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Non-explosion criteria for rough differential
equations driven by unbounded vector fields

I. BAILLEUL
1
and R. CATELLIER

2

Abstract. We give in this note a simple treatment of the non-explosion problem for rough
differential equations driven by unbounded vector fields and weak geometric rough paths of
arbitrary roughness.

1 – Introduction

Although rough paths theory has now been explored for twenty years, a few elementary
questions are still begging for a definite answer. We consider the existence problem for
the local time and occupation time of solutions to rough differential equations as the main
open problem, in relation with reflection problems. At a more fundamental level, the
question of global in time existence of solutions of a rough differential equation

dzt “ Fpztq dXt, (1.1)

under relaxed boundedness assumptions on the vector fields F “ pV1, . . . , Vℓq has not been
clarified so far. Given a weak geometric p-rough path X defined on some time interval
r0, T s, the preceding equation is known to have a solution defined on the whole of r0, T s
if the driving vector fields Vi are Cγ

b , for some regularity exponent γ ą p; see for instance
T. Lyons’ seminal paper [21] or the lecture notes [7]. One would ideally like to relax these
boundedness assumptions to some linear growth assumption, but the following elementary
counter-examples of Gubinelli and Lejay [19] shows that this is not sufficient. Consider
the dynamics (1.1) on R2, with F “ pV1, V2q, and vector fields V1px, yq “ px sinpyq, xq and
V2px, yq “ 0, driven by the non-geometric pure area rough path Xt “ 1` tp1b1q. Writing
zt “ pxt, ytq, one sees that z is actually the solution of the ordinatry differential equation

9zt “ p 9xt, 9ytq “
`
xt sinpytq

2 ` x2t cospytq, xt sinpytq
˘
.

The solution started from an initial condition of the form pa, 0q, with a positive, has
constant null y-component and has an exploding x-component since 9xt “ x2t .

The non-explosion problem was explored in a number of works for differential equations
driven by p-rough paths, for 2 ď p ă 3, especially in the works of Davie [13] and Lejay
[20, 19]. Davie provides essentially the sharpest result in the regime 2 ď p ă 3.

‚ To make it simple, assume F is C3 and has linear growth:
ˇ̌
Fpxq

ˇ̌
À |x|. Theorem

6.1 (a) in [13] provides a non-explosion criterion in terms of the growth rate of D2F
ˇ̌
D2F pxq

ˇ̌
ď hp|x|q.

1I.Bailleul thanks the U.B.O. for their hospitality, part of this work was written there.
2R. Catellier acknoledges the support of the Lebesgue Centre.
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There is no explosion if hprq À 1

r , and

ż 8 ˆ
rγ´2

hprq

˙ p´1

γ´1 dr

rp
“ 8.

Davie’s criterion is shown to be sharp in the class of all p-rough paths, 2 ď p ă 3,
with an example of a rough differential equation where explosion can happen for
some appropriate choice of a non-weak geometric rough path in case the criterion
is not satisfied – see Section 6 in [13]. The limit case for Davie’s criterion is

hprq “ Op1q
r . We essentially recover that bound.

‚ Lejay [20] works with Banach space valued weak geometric p-rough paths, with
2 ď p ă 3. In the setting where the vector fields Vi are C3 with bounded derivates
and are required to have growth rate

ˇ̌
Vipxq

ˇ̌
À gp|x|q, he shows non-explosion of

solutions to equation (1.1) under the condition that
ř

k
1

gpkqp diverges. The limit

case is gprq » r
1

p .

‚ The analysis of Friz and Victoir [17], Exercice 10.56, gives a criterion comparable
to ours, with an erronous proof. They use a pattern of proof that is implemented
in a linear setting and cannot work in a nonlinear framework as it bears heavily
on a scaling argument – see the proof of Theorem 10.53. One can see part of the
present work as a correct or alternative proof of their statement.

We identify in the sequel a vector field V on Rd with the first order differential operator
f ÞÑ pDfqpV q. For a tuple I “ pi1, . . . , ikq P t1, . . . , ℓuk, and vector fields V1, . . . , Vℓ, we
define the differential operators

VI :“ Vi1 ¨ ¨ ¨Vik , and VrIs :“
”
Vi1 , . . . , rVik´1

, Vik s
‰ı
,

under proper regularity assumptions on the Vi. (Note that the operator VrIs is actually
of order one, so VrIs is a vector field.) The local increment zt ´ zs of a solution z to the
rough differential equation (1.1) is known to be well-approximated by the time 1 value of
the ordinary differential equation

y1
r “

rpsÿ

k“1

ÿ

IPt1,¨¨¨ ,ℓuk

Λk,I
ts VrIs

`
s, yrpxq

˘
, (1.2)

where Λts :“ logXts, and 0 ď r ď 1 – see [3] or [6] for instance. The following simplified
version of our main result, Theorem 6, actually gives a non-explosion result in terms of
growth assumptions on the vector fields VrIs that appear in the approximate dynamics
(1.2). Pick an arbitrary p ą 1 and a weak geometric p-rough path X.

1. Theorem – There is no explosion for the solutions of the rough differential equation (1.1)
is the functions Vi1 ¨ ¨ ¨ VinId are C2 with bounded derivatives, for any 1 ď n ď rps and any
tuple pi1, . . . , inq P !1, ℓ"n.

Theorem 6 is sharper than that statement as it involves the vector fields VrIs – recall
Example 3 of [19]. In the case where 2 ď p ă 3, our non-explosion criterion becomes

ˇ̌
D2

xF
ˇ̌
_

ˇ̌
D3

xF
ˇ̌

À
1

1 ` |x|
,

for a multiplicative implicit constant independent of x P Rd. We mention here that we have
been careful on the growth rate of the different quantities but that one can optimize the
regularity assumptions that are made on the vector fields Vi to get slightly sharper results.

ismael
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This explains the discrepancy between Davie’s optimal criterion in the case 2 ď p ă 3 and
our result. These refinements are not needed for the applications [4]; we leave them to
the reader. Note also here that one can replace Rd by a Banach space and give versions
of the statements involving infinite dimensional rough paths, to the price of using slightly
different notations, such as in [2]. There is no difference between the finite and the infinite
dimensional settings for the explosion problem.

Our main result, Theorem 6, holds for dynamics (1.1) with a drift and time-dependent
vector fields. It is proved in Section 2 on the basis of some intermediate technical estimates
whose proof is given in Section 3. Theorem 6 holds for Hölder p-rough paths. A similar
statement holds for more general continuous rough paths, with finite p-variation, such as
proved in Section 4 with other corollaries and extensions.

Notations. We gather here a number of notations that are used throughout the paper.

‚ Given a positive finite time horizon T , we denote by ∆T the simplex tpt, sq P
r0, T s2 : 0 ď s ď t ď T u.

‚ We refer the reader to Lyons’ seminal article [21] or any textbook or lectures notes
on rough paths [22, 7, 17, 5, 1] for the basics on rough paths theory and simply
mention here that we work throughout with finite dimensional weak geometric

Hölder p-rough paths X “ 1‘X1 ‘ ¨ ¨ ¨ ‘Xrps, with values in
Àrps

i“0
pRℓqbi say, and

norm

}X} :“ max
1ďiďrps

sup
0ďsătďT

ˇ̌
Xi

ts

ˇ̌ 1
i

|t ´ s|
1

p

.

Note that if Λ “
`
0 ‘ Λ1 ‘ ¨ ¨ ¨ ‘ Λrps

˘
is the logarithm of the rough path X, we

have for all 0 ď s ď t ď T , all i P t1, ¨ ¨ ¨ , rpsu,
ˇ̌
Λi
ts

ˇ̌
Ài }X}i|t ´ s|

i
p

‚ Last, we use the notation a À b to mean that a is smaller than a constant times b,
for some universal numerical constant.

2 – Solution flows to rough differential equations

Pick α P r0, 1s. A finite dimensional-valued function f defined on Rd is said to have
α-growth if

sup
xPRd

ˇ̌
fpxq

ˇ̌
`
1 ` |x|

˘α ă `8.

Let V0 and V1, ¨ ¨ ¨ , Vd : r0, T s ˆ Rd Ñ Rd be time-dependent vector fields on Rd.

2. Assumption – Space regularity and growth. For any 1 ď n ď rps and for any tuple
I P t1, ¨ ¨ ¨ , ℓun,

‚ the vector fields V0ps, ¨q and VrIsps, ¨q are Lipschitz continuous with α-growth, and

their derivatives DV0ps, ¨q and DVrIs are C1
b pB,Bq, uniformly in time,

‚ for all indices 1 ď k1, ¨ ¨ ¨ , kn ď rps with
ř

ki ď rps, and all tuples Iki P t1, ¨ ¨ ¨ , ℓuki ,
the functions

V0ps, ¨qVrIn´1sps, ¨q ¨ ¨ ¨ VrI1sps, ¨qId and VrInsps, ¨q ¨ ¨ ¨ VrI1sps, ¨qId

are C2
b with α-growth, uniformly in time.
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One can trade in the above assumption some growth condition on the Vi against some
growth condition on its derivatives; this is the rationale for introducing the notion of
α-growth.

3. Assumption – Time regularity and growth. There exists some regularity exponents

κ1 ě 1`rps´p
p and κ2 ě rps

p with the following properties.

‚ One has

sup
xPBp0,Rq

sup
0ďsătďT

ˇ̌
V0pt, xq ´ V0ps, xq

ˇ̌

|t ´ s|κ1
À p1 ` Rqα,

‚ For all 1 ď n ď rps and 1 ď k1, ¨ ¨ ¨ , kn ď rps, with
řn

i“1
ki ď rps, for all tuples

Ii P t1, ¨ ¨ ¨ , duki , we have

sup
xPBp0,Rq

sup
0ďsătďT

ˇ̌
ˇVrInspt, ¨q ¨ ¨ ¨ VrI1spt, ¨qpxq ´ VrInsps, ¨q ¨ ¨ ¨ VrI1sps, ¨qpxq

ˇ̌
ˇ

|t ´ s|κ2
À p1 ` Rqα.

