 ! . . . n k ! σpτ 1 q n 1 . . . σpτ k q n k
, where τ 1 , . . . , τ k are distinct trees with respective multiplicities n 1 , . . . , n k . This number does not depend on the label a. Denote by xT y the real vector space spanned by T and by xT y ˚its algebraic dual, identified with xT ˚y, for some copy T ˚of T .

Set V p1 ˚q :" 0. and define recursively, for a P 1, and τ 1 , . . . , τ n in T , vector fields on R d indexed by dual trees V p' å q :" V a , V `prτ 1 . . . τ n s a q ˚˘:" 1 σ `rτ 1 . . . τ n s a ˘pD n V a q `V pτ 1 q, . . . , V pτ n q ˘; (2.3)

vector fields on R d are seen as first order differential operators. We define differential operators indexed by dual forests setting 

V `τ 1 ¨¨¨τ n ˘f " 1 σ `τ1 . . . τ n ˘`D n f ˘`V pτ 1 q, . . . , V pτ n q ˘, (2.4 
f px t q " f px s q `ÿ ϕPF ;|ϕ|ďk 0 H ϕ ts `V pϕ ˚qf ˘px s q `O`| t ´s| k 0 `1˘.
(2.5)

The 

H τ i us dh a u ; (2.6) 
formulas (2.5) and (2.6) go back to Cayley' seminal work [START_REF] Cayley | On the analytical forms called trees[END_REF]. In the same way as the family of iterated integrals of h lives in an algebraic structure, the free nilpotent Lie group, the family of all H τ also lives in some algebraic structure, the dual of a Hopf algebra. We refer the reader to Sweedler's little book [START_REF] Sweedler | Hopf algebras[END_REF] for the basics on Hopf algebras; all that we need to know is elementary and recalled below.

2. Hopf algebraic structure -Let pF, ¨q stand for the set of commuting real-valued polynomials with indeterminates the elements of T and polynomial multiplication operation; equip the algebraic tensor product F b F with the induced product pa b bqpc b dq = pacq b pbdq. We define a coproduct ∆ on F as follows. Given a labelled rooted tree τ , denote by Subpτ q the set of subtrees of τ with the same root as τ . Given such a subtree s, we obtain a collection τ 1 , . . . , τ n of labelled rooted trees by removing s and all the adjacent edges to s from τ . Write τ zs for the monomial τ 1 . . . τ n . One defines a linear map ∆ : T Ñ F b F by the formula ∆τ " ÿ sPSubpτ q pτ zsq b s, and extend it to F by linearity and by requiring that it is multiplicative ∆pτ 1 . . . τ n q :" ∆pτ 1 q . . . ∆pτ n q. This coproduct is coassociative, p∆ b Idq∆ " pId b ∆q∆, as it should be in any Hopf algebra. Given a real-valued map Y on T , we extend it into an element of the dual space

F ˚of F setting Y τ 1 ...τn :" xY, τ 1 ¨¨¨τ n y :" n ź i"1 Y τ i ,
for a monomial τ 1 ¨¨¨τ n , and by linearity. One defines a convolution product on F ˚setting pY ‹ Xq τ :" pY b Xqp∆τ q "

ÿ sPSubpτ q Y τ zs X s , (2.7) 
for a labelled rooted tree τ . The third ingredient needed to define the Hopf algebra structure of F is an antipode S, that is a map S : F Ñ F inverting ∆ in the sense that MpId b Sq∆ " MpS b Idq∆ " Id, where M stands for the multiplication map Mpa b bq " ab P F. An explicit formula for S was first obtained in [START_REF] Connes | Hopf algebras, renormalization and noncommutative geometry[END_REF]; see [START_REF] Chartier | Algebraic structures of B-series[END_REF] for a simple and enlighting proof. From its definition, the inverse a ´1 of any element a of F is given by the formula a ´1 " S ˚a, where S ˚is the dual map in F ˚of the antipode map in F, that is `a´1 , τ ˘" `a, Sτ ˘.

Pick an integer N ě 0. Write F pkq for the vector space spanned by the monomials pτ 1 . . . τ n q ˚, with 

ř n i"1 |τ i | " k,

;

(2.10)

we also define a distance dpX, Yq " }X ´Y} on the nonlinear set of Hölder branched p-rough path. Given 0 ď s ď t ď T and a Hölder branched p-rough path X defined on the time interval r0, T s, we define an element of xT ďrps y setting

Λ ts :" log ‹ X ts ;
by definition exp ‹ pΛ ts q " X ts P G rps .