We assume that the derivative in x of the VrInspt, ¨q ¨ ¨ ¨ VrI1spt, ¨q also satisfies the previous
estimate.

Let X be an Rℓ-valued weak geometric Hölder p-rough path. Set Λts :“ logXts, for all
0 ď s ď t ď T , and denote by µts the time 1 map of the ordinary differential equation

y1
r “ pt ´ sqV0

`
s, yrpxq

˘
`

rpsÿ

k“1

ÿ

IPt1,¨¨¨ ,ℓuk

Λk,I
t,s VrIs

`
s, yrpxq

˘
(2.1)

that associates to x the value at time 1 of the solution path to that equation with initial
condition x. Note that Assumption 1 ensures that equation (2.1) is well-defined up to
time 1 . Following [3], we define a solution flow to the rough differential equation

dϕt “ V0pt,ϕtqdt ` Fpt,ϕtqdXt, (2.2)

where F :“ pV1, . . . , Vℓq, as a flow locally well-approximated by µ. Here, we take advantage
in this definition of some variant of the definition of [3] introduced by Cass and Weidner
in [10]. For a parameter a, the notation Ca stands for a constant depending only on a.

4. Definition – A flow ϕ : ∆T ˆ Rd ÞÑ Rd is said to be a solution flow to the rough
differential equation (2.2) if there exists an exponent η ą 1 independent of X, such that
one can associate to any positive radius R two positive constants CR,X and εX such that
one has

sup
xPBp0,Rq

ˇ̌
ϕtspxq ´ µtspxq

ˇ̌
ď CR,X |t ´ s|η, (2.3)

whenever |t ´ s| ď εX.

Note that we require the flow to be globally defined in time and space, unlike local flows
of possibly exploding ordinary, or rough, differential equations. The latter are only defined
on an open set of R` ˆ Rd depending on X. This definition differs from the corresponding
definition in [3] in the fact that εR is required to be independent of X. We first state a
local in time existence result for the flow, in the spirit of [3].

5. Theorem – Let the vector fields V0 and pV1, . . . , Vℓq satisfy Assumption 1 and Assump-
tion 2.
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‚ There exists a positive constant a1 such that for all R ą 0, and all pt, sq P ∆T with

|t ´ s|
1

p p1 ` Rq
α

rps`1

`
1 ` }X}

˘
ă a1, (2.4)

there is a unique flow ϕ : rs, ts2 ˆ Bp0, Rq Ñ Rd satisfying the estimate (2.3) with

η “
rps ` 1

p
, and CR,X “ a2p1 ` Rqα

`
1 ` }X}

˘rps`1
,

for some universal positive constant a2. One writes ϕpXq to emphasize the depen-
dence of ϕ on X.

‚ Given a weak geometric rough path X and ps, tq P ∆T and R such that condition
(2.4) holds, then ϕpX1q is well-defined on rs, ts ˆBp0, Rq for X1 sufficiently close to
X, and ϕpX1q converges to ϕpXq in L8

`
rs, ts ˆ Bp0, Rq

˘
as X1 tends to X.

One says that ϕ depends continuously on X in the topology of uniform convergence on
bounded sets. As you can see from the statement of Theorem 5, the quantity |t ´ s| is
only required in that case to be smaller than a constant depending on X and R, unlike
what is required from a solution defined globally in time. The proof of Theorem 5 mimics
the proof of the analogue local in time result proved in [3]. As the proof of latter contains
typos that makes reading it hard, we give in Section 3 a self-contained proof of this result.

6. Theorem – Let V0 and pV1, . . . , Vℓq satisfy Assumption 1 and Assumption 2. There
exists a unique global in time solution flow ϕ to the rough differential equation (2.2).

‚ One can choose in the defining relation (2.3) for a solution flow

η “
1 ` rps

p
, εX “ c1

`
1 ` }X}

˘´p
, CR,X “ c2p1 ` Rqα

`
1 ` }X}

˘rps`1
,

for some universal positive constants c1, c2.

‚ One has for all f P C
rps`1

b and all |t ´ s| ď εX the estimate

sup
xPBp0,Rq

ˇ̌
ˇ̌f ˝ ϕt,spxq ´

!
fpxq ` pt ´ sqV0ps, ¨qf `

rpsÿ

k“1

ÿ

IPt0,¨¨¨ ,ℓuk

Xk,I
t,s VIps, ¨qf

)
pxq

ˇ̌
ˇ̌

À }f}
C

rps`1

b

p1 ` Rqαprps`1q
`
1 ` }X}

˘rps`1
|t ´ s|

rps`1

p .

When f “ Id, one can replace p1 ` Rqαprps`1q by p1 ` Rqα and }f}Cn
b

by 1 in the
previous bound.

‚ The map that associates ϕ to X is continuous from the set of weak geometric Hölder
p-rough paths into the set of continuous flows endowed with the topology of uniform
convergence on bounded sets.

‚ Finally, there exists two positive universal constants c3, c4 such that setting

N :“
”
c3

`
1 ` }X}

˘pı
,

one has for all pt, sq P ∆T ,

sup
xPBp0,Rq

ˇ̌
ϕs,tpxq ´ x

ˇ̌
À

$
’’’’&

’’’’%

p1 ` Rq

¨

˝
˜
1 ` c4

|t ´ s|
1

pN

p1 ` Rq1´α

¸ 1

1´α

´ 1

˛

‚, if α ă 1

p1 ` Rq|t ´ s|
1

p ec4N |t´s|
1
p
, if α “ 1.
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The non-trivial part of the proof consists in proving that one can patch together the
local flows contructed in Theorem 5 and define a globally well-defined flow. As this requires
a careful track of a number of quantities, we provide a proof of the technical results in
Section 3. Since it is the main contribution of this work, we also give a proof of this
theorem using some results of lemmas and propositions of Section 3.

Proof of Theorem 6 – Fix ps, tq P ∆T . For n ě 0 and 0 ď k ď 2n set tnk :“ k2´npt´sq`s
and µn

t,s :“ µtn
2n ,tn

2n´1
˝¨ ¨ ¨˝µtn

1
,tn
0
. Here is the makor input for the proof of the statement.

Proposition 16 below states the existence of universal positive constants c1 ă 1 and
c2 such that for

|t ´ s|
1

p
`
1 ` }X}

˘
ď cp1

we have for all n ě 0 the estimate

sup
xPBp0,Rq

ˇ̌
µn
tspxq ´ µtspxq

ˇ̌
ď c2 |t ´ s|

1`rps
p

`
1 ` }X}

˘rps`1
p1 ` Rqα. (2.5)

An elementary Gronwall type bound proved in Lemma 9 also gives the estimate

|µt,s| ď R ` c2p1 ` Rqα.

Putting those two bounds together, one gets the existence of a positive constant c
such that one has›››µtnk t

n
k´1

˝ ¨ ¨ ¨ ˝ µtn
1
tn
0

›››
L8pBp0,Rqq

ď R ` c p1 ` Rqα,

for all 0 ď k ď 2n ´ 1. Let n “ npRq be the least integer such that

2
´n 1

p p1 ` Rq
α

rps`1 |t ´ s|
1

p
`
1 ` }X}

˘
ď

a1

p1 ` 2cq
α

rps`1

.

This is the smallest integer such that for all the intervals ptnk , t
n
k`1

q satisfy the assump-
tion of Theorem 5, with starting point µtnk t

n
k´1

˝ ¨ ¨ ¨ ˝ µtn
1
tn
0

pxq and x P Bp0, Rq. Then,
we have for all m0, ¨ ¨ ¨ ,m2n´1 P N,

›››µm2n´1

tn
2n t

n
2n´1

˝ ¨ ¨ ¨ ˝ µm0

tn
1
tn
0

´ µts

›››
L8pBp0,Rqq

ď c1
ˇ̌
t ´ s

ˇ̌ 1`rps
p p1 ` Rqα

`
1 ` }X}

˘rps`1
.

Sending successively m2n´1, . . . ,m0 to 8 and using the continuity of ϕ with respect
to its Rd-valued argument gives

›››ϕtn
2n tn

2n´1
˝ ¨ ¨ ¨ ˝ ϕtn

1
tn
0

´ µts

››› ď c2
ˇ̌
t ´ s

ˇ̌1`rps
p p1 ` Rqα

`
1 ` }X}

˘rps`1
. (2.6)

Set, for x P Bp0, Rq,

ϕtspxq :“ ϕtn
2n tn

2n´1
˝ ¨ ¨ ¨ ˝ ϕtn

1
tn
0

pxq.

Splitting the intervals ptnk , t
n
k`1

q into dyadic sub-intervals, one shows that for all u P
rs, ts of the form u “ k2´N pt ´ sq ` s, one has

ϕt,u ˝ ϕu,spxq “ ϕt,spxq.

Finally, since the map
px, s, tq Ñ ϕtnk`1

,tnk
pxq

is a continuous for all 0 ď k ď 2n ´ 1, so is ϕ. This proves the first item of Theorem
6.