4. Rough differential equations driven by Hölder branched p-rough paths -Let X be a Hölder branched p-rough path over R , and F " pV 1 , . . . , V q be γ-Hölder vector fields on R d , for γ ą p. A path z in R d is said to be a solution path to the rough differential equation dz t " Fpz t q dX t (2.11) in the sense of Davie if one has

x t " x s `ÿ ϕPF ;|ϕ|ďrps `V pX ts qId ˘px s q `O`| t ´s| a ˘.
for some constant a ą 1. (This is actually Gubinelli's definition [START_REF] Gubinelli | Ramification of rough paths[END_REF] rather than Davie's definition.) The path z is a solution to Equation (2.11) in the sense of Bailleul if one has

f px t q " f px s q `ÿ ϕPF ;|ϕ|ďrps `V pX ts qf ˘px s q `O`| t ´s| a ˘,
for some constant a ą 1, for every real-valued function γ-Hölder function f on R d . (The Op¨q term is allowed to depend on f .) Theorem 2 states the equivalence of these two notions of definition. Conditions for the existence of a unique solution are given in Gubinelli' seminal paper [START_REF] Gubinelli | Ramification of rough paths[END_REF].

-Proof of Theorem 2

We only need to prove that a solution in Davie' sense is a solution in Bailleul' sense. We proceed as in Section 1 and prove that the result comes from a Taylor expansion property satisfied by the time 1 map of an approximate dynamics and the morphism property stated in Lemma 3.

Recall we write Λ ts for log ‹ X ts . Given some times 0 ď s ď t ď T , let µ ts stand for the well-defined time 1 map associated with the ordinary differential equation 9 y u " V `Λts ˘py u q.

(2.12) (The assumption that γ ą p and the vector fields V i are γ-Lipschitz ensures that all the vector field V pΛ ts q is globally Lipscthiz continuous.)

5. Lemma -There is a constant a ą 1 with the following property. For any γ-Hölder real-valued function f on R d , one has

f ˝µts " f `V `Xts ˘f `Of `|t ´s| a ˘,
for a remainder term O f `|t ´s| a ˘that may depend on f , and that has a C 1 -norm bounded above by a constant multiple of |t ´s| a .

Proof -The Taylor expansion property follows from the morphism property of the V -map from Lemma 3, writing

f py 1 q " f py 0 q `ż 1 0 V pΛ ts qf ( py s 1 q ds 1 " f py 0 q ` V pΛ ts qf ( pxq `ż 1 0 ż s 1 0 ! V pΛ ts qV `Λts ˘f ) py s 2 q ds 2 ds 1 " f py 0 q ` V pΛ ts qf ( pxq `ż 1 0 ż s 1 0 ! V `Λ‹2
ts ˘f ) py s 2 q ds 2 ds 1 " f py 0 q ` V pΛ ts qf ( pxq `1 2

! V `Λ‹2 ts ˘f ) pxq `ż 1 0 ż s 1 0 ż s 2 0 ! V pΛ ‹3 ts qf
) py s 3 q ds 3 ds 2 ds 1 and, by induction, f py 1 q " f py 0 q `rps ÿ k"1

1 k! V `Λ‹k ts ˘f ( pxq `ż ! V `Λ‹prps`1q
ts ˘f ) py rps`1 q 1 0ďs 1 﨨¨ďs rps`1 ds " V pX ts qf ( py 0 q `Θf `|t ´s| a ˘`ż ! V `Λ‹prps`1q ts ˘f ) py rps`1 q 1 0ďs 1 﨨¨ďs rps`1 ds

The Θ f `|t ´s| a ˘term comes from the fact that Λ P H N and X P H N are built from one another using the restriction of the maps log ‹ and exp ‹ , so X ts P H N coincides with ř N i"0 1 n! Λ ‹n ts up to some terms in HzH N of size O `|t´s| a ˘. The conclusion follows then from that explicit representation of the Taylor remainder.

It follows from Lemma 5 that a path z is a solution in Davie' sense iff z t " exp `V pΛ ts q ˘pz s q `O`| t ´s| a 1 ˘, for some exponent 1 ă a 1 ď γ p . The end of the proof of Theorem 2 is then identical to the proof of Theorem 1. `εId tu ˝µus . One then knows from Theorem 1 in [START_REF] Bailleul | Flows driven by rough paths[END_REF] that the rough differential equation (2.11) has a unique solution flow, associated with the C 1 -approximate flow µ. This provides a direct proof that the rough differential equation (2.11) has a unique solution flow.

Remarks

2.

Here as in Section 1, working with Hölder rough paths or rough paths controlled by some more general control wps, tq does not make any difference. Working with branched rough paths over an infinite dimensional space E does not make any difference either, as long as one takes care of working with a symmetric system of cross seminorms generating the topology of E, and complete accordingly the different algebraic tensor spaces E bk , such as emphasized in [START_REF] Cass | Tree algebras over topological vector spaces in rough path theory[END_REF], Section 3.