The second item is a byproduct of the bound of Equation (2.3) and Corollary 13
below. The third item of the statement is straightforward given that ϕ is constructed
from patching together local solution flows.
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Choose finally a positive constant c3 big enough such that setting

N :“

„
c3

`
1 ` }X}

˘p
ȷ
,

one has t´s
N ď εX and

`
1 ` }X}

˘
N

´ 1

p ď 1. Define also

ti :“
i

N
pt ´ sq ` s,

and R0 :“ 0 and
Ri :“ sup

xPBp0,Rq

ˇ̌
ϕtispxq ´ x

ˇ̌
,

for 1 ď i ď N . Note that

C|ti`1´ti|,}X} “
rpsÿ

i“1

ˆ
1 ` }X}

N
1

p

˙i

|t ´ s|
i
p À |t ´ s|

1

p ,

for a universal positive multiplicative factor. We thus have

ϕtispxq ´ x “ ϕtiti´1

`
ϕti´1spxq

˘
´ µtiti´1

`
ϕti´1spxq

˘

` µtiti´1

`
ϕti´1spxq

˘
´ ϕti´1spxq

` ϕti´1spxq ´ x,

and there is an absolute positive constant K such that

Ri ď Ri´1 ` Kp1 ` R ` Ri´1qα|t ´ s|
1

p ;

the bounds on ϕtspxq ´ x given in the statement follows from that relation. ◃

As a corollary of Theorem 6, one proves in Theorem 24 the differentiability of the
solution flow with respect to some parameters. This theorem will be of crucial importance
in the forthcoming work [4]; we state it here in a readily usable form.

7. Assumption – Let A be a Banach, parameter space and let U be a bounded open subset
of A. Let pViq0ďiďℓ be time and parameter-dependent vector fields on Rd with the following
regularity properties.

‚ There exists some exponents κ1 ą 1`rps´p
p and κ2 ą rps

p , such that we have for all

integers β1,β2 with 0 ď β1 ` β2 ď rps ` 1,

sup
0ďsďtďT

›››Dβ1
a Dβ2

x V0pt, ., .q ´ Dβ1
a Dβ2

x V0ps, ., .q
›››
L8pRdˆUq

|t ´ s|κ1
ă `8,

‚ For all 1 ď i ď ℓ, and all integers β1,β2 with 0 ď β1 ` β2 ď rps ` 2, we have

sup
0ďsďtďT

›››Dβ1
a Dβ2

x Vipt, ., .q ´ Dβ1
a Dβ2

x Vips, ., .q
›››
L8pRdˆUq

|t ´ s|κ2
ă `8

Refer to Definition 22 in Section 4.3 for the definition of the local accumulation Nβ

of X.

8. Theorem – Let X be a Rℓ valued weak geometric Hölder p-rough path and suppose that
V0, V1, ¨ ¨ ¨ , Vℓ satisfy Assumptions 7. Let ϕpa, ¨q stand for all a P U for the solution flow
to the equation

dϕpa, ¨q “ V0

`
t, a,ϕpa, ¨q

˘
dt ` σ

`
t, a,ϕpa, ¨q

˘
dXt. (2.7)

Then for all 1 ď s ď t ď T , the function pa, xq ÞÑ ϕtspa, xq is differentiable and
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‚ for |t ´ s|
1

p
`
1 ` }X}

˘
À 1, and a P U ,

sup
xPRd

ˇ̌
Daϕtspa, xq

ˇ̌
À |t ´ s|

1

p
`
1 ` }X}

˘rps

‚ there exists positive constants β and c such that one has

sup
xPRd

ˇ̌
Daϕtspa, xq

ˇ̌
À |t ´ s|

1

p
`
1 ` }X}

˘
ecNβ

for all 0 ď s ď t ď T .

3 – Complete proof of Theorem 5

The structure of the proof is simple. One first proves C2 estimates on the time r map
of the ordinary differential equation (2.1), this is the content of Lemma 9. Building on
a Taylor formula given in Lemma 11, and quantified in Lemma 12 and Corollary 13, one
shows in Proposition 15 that the µ’s defined what could be called a ’local approximate
flow’, after [3]. We then follow the construction recipe of a flow from an approximate flow
given in [3], by patching together the local flows. The crucial global in time existence
result is obtained as a consequence of a Grönwall type argument, as can be expected from
the fact that, in their simplest form, the growth assumptions of Theorem 6 mean that all
the vector fields appearing in the approximate dynamics have α-growth. Readers familiar
with [3] can go directly to Section 4.

Recall the definition of yr as the solution of the ordinary differential equation (2.1)
defining µts. The first step in the analysis consists in getting some local in space C2

estimate on yrp¨q ´ Id, with yrp¨q seen as a function of the initial condition x in (2.1). Set

C|t´s|,}X} :“ |t ´ s| `
rpsÿ

i“1

|t ´ s|
i
p }X}i.

9. Lemma – Assume V0 and pV1, . . . , Vℓq satisfy the space regularity Assumption 1, and
pick ps, tq P ∆T with

|t ´ s|
1

p
`
1 ` }X}

˘
ď 1.

Then

‚
ˇ̌
yrpxq ´ x

ˇ̌
À

`
1 ` |x|

˘α
C|t´s|,}X},

‚
ˇ̌
Dyrpxq ´ Id

ˇ̌
À C|t´s|,}X},

‚
ˇ̌
D2yrpxq

ˇ̌
À C|t´s|,}X}.

The maps yrp¨q are thus C1
b , uniformly in r P r0, 1s.
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Proof – Apply repeatedly Grönwall lemma. We only prove the estimate for yrpxq ´x and
leave the remaining details to the reader. It suffices to write

|yrpxq ´ x| ďpt ´ sq
ˇ̌
V0

`
s, x

˘ˇ̌
`

rpsÿ

k“1

ÿ

IPt1,¨¨¨ ,ℓuk

ˇ̌
Λk,I
t,s

ˇ̌ ˇ̌
VrIsps, xq

ˇ̌

` pt ´ sq

ż r

0

ˇ̌
ˇV0

`
s, yupxq

˘
´ V0ps, xq

ˇ̌
ˇdu

`
rpsÿ

k“1

ÿ

IPt1,¨¨¨ ,ℓuk

ˇ̌
Λk,I
t,s

ˇ̌ ż r

0

ˇ̌
ˇVrIs

`
s, yupxq

˘
´ VrIsps, xq

ˇ̌
ˇdu

ÀC
`
|t ´ s|, }X}

˘´`
1 ` |x|

˘α
`

ż r

0

|yupxq ´ x|du
¯
.

to get the conclusion from Grönwall lemma, using the fact that C|t´s|,}X} À 1, for

|t ´ s|
1

p
`
1 ` }X}

˘
ď 1. The derivative equations satisfied by Dyr and D2yr are used

to get the estimates of the statement on these quantities, using once again that the
condition of the statement imposes to C to be of order 1. ◃

10. Remark – Would Assumption 1 require in addition that the vector fields V0ps, ¨q and
VrIsps, ¨q were Cn`2

b with α-growth, uniformly in 0 ď s ď T , we would then have the
estimate

sup
2ďkďn`2

ˇ̌
Dkyrpxq

ˇ̌
À C|t´s|,}X},

under the assumption that |t ´ s|
1

p
`
1 ` }X}

˘
ď 1.

The second step of the analysis is an elementary explicit Taylor expansion; see [3] for
the model situation. Given 1 ď n ď rps, set

∆n
1 :“

!`
rn, ¨ ¨ ¨ , r1

˘
P r0, 1sn : rn ď rn´1 ď ¨ ¨ ¨ ď r1

)

and

In,rps :“
!

pI1, ¨ ¨ ¨ , Inq P t1, ¨ ¨ ¨ , duk1 ˆ ¨ ¨ ¨ ˆ t1, ¨ ¨ ¨ , dukn ;
nÿ

m“1

km ď rps
)
;

indices km above are non-null.

11. Lemma – Assume V0 and pV1, . . . , Vℓq satisfy the space regularity Assumption 1. For
any 1 ď n ď rps and any vector space valued function f on Rd of class Cn we have the
Taylor formula

f
`
µtspxq

˘
“ fpxq ` pt ´ sq

`
V0ps, ¨qf

˘
pxq

`
nÿ

i“1

1

i!

ÿ

Ii,rps

iź

m“1

Λ
km,Im
ts

`
VrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

˘
pxq

`
ÿ

In,rps

nź

m“1

Λkm,Im
ts

ż

∆n
1

!`
VrInsps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

˘`
yrnpxq

˘

´
`
VrInsps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

˘
pxq

)
dr

` εn,fts pxq
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where

εn,fts pxq :“ pt ´ sq

ż
1

0

!`
V0ps, ¨qf

˘`
yrpxq

˘
´

`
V0ps, ¨qf

˘
pxq

)
dr

`
n´1ÿ

i“1

1

i!

ÿ

Ii,rps

pt ´ sq
iź

m“1

Λkm,Im
ts

ż

∆
i`1

1

`
V0ps, ¨qVrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

˘`
yri`1

pxq
˘
dr

`
nÿ

i“2

ÿ

Ii´1,rps

k1`¨¨¨`kiěrps`1

iź

m“1

Λkm,Im
ts

ż

∆i
1

`
VrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

˘`
yripxq

˘
dr.

Proof – The proof is done by induction, and relies on the following fact. For all u P r0, 1s
and all g P C1pB;Bq, we have

gpyrq ´ gpxq “ pt ´ sq

ż r

0

`
V0ps, ¨qg

˘
pyuq du `

ÿ

1ďkďrps

IPt1,¨¨¨ ,ℓuk

Λk,I
t,s

ż r

0

`
VrIsps, ¨qg

˘
pyuq du;

this is step 1 of the induction. For step 2, apply step 1 successively to g “ f and
u “ 1, then g “ pVrIsps, ¨qf

˘
and u “ r. This gives

f
`
µtspxq

˘
´ fpxq “ pt ´ sq

`
V0ps, ¨qf

˘
pxq

` pt ´ sq

ż
1

0

!`
V0ps, ¨qf

˘
pyrq ´

`
V0ps, ¨qf

˘
pxq

)
dr

`
ÿ

1ďkďrps

IPt1,¨¨¨ ,ℓuk

Λk,I
ts

`
VrIsps, ¨qf

˘
pxq

`
ÿ

1ďkďrps
IPt1,¨¨¨ ,ℓuk

pt ´ sqΛk,I
ts

ż
1

0

ż r1

0

`
V0ps, ¨qVrIsps, ¨qf

˘
pyr2q dr2dr1

`
ÿ

1ďk1,k2ďrps

I1Pt1,¨¨¨ ,ℓuk1

I2Pt1,¨¨¨ ,ℓuk2

2ź

m“1

Λkm,Im
ts

ż 1

0

ż r1

0

`
VrI2sps, ¨qVrI1sps, ¨qf

˘
pyr2q dr2dr1.

The last term of the right hand side can be decomposed into

1

2

ÿ

I2,rps

2ź

m“1

Λkm,Im
ts

`
VrI2sps, ¨qVrI1sps, ¨qf

˘
pxq

`
ÿ

I2,rps

2ź

m“1

Λkm,Im
ts

ż

∆2
1

!`
VrI2sps, ¨qVrI1sps, ¨qf

˘
pyr2q ´

`
VrI2sps, ¨qVrI1sps, ¨qf

˘
pxq

)
dr2dr1

`
ÿ

k1`k2ěrps`1

I1,rps

2ź

m“1

Λkm,Im
ts

ż

∆2
1

`
VrI2sps, ¨qVrI1sps, ¨qf

˘
pyr2q dr2dr1;

this proves step 2 of the induction. The n to pn` 1q induction step is done similarly,
and left to the reader. ◃
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Given f P Cn
b

`
Rd,Rd

˘
, set

}f}n :“
ˇ̌
fp0q

ˇ̌
` sup

kPt1,¨¨¨ ,nu

››Dkf
››

8
.

A function g P Cn
`
Rd,Rd

˘
is said to satisfy Assumption H if for all 1 ď k1, . . . , kn ď rps

with
řp

i“1
ki ď rps, and all tuples Iki P t1, . . . , ℓuki , the functions

V0ps, ¨qVrIn´1sps, ¨q ¨ VrI1sps, ¨qg and VrInsps, ¨q ¨ VrI1sps, ¨qg

are C2
b , with α-growth, uniformly in s P r0, T s.

12. Lemma – Assume Assumption 1 holds, and pick a function f P Cn
b

`
Rd,Rd

˘
, for some

2 ď n ď rps. Given ps, tq P ∆T with |t ´ s|
1

p
`
1 ` }X}

˘
ď 1, we have

sup
xPBp0,Rq

ˇ̌
εn,fts pxq

ˇ̌
À }f}np1 ` Rqnα

`
1 ` }X}

˘rps`1
pt ´ sq

1`rps
p ,

for all positive radius R.

‚ If furthermore Dn`1f exists and is a bounded function, then

sup
xPBp0,Rq

ˇ̌
ˇDxε

n,f
ts

ˇ̌
ˇ À }f}n`1p1 ` Rqnα

`
1 ` }X}

˘rps`1
pt ´ sq

1`rps
p .

‚ If finally f satisfies Assumption H, then the previous bound on Dxε
n,f
ts holds with

p1 ` Rqα in place of p1 ` Rqnα.

Proof – Write dr for dri . . . dr1 on ∆i
1, and recall that

εn,fts pxq “ pt ´ sq

ż
1

0

!`
V0ps, ¨qf

˘
pyrq ´

`
V0ps, ¨qf

˘
pxq

)
dr

`
n´1ÿ

i“1

1

i!

ÿ

Ii,rps

pt ´ sq
iź

m“1

Λkm,Im
ts

ż

∆
i`1

1

!
V0ps, ¨qVrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

)
pyri`1

q dr

`
nÿ

i“2

ÿ

Ii´1,rps

k1`¨¨¨`kiěrps`1

iź

m“1

Λkm,Im
ts

ż

δi
1

!
VrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

)
pyriq dr.

(3.1)

Recall also that C|t´s|,}X} À 1 under the assumption of the statement.

‚ As we have for all positive radius R, and all points x, y P Bp0, Rq, the estimate

ˇ̌
V0ps, ¨qfpxq ´ V0ps, ¨qfpyq

ˇ̌
ď }f}n

`
1 ` R

˘α
|x ´ y|

uniformly in 0 ď s ď T , it follows from Lemma 9 that

ˇ̌
ˇ̌pt ´ sq

ż 1

0

!`
V0ps, ¨qf

˘
pyrq ´

`
V0ps, ¨qf

˘
pxq

)
dr

ˇ̌
ˇ̌ À }f}npt ´ sqC|t´s|,}X} p1 ` Rq2α.

Note that if V0ps, ¨qf is globally Lipschitz continuous one can replace p1`Rq2α above
by p1 ` Rqα.
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We estimate the size of the spatial derivative of the first term in the above decompo-
sition of εn,fts writing

ˇ̌
ˇ̌pt ´ sq

ż
1

0

´
D

`
V0ps, ¨qf

˘`
yrpxq

˘
Dyrpxq ´ D

`
V0ps, ¨qf

˘`
x

˘¯ˇ̌
ˇ̌ dr

À

ˇ̌
ˇ̌pt ´ sq

ż
1

0

dr
´
D

`
V0ps, ¨qf

˘`
x

˘¯´
Dyrpxq ´ Id

¯ˇ̌
ˇ̌

`

ˇ̌
ˇ̌pt ´ sq

ż
1

0

dr
´
D

`
V0ps, ¨qf

˘`
yrpxq

˘
´ D

`
V0ps, ¨qf

˘`
x

˘¯
Dyrpxq

ˇ̌
ˇ̌

À }f}n |t ´ s|1` 1

p p1 ` Rq2α
`
1 ` }X}

˘rps
.

Once again, one can replace p1 ` Rq2α by p1 ` Rqα if f satisfies Assumption H.

‚ The two other terms in the decomposition (3.1) of εn,fts are estimated in the same
way. Remark that

sup
xPBp0,Rq

ˇ̌
ˇ
`
V0ps, ¨qVrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

˘
pxq

ˇ̌
ˇ À }f}np1 ` Rqpi`1qα

and that

sup
xPBp0,Rq

ˇ̌
ˇD

`
V0ps, ¨qVrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

˘
pxq

ˇ̌
ˇ À }f}n`1p1 ` Rqpi`1qα.

One can replace in the previous bounds the first term p1 ` Rqpi`1qα by p1 ` Rqα and
the second term p1 ` Rqpi`1qα by 1 if f satisfies Assumption H. So

ˇ̌
ˇ̌
ˇ̌
n´1ÿ

i“1

1

i!

ÿ

Ii,rps

pt ´ sq
iź

m“1

Λkm,Im
ts

ż

∆
i`1

1

`
V0ps, ¨qVrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

˘
pyri`1

q dr

ˇ̌
ˇ̌
ˇ

À }f}n pt ´ sq1` 1

p p1 ` Rqnα
`
1 ` }X}

˘rps

and
ˇ̌
ˇ̌
ˇ̌
n´1ÿ

i“1

1

i!

ÿ

Ii,rps

pt ´ sq
iź

m“1

Λ
km,Im
ts ˆ

ż

∆
i`1

1

D
!
V0ps, ¨qVrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

˘`
yri`1

pxq
)
Dyri`1

pxq dr

ˇ̌
ˇ̌
ˇ

À }f}n`1 pt ´ sq1` 1

p p1 ` Rqnα
`
1 ` }X}

˘rps
.

Once again, if the function f satisfies Assumption H, one can replace p1 ` Rqnα by
p1 ` Rqα in the first bound and p1 ` Rqnα by 1 in the second bound.

The analysis of the last term in the right hand side of the decomposition (3.1) for εn,fts

is a bit trickier since greater powers of }X} can pop out. Indeed, one has
ˇ̌
ˇ̌

nÿ

i“2

ÿ

Ii´1,rps

k1`¨¨¨`kiěrps`1

iź

m“1

Λkm,Im
ts

ż

∆i
1

!
VrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

)
pyriq dr

ˇ̌
ˇ̌

À }f}n

rpsÿ

l“1

`
1 ` }X}

˘rps`i
|t ´ s|

rps`i
p p1 ` Rqnα.
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But recall that |t ´ s|
1

p
`
1 ` }X}

˘
ď 1, so we have

`
1 ` }X}

˘i´1
|t ´ s|

i´1

p À 1, Hence
for all i P t1, ¨ ¨ ¨ , rpsu; this gives the expected upper bound. The same idea is used
for the spatial derivatives. Once again, one can replace p1 ` Rqnα by p1 ` Rqα if the
function f satisfies Assumption H. ◃

13. Corollary – We have

sup
xPBp0,Rq

ˇ̌
ˇ̌f ˝ µtspxq ´

!
fpxq ` pt ´ sqV0ps, ¨qfpxq `

rpsÿ

k“1

ÿ

IPt0,¨¨¨ ,ℓuk

Xk,I
ts VIps, ¨qf

)
pxq

ˇ̌
ˇ̌

À }f}rps`1 p1 ` Rqαprps`1q
`
1 ` }X}

˘rps`1
|t ´ s|

rps`1

p .

for all f P C
rps`1

b with α-growth, and 1 ď k ď rps. We also have

sup
xPBp0,Rq

ˇ̌
ˇ̌µtspxq ´

´
x ` pt ´ sqV0ps, xq `

rpsÿ

k“1

ÿ

IPt0,¨¨¨ ,ℓuk

Xk,I
ts VIps, xq

¯ˇ̌
ˇ̌

À p1 ` Rqα
`
1 ` }X}

˘rps`1
|t ´ s|

rps`1

p .

and

sup
xPBp0,Rq

ˇ̌
ˇ̌Dµtspxq ´

´
Id ` pt ´ sqDV0ps, xq `

rpsÿ

k“1

ÿ

IPt0,¨¨¨ ,ℓuk

Xk,I
ts DVIps, xq

¯ˇ̌
ˇ̌

À p1 ` Rqα
`
1 ` }X}

˘rps`1
|t ´ s|

rps`1

p .