  ) with σ `τ1 . . . τ n ˘:" σ `rτ 1 . . . τ n s a ˘, for any 1 ď a ď . Set |τ 1 ¨¨¨τ n | " |τ 1 | `¨¨¨`|τ n |, and denote by ϕ " τ 1 ¨¨¨τ n , a generic forest, and by F the set of these forests. In those terms, Equation (2.1) rewrites

  and denote by π ďN the natural projection from F ˚to the quotient space F ˚z À kěN `1 F pkq . Set π ďN pF ˚q ": F ďN .The image of exp ‹ pxT ˚yq by π ďN is then diffeomorphic to the real vector space xT ďN y spanned by π ďN pT ˚q; it is a Lie group when equipped with the operation π ďN ˝‹, which we still denote by ‹. Write G N Ă F ďN for that Lie group; it plays for branched rough paths the role that the rps-step free nilpotent Lie group plays for weak geometric Hölder p-rough paths.Denote by ' å the element of the dual canonical basis, dual to ' a . It is elementary to check that the F ˚-valued function H ts " pH τ ts q τ PT , |τ |ďN associated with a smooth Rvalued path h, as defined in (2.6), considered as a function of the time parameter t, satisfies in π N pF ˚q the ordinary differential equation this implies that H ts is an element of G pN q for all times t ě s, and thatH ts " H ´1 s H t ,with H r :" H r0 , for all r ě 0.Definition -Let 2 ă p. A Hölder branched p-rough path on r0, T s is a G for all forests ϕ " τ 1 . . . τ k with |ϕ| :" ř k i"1 |τ i | ď rps, and X ts :" X ´1 s ‹ X t .

		dH ts "	ÿ	t H ts ‹ `'å dh a	˘;
				a"1
					rps -valued path
	X such that	sup 0ďsătďT	|t ´s| |X ϕ ts | |ϕ| p	ă 8,
	The norm of X is defined as			
	}X} :"	max ϕPF ; |ϕ|ďrps	sup 0ďsătďT	|X ϕ ts | |ϕ| |t ´s| p

  -1. Write ε f ts for the remainder f ˝µts ´V pX ts qf . One can see directly that the µ ts form a C 1 -approximate flow from the identity µ tu ˝µus " V pX tu qId ( ˝µus `εId tu ˝µus " V pX us qV pX tu qId `εV pXtuqId

			us	`εIdtu ˝µus
	" V pX ts qId `εV pXtuqId us	`εId tu ˝µus
	" µ ts	`εId

ts

`εV pXtuqId us
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Denote by θ " τ 1 . . . τ n , with τ i P T , a generic element of the canonical basis B of F. Write pθ ˚qθPB for the dual canonical basis and use bold letters to denote generic elements of F ˚. For an element a of F ˚of the special form a " ř τ 1 PT a τ 1 pτ 1 q ˚, with a τ 1 P R, we have for instance

where the inside sum is over the set of subtrees τ 1 of τ with the same root as τ , and such that τ zτ 1 is a subtree τ 2 of τ . Note in particular that a ‹ a is again of the form ř τ 1 PT b τ 1 pτ 1 q ˚. More generally, we have for such an a P F å‹n "

where the inside sum is over the set of disjoint rooted subtrees τ 1 , . . . , τ n of τ , with respective roots α 1 , . . . , α n such that α i`1 is a descendant of α i in τ , for all 1 ď i ď n ´1, and any node of τ is in one of the subtrees τ i . The convolution product (2.7) is closely related to the identities (2.3) and (2.4) defining the differential operators V pτ ˚q and V pτ 1 ¨¨¨τ n q.

The following statement is proved by induction on n `n1 .

3. Lemma -For any dual forests τ 1 ¨¨¨τ n and σ 1 ¨¨¨σ n1 , one has

3. Hölder branched p-rough paths -We define a Lie bracket on F ˚setting ra, bs ‹ :" a ‹ b ´b ‹ a, for which the real vector space xT ˚y spanned by the dual trees is a Lie algebra. The exponential map exp ‹ : F ˚Ñ F ˚and the logarithm map log ‹ : F ˚Ñ F ˚are defined by the usual series

with the convention a ‹0 " 1 ˚, where 1 ˚denote the dual of the empty tree. It is clear from the above formula for a ‹n that we have

with the same inside sum as in (2.8). Formula (2.8) justifies the convergence of the these sums, in the sense that `exp ‹ paq, θ ˘and `log ‹ pbq, θ ˘are actually finite sums for any monomial θ, provided pa, 1q " 0 -the pairing p¨, ¨q is a pairing between F ˚and F. Setting F 0 :" a P F ˚; pa, 1q " 0 ( and F 1 :" a P F ˚; pa, 1q " 1 ( , one can see that exp ‹ : F 0 Ñ F 1 and log ‹ : F 1 Ñ F 0 are reciprocal bijections; the following result can be seen as a consequence. (See Sweedler's above mentioned book, or Reutenauer's book [START_REF] Reutenauer | Free Lie algebras[END_REF], Theorem 3.2.) 4. Theorem -The pair `exp ‹ pxT ˚yq, ‹ ˘is a group.