Proof – We only have to bound the sum over In,rps of the terms

nź

m“1

Λ
km,Im
ts

ż

∆n

dr
´`

VrInsps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf
˘
pyrnq ´

`
VrInsps, ¨q ¨ ¨ ¨ VrI1sps, ¨qf

˘
pxq

¯

for n “ rps, thanks to lemmas 11 and 12. We have k1 “ ¨ ¨ ¨ “ krps “ 1, on Irps,rps. As
we know that we haveˇ̌

ˇ
`
VIps, ¨qf

˘
pxq ´

`
VIps, ¨qf

˘
pyq

ˇ̌
ˇ À p1 ` Rqαrps}f}rps`1|x ´ y|,

for all I P t1, ¨ ¨ ¨ , durps, and all x, y P Bp0, Rq, it follows that
ˇ̌
ˇ̌
ˇ

ÿ

I1,¨¨¨ ,IrpsPt1,¨¨¨ ,ℓu

´
Λ1
ts

¯rps
ż

∆n
1

!`
VIrps

ps, ¨q ¨ ¨ ¨ VI1ps, ¨qf
˘
pyrnq

´
`
VIrps

ps, ¨q ¨ ¨ ¨ , VI1ps, ¨qf
˘
pxq

)
dr

ˇ̌
ˇ̌
ˇ

À p1 ` Rqαprps`1q
rpsÿ

k“1

|t ´ s|
i`rps

p }X}rps`i

À p1 ` Rqαprps`1q pt ´ sq
1`rps

p
`
1 ` }X}

˘rps`1
.

The first estimate of the corollary follows then from the fact that exppΛtsq “ Xts.
The two other estimates are consequences of the fact that the identity map satisfies
Assumption 1 and Assumption H. ◃

14. Remark – As in Remark 10, one can require that V0 and VrIs are more regular, and ask



14

‚ For all 1 ď k1, ¨ ¨ ¨ , kn ď rps, with
řn

i“1
ki ď rps, and all Iki P t1, ¨ ¨ ¨ , ℓuki , the

functions

V0ps, ¨qVrIn´1sps, ¨q ¨ ¨ ¨ VrI1sps, ¨q and VrInsps, ¨q ¨ ¨ ¨ VrI1sps, ¨q

are C2`n
b with α-growth, uniformly in time.

Under that stronger regularity assumption, we have for all 2 ď k ď n ` 1,

sup
xPBp0,Rq

ˇ̌
ˇ̌Dkµtspxq´

!
pt ´ sqDkV0ps, xq `

rpsÿ

j“1

ÿ

IPt0,¨¨¨ ,ℓuj

Xj,I
ts DkVIps, xq

)ˇ̌
ˇ̌

À p1 ` Rqα
`
1 ` }X}

˘rps`1
|t ´ s|

rps`1

p .

The next proposition shows that µ satisfies a localized version of an approximate flow;
see [3].

15. Proposition – Given 0 ď s ď u ď t ď T , with pt ´ sq
1

p
`
1 ` }X}

˘rps
ď 1, we have

sup
xPBp0,Rq

ˇ̌
µtu ˝ µuspxq ´ µtspxq

ˇ̌
_

ˇ̌
ˇ̌D

`
µtu ˝ µus

˘
pxq ´ D

`
µts

˘
pxq

ˇ̌
ˇ̌

À p1 ` Rqα
`
1 ` }X}

˘rps`1
|t ´ s|

1`rps
p .

Proof – First, remark that

µtu ˝ µuspxq “ µuspxq ` pt ´ uqV0

`
u, µuspxq

˘

`
rpsÿ

i“1

1

i!

ÿ

Ii,rps

iź

m“1

Λkm,Im
tu

!
VrIispu, ¨q ¨ ¨ ¨ VrI1spu, ¨q

)`
µuspxq

˘

` ε̃tu
`
µuspxq

˘
,

where ε̃tspxq :“ ε
rps,Id
ts pxq ` ε1

tspxq and

ε1
tspxq :“

ÿ

IPt1,¨¨¨ ,durps

rpsź

m“1

Λ
1,ik
t,s

ż

∆rps

!
pVIIdqps, yrnq ´ pVI Idqps, xq

)
dr,

for any 0 ď a ď b ď T . As we also have

µuspxq ´ µtspxq “ ´pt ´ uqV0ps, xq

`
rpsÿ

i“1

1

i!

ÿ

Ii,rps

! iź

m“1

Λkm,Im
us ´

iź

m“1

Λkm,Im
ts

)`
VrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨q

˘`
x

˘

` ε̃uspxq ` ε̃tspxq,
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this gives

µtu ˝ µuspxq ´ µtspxq

“ pt ´ uq
´
V0

`
u, µuspxq

˘
´ V0

`
s, µuspxq

˘¯

` pt ´ uq
´
V0

`
s, µuspxq

˘
´ V0

`
s, x

˘¯

`
rpsÿ

i“1

1

i!

ÿ

Ii,rps

! iź

m“1

Λkm,Im
tu `

iź

m“1

Λkm,Im
us ´

iź

m“1

Λkm,Im
ts

)`
VrIisps, ¨q ¨ ¨ ¨VrI1sps, ¨qId

˘
pxq

`
rpsÿ

i“1

1

i!

ÿ

Ii,rps

iź

m“1

Λkm,Im
tu

!`
VrIispu, ¨q ¨ ¨ ¨VrI1spu, ¨qId

˘`
µuspxq

˘

´
`
VrIisps, ¨q ¨ ¨ ¨VrI1sps, ¨qId

˘`
µuspxq

˘)

`
rpsÿ

i“1

1

i!

ÿ

Ii,rps

iź

m“1

Λkm,Im
tu

!`
VrIisps, ¨q ¨ ¨ ¨VrI1sps, ¨qId

˘`
µu,spxq

˘

´
`
VrIisps, ¨q ¨ ¨ ¨VrI1sps, ¨qId

˘
pxq

)

` ε̃tu
`
µuspxq

˘
` ε̃us

`
x

˘
` ε̃tspxq

“: p1q ` ¨ ¨ ¨ ` p6q.

The bounds of the statement can be read on that decomposition; we give the details
for pµtu ˝ µusqpxq and live the details of the estimate for its derivative to the reader.

It follows from Assumption 2 on the time regularity of V0 and the VrIis . . . VrI1sId that
ˇ̌
p1q

ˇ̌
`

ˇ̌
p4q

ˇ̌
À p1 ` Rqα

´
pt ´ uqpu ´ sqκ1 `

`
1 ` }X}

˘rps
pt ´ uq

1

p pu ´ sqκ2

¯

À p1 ` Rqαpt ´ sq
1`rps

p
`
1 ` }X}

˘rps
.

Lemma 12 takes care of the remainder terms p6q. By using lemma 9 and the fact that
V0 is Lipschitz continuous in space, uniformly in time, one gets

ˇ̌
p2q

ˇ̌
À pt ´ uqpu ´ sq

1

p
`
1 ` }X}

˘rps
p1 ` Rqα À pt ´ sq

1`rps
p

`
1 ` }X}

˘rps
p1 ` Rqα.

To estimate the terms p3q and p5q, set

gps, ¨q :“ VrIisps, ¨q ¨ ¨ ¨ VrI1sps, ¨qId.

We start by doing a Taylor expansion of g
`
s, µtspxq

˘
using Lemma 11, to the order

n “ rps´
ři

j“1
kj. As gps, ¨q satisfies Assumption H as a consequence of Assumption 1,

one can use Lemma 12 to get the expected bounds, using the fact that Xu,sXt,u “ Xt,s

and exppΛq “ X. Details of these algebraic computations can be found in the proof
of the corresponding statement in [3]. ◃

Remark – One has similar local bounds for higher derivatives of µtu ˝ µus ´ µts in the
setting of Remark 14.

Write here part of the conclusion of Proposition 15 under the form

sup
xPBp0,Rq

ˇ̌
µt,u ˝ µu,spxq ´ µt,spxq

ˇ̌
ď C0 p1 ` Rqα

`
1 ` }X}

˘rps`1
|t ´ s|

1`rps
p ,

for some positive constant C0. Given n ě 1, and 0 ď s ď t ď T , set tnk :“ k2´npt ´ sq ` s.
Pick ε0 such that

2
´ 1`rps´p

p p1 ` 2ε0q ă 1
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and

L ą
C0

1 ´ 2
´ 1`rps´p

p p1 ` 2ε0q
.

16. Proposition – For all 0 ď s ă t ď T with

L |t ´ s|
1

p
`
1 ` }X}

˘
ď ε0,

and all positive radius R, we have

sup
|x|ďR

ˇ̌
ˇµtn

2n t
n
2n´1

˝ ¨ ¨ ¨ ˝ µtn
1
tn
0

pxq ´ µtspxq
ˇ̌
ˇ ď L |t ´ s|

1`rps
p p1 ` Rqα

`
1 ` }X}

˘rps`1
.

Proof – The proof is done by induction on n. Note first that we can take L enough to have
ε0
L ď 1 and C|t´s|,}X} À ε0. Proposition 15 provides the initialisation of the induction.
Assume step n of the induction has been proved and set

u :“
t ` s

2
“ tn`1

2n ,

so the statement of the proposition holds on the intervals ps, uq and pu, tq. We have
ˇ̌
ˇ
`
µtn`1

2n
tn`1

2n´1

˝ ¨ ¨ ¨ ˝µtn`1

1
tn`1

0

˘
pxq

ˇ̌
ˇ

ď
ˇ̌
ˇ
`
µtn`1

2n tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

˘
pxq ´ µuspxq

ˇ̌
ˇ `

ˇ̌
µuspxq

ˇ̌

ď L 2
´ 1`rps

p |t ´ s|
1`rps

p p1 ` Rqα
`
1 ` }X}

˘rps`1
` R

` C|t´s|,}X} p1 ` Rqα

ď R ` 2p1 ` Rqα ε0.

and

sup
xPBp0,Rq

ˇ̌
Dµtupxq

ˇ̌
ď 1 ` 2ε0,

by Lemma 9. Furthermore we have

µtn`1

2n`1
tn`1

2n`1´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

pxq ´ µtspxq

“
´
µtn`1

2n`1
tn`1

2n`1´1

˝ ¨ ¨ ¨ ˝ µtn`1

2n`1
tn`1

2n
´ µtu

¯
˝

´
µtn`1

2n
tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

¯
pxq

` µtu ˝
`
µtn`1

2n
tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

˘
pxq ´ µtu ˝ µuspxq

` µtu ˝ µuspxq ´ µtspxq.

We thus have for all x P Bp0, Rq, the estimate
ˇ̌
ˇµtn`1

2n`1
tn`1

2n`1´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

pxq ´ µtspxq
ˇ̌
ˇ

ď L

ˇ̌
ˇ̌t ´ s

2

ˇ̌
ˇ̌
1`rps

p ´
1 ` R ` 2ε0p1 ` Rqα

¯α`
1 ` }X}

˘rps`1

` p1 ` 2ε0qL p1 ` Rqα
ˇ̌
ˇ̌t ´ s

2

ˇ̌
ˇ̌
1`rps

p `
1 ` }X}

˘rps`1

` C0 |t ´ s|
1`rps

p p1 ` Rqα
`
1 ` }X}

˘rps`1
,

from which the induction step follows given our choice of ε0 and L. ◃
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The same bound for the derivative of the approximate flow requires a bound on |t ´ s|
that depends on p1 ` Rqα, such as described here.

17. Proposition – One can find a positive constant ε1 ă 1 such that for 0 ď s ď t ď T with

C0|t ´ s|
1

p p1 ` Rq
α

1`rps
`
1 ` }X}

˘
ď ε1,

we have, for all positive radius R,

sup
|x|ďR

ˇ̌
ˇD

`
µtn

2n tn
2n´1

˝ ¨ ¨ ¨ ˝ µtn
1
tn
0

˘
pxq ´ D

`
µts

˘
pxq

ˇ̌
ˇ ď L |t ´ s|

1`rps
p p1 ` Rqα

`
1 ` }X}

˘rps`1
.

Proof – The proof is a variation on the theme of the proof of Proposition 16. We provide
the details for the reader’s convenience, and keep the notation u for s`t

2
. We proceed

here as well by induction and loot at the ’n to n ` 1’ induction step of the proof.

D
´
µtn`1

2n`1
tn`1

2n`1´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

¯
pxq ´ Dµtspxq

“
!
D

`
µtn`1

2n`1
tn`1

2n`1´1

˝ ¨ ¨ ¨ ˝ µtn`1

2n`1
tn`1

2n

˘
´ Dµtu

)`
µtn`1

2n
tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

˘
pxq

ˆ D
`
µtn`1

2n
tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

˘
pxq

`

"`
Dµtu

˘´`
µtn`1

2n
tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

˘
pxq

¯
´ Dµtu

`
µuspxq

˘*

ˆ D
`
µtn`1

2n
,tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
,tn`1

0

˘
pxq

` Dµtu

`
µuspxq

˘´
D

`
µtn`1

2n
tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

˘
pxq ´ Dµuspxq

¯

` D
`
µtu ˝ µus

˘
pxq ´ Dµtspxq.

We know from the induction step and the R-dependent assumption on u ´ s that
ˇ̌
ˇD

´
µtn`1

2n
tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

¯
pxq ´ Dµuspxq

ˇ̌
ˇ ď ε1 2

´ 1`rps
p ,

and ˇ̌
ˇD

´
µtn`1

2n
tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

¯
pxq

ˇ̌
ˇ ď 1 ` 2ε1.

We also have from Proposition 16
ˇ̌
ˇ
´
µtn`1

2n
tn`1

2n´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

¯
pxq

ˇ̌
ď

`
1 ` 2ε1

˘
p1 ` Rq ´ 1,

and Lemma 9 gives us a uniform control on the Lipschitz size of the µba. We thus
haveˇ̌

ˇD
´
µtn`1

2n`1
tn`1

2n`1´1

˝ ¨ ¨ ¨ ˝ µtn`1

1
tn`1

0

¯
pxq ´ Dµtspxq

ˇ̌
ˇ

ď L p1 ` 2ε1q1`α 2´ 1`rps
p |t ´ s|

1`rps
p

`
1 ` }X}

˘rps`1
p1 ` Rqα

` L 2´ 1`rps
p ε1 p1 ` 2ε1q |t ´ s|

1`rps
p

`
1 ` }X}

˘rps`1
p1 ` Rqα

` L p1 ` ε1q 2´ 1`rps
p |t ´ s|

1`rps
p

`
1 ` }X}

˘rps`1
p1 ` Rqα

` C0 |t ´ s|
1`rps

p

`
1 ` }X}

˘rps`1
p1 ` Rqα

ď
´
C0 ` b2´ 1`rps

p

`
p1 ` 2εqα ` ε1p1 ` 2ε1q ` p1 ` ε1q

˘¯
|t ´ s|

1`rps
p p1 ` Rqα

`
1 ` }X}

˘rps`1
.

An adequate choice of ε1 closes the induction step, given the definition of L. ◃
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18. Remark – In the improved regularity conditions on the vector fields stated in Remark 14,
we have for all 2 ď k ď n ` 1 and for all

C0 |t ´ s|
1

p p1 ` Rq
kα

1`rps
`
1 ` }X}

˘
ď ε1,

one have

sup
|x|ďR

ˇ̌
ˇDk

`
µtn

2n t
n
2n´1

˝ ¨ ¨ ¨ ˝ µtn
1
tn
0

˘
pxq ´ Dkµtspxq

ˇ̌
ˇ ď L |t ´ s|

1`rps
p p1 ` Rqα

`
1 ` }X}

˘rps`1
.

With all these preliminary results at hand, we are now in a position to give a proof of
our local well-posedness result, Theorem 5.

Proof of Theorem 5 – We treat existence and uniqueness one after the other. We keep
the above notations, and set, in addition,

µn
ts “ µtn

2n
tn
2n´1

˝ ¨ ¨ ¨ ˝ µtn
1
tn
0
.

Local in time existence – For all x P Bp0, Rq,

µn`1
ts pxq ´ µn

tspxq “

2nÿ

k“1

´
µtn`1

2n`1
tn`1

2n`1´1

˝ ¨ ¨ ¨ ˝ µtn`1

2k`3
tn`1

2k`2

˝
`
µtn`1

2k`2
tn`1

2k`1

˝ µtn`1

2k`1
tn`1

2k

˘

´ µtn`1

2n`1
tn`1

2n`1´1

˝ ¨ ¨ ¨ ˝ µtn`1

2k`3
tn`1

2k`2

˝
`
µtn`1

k`1
tn`1

2k

˘¯

˝ µtnk t
n
k´1

˝ ¨ ¨ ¨ ˝ µtn
1
tn
0

pxq. (3.2)

It follows from Proposition 17 that the maps

µtn`1

2n`1
tn`1

2n`1´1

˝ ¨ ¨ ¨ ˝ µtn`1

2k`3
tn`1

2k`2

are Lipschitz continuous, uniformly in n, with a Lipschitz constant that depends
neither on X nor on R. Furthermore, thanks to Proposition 16,

ˇ̌
ˇµtnk t

n
k´1

˝ ¨ ¨ ¨ ˝ µtn
1
tn
0

pxq
ˇ̌
ˇ ď R ` 2ε1 p1 ` Rqα.

Finally, Proposition 15 tells us that

ˇ̌
µn`1
ts pxq ´ µn

tspxq
ˇ̌

À 2
´n

rps`1´p
p |t ´ s|

1`rps
p p1 ` Rqα

`
1 ` }X}

˘rps`1
. (3.3)

The sequence µn
ts is thus uniformly convergent on the ball Bp0, Rq to a limit, contin-

uous, function denoted by ϕts; it satisfies the estimate

sup
xPBp0,Rq

ˇ̌
ϕtspxq ´ µtspxq

ˇ̌
À |t ´ s|

1`rps
p p1 ` Rqα

`
1 ` }X}

˘rps`1
.

Finally, for all dyadic points a P rs, ts and all x P Bp0, Rq, we have by construction

ϕtapxq ˝ ϕaspxq “ ϕtspxq.

As X is an Hölder continuous rough path, the function px; s, tq ÞÑ µtspxq, from
Bp0, Rq ˆ t0 ď s ă t ď T u to Rd, is continuous. The continuity of ϕ as a func-
tion of px; s, tq follows in a straightforward way; its continuous dependence on X is a
consequence of the continuous dependence of µ with respect to X. Note however that
ϕts is only defined at that stage for s and t close enough.
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Uniqueness – Let ψ stand for another solution flow, with associated constants εX and
CR,X, and exponent η ą 1. Take R and ps, tq satisfying the conditions of Proposition
17, with |t ´ s| ď CR,X. Then

ˇ̌
ϕtspxq ´ ψtspxq

ˇ̌
ď

ˇ̌
ˇµn

tspxq ´ ϕtspxq
ˇ̌
ˇ `

ˇ̌
ˇµn

tspxq ´ ψtspxq
ˇ̌
ˇ

ď
ˇ̌
ˇµn

tspxq ´ ϕtspxq
ˇ̌
ˇ

`
2n´1ÿ

k“0

ˇ̌
ˇ̌
´`

µtn
2n

tn
2n´1

˝ µtnk`2
tnk`1

˘
˝ µtnk`1

tnk

´
`
µtn

2n
tn
2n´1

˝ µtnk`2
tnk`1

˘
˝ ψtnk`1

tnk

¯
˝ ψtnk t

n
k´1

˝ ¨ ¨ ¨ ˝ ψtn
1
tn
0

pxq

ˇ̌
ˇ̌

À
ˇ̌
µn
tspxq ´ ϕtspxq

ˇ̌
ˇ ` 2´npη´1q.

(3.4)

Local uniqueness follows from that estimate. We have used here the fact that the µn
ts

are Lipschitz continuous, uniformly in n, and that

sup
xPBp0,Rq

ˇ̌
ψt,s ´ µt,spxq

ˇ̌
À CR,X |t ´ s|η.

◃

4 – Corollaries and extensions

We emphasize in the Section 4.1 and Section 4.2 two consequences on solutions to rough
differential equations of the above results/computations. Young and mixed rough/Young
equations are considered in Section 4.1, and differentiability of the solution flow with
respect to parameters is considered in Section 4.2. The estimates on the derivative flow
we get there will be used in the forthcoming work [4] on limit theorems for systems of
mean field rough differential equations. We worked so far in with weak geometric Hölder
p-rough paths; one can actually work with general rough paths, controlled by arbitrary
controls [21]. A non-explosion criterion with quantitative estimates is provided in Section
4.3 in this more general setting.

4.1 – Young and mixed rough-Young differential equations

The proofs of theorems 5 and 6 do not use the fact the the drift term is driven only
by time. Instead we treat the signal t Ñ t as a Lipschitz path, and deal with it using
Young differential calculus techniques. A direct counterpart of this approach is a loss of
regularity in the coefficients, either in time and space. A real reward of this approach,
which does not modify the proof but requires only more notations, is an extension of the
results to a mixed Young-Rough differential equation.

Let V0 and F “ pV1, . . . , Vℓq be given; let another family G :“ pW1, . . . ,Wmq of vector
fields on B be given. A solution flow to the mixed rough-Young differential equation is
defined as in Definition 4, with the ’approximate flow’ µts defined as the time 1 map of
the ordinary differential equation

y1
r “ V0

`
s, yr

˘
pt ´ sq `

mÿ

j“1

Y j
tsWj

`
s, yr

˘
`

rpsÿ

k“

ÿ

IPt1,¨¨¨ ,ℓuk

Λk,I
ts V X

rIs

`
s, yr

˘
.
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The constants ε and C that appear in the defining estimate (2.3) are now allowed to
depend on R,X and Y .

19. Corollary – Let X be an Rℓ-valued weak geometric Hölder p-rough path and Y be an
Rm-valued 1

q -Hölder path, with 1

p ` 1

q ą 1 and p ě 2. Assume pV0,Fq and pWi,Fq satisfy

Assumption 1 and Assumption 2 for all 1 ď i ď m. Assume furthermore that there exists
a positive exponent κ such that κ` 1

q ą 1, and

sup
xPBp0,Rq

sup
0ďsătďT

ˇ̌
Wipt, xq ´ Wips, xq

ˇ̌

|t ´ s|κ
À p1 ` Rqα.

Then the rough differential equation

dϕt “ V0pt,ϕtqdt ` Gpt,ϕtq dYt ` Fpt,ϕq dXt,

has a unique global in time solution flow.

On can choose the constants εX,Y and CR,X,Y such that

pt ´ sq
1

q
`
1 ` }Y }

˘
` pt ´ sq

1

p
`
1 ` }X}

˘
À 1,

and
CR,X,Y » p1 ` Rqα

`
1 ` }Y } ` }X}

˘ `
1 ` }X}

˘rps

and
N » max

!“
p1 ` }Y }qq

‰
,
“
p1 ` }X}qp

‰)
.

The proof is left to the reader since it is a direct modification of Section 3, with more
notations.

4.2 – Derivative flow

Rough differential equations

dϕt “ V0pt,ϕtqdt ` Fpt,ϕtq dt (4.1)

generate flows of diffeomorphisms under appropriate regularity conditions on the driving
vector fields. The pair pϕ,Dϕq, made up of ϕ and its differential, also satisfies an equation,
with ’triangular’ structure

dpDϕq “ DV0pt,ϕtqDϕt dt ` DFpt,ϕtqDϕt dXt.

One can find results on derivative flows in the book [17] of Friz and Victoir, Chapter 11;
see also the interesting works [11] and [12] of Coutin and Lejay. One gets another proof
of the differentiability of the flow with respect to the initial point as a direct byproduct of
the results of Section 2. Pick p ą 2.

20. Assumption – Let V0 and V1, . . . , Vℓ be a set of time dependent vector fields on B such

that there exists two exponents with κ1 ą 1`rps´p
p , and κ2 ` 1

p ą 1, such that

sup
0ďsătďT

››V0pt, ¨q ´ V0ps, ¨q
››
C2`n

b

|t ´ s|κ1
ă `8

and each Vi satisfies the estimate

sup
0ďsătďT

››Vipt, ¨q ´ Vips, ¨q
››
C3`n

b

|t ´ s|κ2
ă `8.
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21. Theorem – Let X be a weak geometric Hölder p-rough path and pV0, V1, ¨ ¨ ¨ , Vℓq which
satisfy Assumption 20. Let ϕ stand for the solution flow to the rough differential equation
(4.1). Then each ϕts is of class Cn, has linear growth and bounded derivatives. Further-

more for a suitable positive constant ε3, independent of X, and |t ´ s|
1

p
`
1` }X}

˘
ď ε3, we

have ›››Dkϕts ´ Dkµts

›››
8

À |t ´ s|
1`rps

p
`
1 ` }X}

˘rps`1
,

for all 0 ď k ď n. Finally there exists some positive constants c1, ¨ ¨ ¨ , cn, independent of
X, such that for all 0 ď s ď t ď T , and every 1 ď k ď n, we have

sup
xPRd

ˇ̌
ϕtspxq ´ x

ˇ̌
À |t ´ s|

1

p
`
1 ` }X}

˘

and

sup
xPRd

ˇ̌
Dkϕtspxq ´ Dkϕs,spxq

ˇ̌
À |t ´ s|

1

p eck|t´s|
1
pN ,

where N “
”
c
`
1 ` }X}

˘´p
ı
.

Proof – We work here with α “ 0, so we know from the above computations that for

|t ´ s|
1

p
`
1 ` }X}

˘
À 1, and all 0 ď k ď pn ` 1q, we have

›››Dk
`
µn
ts ´ µts

˘
pxq

›››
8

À |t ´ s|
1`rps

p
`
1 ` }X}

˘rps`1
. (4.2)

This implies that for all 0 ď k ď n the function Dk
t,s is Lipschitz continuous, with

Lipschitz constant not greater than a constant multiple of |t´s|
1`rps

p
`
1` }X}

˘rps`1
. It

follows from this fact and the proof of Theorems 5 and 6 that there exists some maps
Ak

t,s, such that Dkµn
ts converges uniformly to Ak

t,s as n goes to 8. One then needs

to prove that the Ak are indeed the k-th derivative of ϕ and get the bounds of the
statement. Note that the small time bounds are direct consequences of equation (4.2)
and Remark 10 once we know that the Dkµn

ts converge.

We have

µn
tspx ` hq ´

ÿ

0ďjďk

1

j!
Dkµt,spxq ¨ hj “

1

k!

ż 1

0

dλDk`1µn
tspλh ` xq ¨ pp1 ´ λqhqkh,

where hj “ ph, ¨ ¨ ¨ , hqloooomoooon
j times

. Hence, thanks to Remark 18, for all |t´ s|
1

p
`
1` }X}

˘
À 1, the

maps Dk`1µn
ts are bounded, uniformly in n, and

ˇ̌
ˇ̌
ˇ̌µ

n
t,spx ` hq ´

ÿ

0ďjďk

1

j!
Dkµn

t,spxq ¨ hj

ˇ̌
ˇ̌
ˇ̌ À |t ´ s|

1`rps
p

`
1 ` }X}

˘rps`1
|h|k`1.

The previous bound allows us to send n to 8, and to get, as a consequence, that
Ak

ts “ Dkϕts. The construction of the global in time flow and its derivatives is done
by gluing all these local flows, as above.

We now turn to the global bounds. As previously let N be the least integer such that

T
1

pN
´ 1

p
`
1 ` }X}

˘
À 1, where the implicit multiplicative constant is chosen such that
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all the previous bounds hold. Setting ti :“
i
N pt ´ sq ` s, one can use the local in time

bounds on some time interval of length pti`1 ´ tiq. We have

ϕtispxq ´ x “ϕtiti´1

`
ϕti´1spxq

˘
´ µtiti´1

`
ϕti´1spxq

˘

` µtiti´1

`
ϕti´1spxq

˘
´ ϕti´1spxq

` ϕti´1spxq ´ x

Hence, if one sets R0
i :“ supx

ˇ̌
ϕti,spxq ´ x

ˇ̌
, one has

R0
i ď R0

i´1 ` C|t ´ s|
1

p À i|t ´ s|
1

p .

Similarly, we have

Dϕtispxq ´ Id “
´
Dϕtiti´1

`
ϕti´1spxq

˘
´ µtiti´1

`
ϕti´1spxq

˘¯
Dϕti´1spxq

`
´
Dµtiti´1

`
ϕti´1spxq

˘
´ Id

¯
Dϕti´1spxq

` Dϕti´1spxq ´ Id.

Again,given the choice of N , one have can use all the local bounds on ϕ, Dϕ, and µ
and Dµ, and setting R1

i :“ supx
ˇ̌
Dϕti,spxq ´ Id

ˇ̌
, one has

R1
i ď C|t ´ s|

1

p ` R1
i´1

`
1 ` |t ´ s|

˘ 1

p ,

and

sup
x

ˇ̌
ˇDϕs,tpxq ´ Id

ˇ̌
ˇ À |t ´ s|

1

p ec1|t´s|
1
pN .

One obtains the bounds for the higher order derivatives using Faà di Bruno formula.
◃

4.3 – Finite p-variation rough paths

It is well-known the global bound for the differential of the flow, or the global bound for
the flow for vector field with linear-growth, is not not good – [8], [16], [15]. Indeed, in the
setting of weak geometric Hölder p-rough paths, N „

`
1`}X}

˘p
, and for a Gaussian rough

path X, the quantity }X} only has Gaussian tail and E
“
ec}X}p

‰
“ `8 for any p ą 2 and

any positive constant c. To derive some moment bounds of solutions of rough differential
equations, one need more advanced tools; we recall them here for the reader’s convenience.

Definition – A weak geometric continuous rough path with finite p-variation is a contin-
uous rps-level weak geometric rough path such that

}X}r0,T s,p´var :“
rpsÿ

i“1

sup
π partition of r0,T s

¨

˝
ÿ

ptk ,tk`1qPπ

|Xi
t,s|

p
i

˛

‚

1

p

ă `8

Set
wpt, sq :“ }X}prs,ts,p´var

.

If X is a weak geometric continuous rough path with finite p-variation then w is a
control; it is in particular increasing in its two variables, super-additive and continuous
on the diagonal. Note also that a weak geometric Hölder p-rough path is always of finite
p-variation since

wpt, sq ď |t ´ s|
`
1 ` }X}

˘p
.

The advantage of using the p-variation norm instead of the Hölder norm is related to
integrability properties for random rough paths.



23

22. Definition – Given β ą 0 define τβ0 “ 0 and

τβi`1
“ inftt P rτβi , T s : wpτβi , tq ě βu ^ T.

The quantity Nβ :“ supti ě 0 : τβi ă T u is called the local accumulated variation of X.

The following result combines results from Friz and Victoir [17] and Cass, Litterer and
Lyons [8]

Theorem – Let β ą 0, p ě 2 and let X be a centered Gaussian process defined over some
finite interval r0, T s. Suppose that the covariance function is of finite ρ-two dimensional
variation for some ρ P p1, 2q. Then for any p P p2ρ, 4q, X can be lifted as a level-rps weakly

geometric continuous finite p-variation rough path, and for β ą 0, the process N
1

ρ

β has a

Gaussian tails, namely there exists a constant µ ą 0 such that

E

„
exp

ˆ
µN

2

ρ

β

˙ȷ
ă `8.

In particular, for p P p2ρ, 4q, and for any constant C ą 0,

E rexp pCNβqs À 1.

Friz and Riedel gave in [16] what is now the classical proof of this result, based on
Borell’s isoperimetric inequality in Gaussian spaces. Cass and Ogrodnik [9] use heat
kernel estimates as a substitute to isoperimetry to prove a similar result for Markovian
rough paths. Compare the following definition to definition 4.

Definition – A flow ϕ : ∆T ˆ Rd ÞÑ Rd is said to be a solution flow to the rough
differential equation (2.2) if there exists an exponent η ą 1 such that one can associate
to any positive radius R two positive constants CR and ε, independent of X, such that one
has

sup
xPBp0,Rq

ˇ̌
ϕtspxq ´ µtspxq

ˇ̌
ď CR wpt, sqη , (4.3)

whenever wpt, sq ď ε.

23. Theorem – Let X be a weak geometric continuous rough path with finite p-variation. Let
V0 and pV1, . . . , Vℓq satisfy Assumption 1 and Assumption 2. There exists a unique global
in time solution flow ϕ to the rough differential equation (2.2).

‚ One can choose η “ 1`rps
p , ε “ c1 and CR “ c2p1`Rqα, for some positive universal

constants c1, c2, in the defining identity (4.3).

‚ One has for all f P C
rps`1

b and all wpt, sq ď ε the estimate

sup
xPBp0,Rq

ˇ̌
ˇ̌f ˝ ϕt,spxq ´

!
fpxq ` pt ´ sqV0ps, ¨qf `

rpsÿ

k“1

ÿ

IPt0,¨¨¨ ,ℓuk

Xk,I
t,s VIps, ¨qf

)
pxq

ˇ̌
ˇ̌

À }f}
C

rps`1

b

p1 ` Rqαprps`1qwpt, sq
rps`1

p .

When f “ Id, one can replace p1 ` Rqαprps`1q by p1 ` Rqα and }f}Cn
b

by 1 in the
previous bound.

‚ The map that associates ϕ to X is continuous from the set of weak geometric con-
tinuous rough paths with finite p-variation into the set of continuous flows endowed
with the topology of uniform convergence on bounded sets.
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‚ Finally, there exists β ą 0 and c3 ą 0 such that one has for all pt, sq P ∆T ,

sup
xPBp0,Rq

ˇ̌
ϕtspxq ´ x

ˇ̌
À

$
’’&

’’%

˜ˆ
p1 ` Rq1´α ` c4wpt, sq

1

pN
1´ 1

p

β

˙ 1

1´α

´ p1 ` Rq

¸
, if α ă 1

p1 ` Rqwpt, sq
1

p ec3Nβ , if α “ 1.

One gets back Theorem 6 when X is an Hölder p-rough path, with N replaced by Nβ.

Proof – The proof follows exactly the same steps as the proofs of Theorems 5 and Theorem
6. We give here the main changes and leave the computations to the reader.

First, there is no loss of generality in assuming that |t´s| ď wpt, sq; replace if necessary
wpt, sq by w̃pt, sq “ |t ´ s| ` wpt, sq. Set

Cpt, s,Xq :“
rpsÿ

k“1

wpt, sq
k
p .

One can replace the constant C|t´s|,}X} by Cpt, s,Xq in Lemma 9 and Remark 10 as
soon as wpt, sq ď 1; this ensures that Cpt, s,Xq À 1. Lemma 11 remains the same
as it relies only on algebraic manipulations. In Lemma 12, one has to assume that

wpt, s,Xq ď 1, and one can replace
`
1 ` }X}

˘rps`1
|t ´ s|

1`rps
p in the estimates by

wpt, sq
1`rps

p – recall |t ´ s| ď wpt, sq. The same replacement is done in Corollary 13
and Remark 14. Finally, using the inequality |t ´ s| ď wpt, sq and the fact that the
real-valued functions u Ñ wpt, uq and u Ñ wpu, sq are increasing, one can also replace
`
1 ` }X}

˘rps`1
|t ´ s|

1`rps
p by wpt, sq

1`rps
p in Proposition 15.

The proofs of Proposition 16 and Proposition 17 are a bit different, but the spirit is
the same. The main difference is that one cannot say immediately that w

`
t, t`s

2

˘
ď

1

2
wpt, sq. But given pt, sq P ∆T , there exists ũ P ps, tq such that wpt, uq “ wpu, sq ď

1

2
wpt, sq. Consider any sequence of embedded partitions pπnqnPN “

´`
tni

˘
iPt0,¨¨¨ ,nu

¯

nPN

with mesh going to 0. One proves by induction the existence of constants 0 ă β ď 1
and L ą 0 such that for wpt, sq ď β, one has for all k ď n,

sup
xPBp0,Rq

ˇ̌
ˇµtkk ,t

k
k´1

˝ ¨ ¨ ¨ ˝ µtk
1
,tk
0

pxq ´ µt,spxq
ˇ̌
ˇ ď L p1 ` Rqαwpt, sq

rps`1

p

Let the integer 0 ď i0 ď n be such that tn`1
i0

ď ũ ă tn`1
i0`1

. One closes the induction

and proves the following bound for all n P N by taking u “ tn`1
i0`1

, using the fact that

wptn`1
i0`1

, ũq ` wpũ, tn`1
i0

q ÝÑ
nÑ8

0.

The same trick holds for the proof of Proposition 17, assuming that

wpt, sqp1 ` Rq
α

1`rps ď β.

One can again replace in Proposition 16,Propositino 17 and Remark 18
`
1`}X}

˘rps`1
|t´

s|
1`rps

p by wpt, sq
1`rps

p .

For the proof of the local existence, one can proceed as in Lemma 2.1 of [14], and as
in the proof of Theorem 5. Let

`
ptni qiPt0,¨¨¨ ,nu

˘
nPN

be the sequence of dyadic partitions.
Remark that since w is superadditive, there exists i such that wptni`1, t

n
i´1q ď p2n ´
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1q´1wpt, sq. Define the partition pπ “
␣
s “ t0,ă ¨ ¨ ¨ ă tni´1 ă tni`1 ă ¨ ¨ ¨ ă tn2n “ t

(
and

set Mn
t,s :“ µn

t,s ´ µt,s, and

xMn
t,s :“ µtn

2n
,tn
2n´1

˝ ¨ ¨ ¨ ˝ µtni`2
,tni`1

˝ µtni`1
,tni´1

˝ µtni´1
,tni´2

˝ µtn
1
,tn
0

´ µt,s.

We have

xMs,t ´ Mn
t,s “

!
µtn

2n ,tn
2n´1

˝ ¨ ¨ ¨ ˝ µtni`2
,tni`1

˝ pµtni`1
,tni

˝ µtni ,t
n
i´1

q

´ µtn
2n ,t

n
2n´1

˝ ¨ ¨ ¨ ˝ µtni`2
,tni`1

˝ pµtni`1
,tni´1

q
)

˝ µtni´1
,tni´2

˝ µtn
1
,tn
0

pxq.

The induction hypothesis and the bound wpt, sqp1 ` Rq
α

1`rps ď β, then give
ˇ̌xMn

s,t ´ Mn
t,s

ˇ̌
À p2n ´ 1q´ rps`1

p p1 ` Rqαwps, tq
rps`1

p .

Repeating this operation until we get the trivial partition of rs, ts we see that

Mn
t,s “

2nÿ

k“0

ρkt,s,

with ˇ̌
ρkt,spxq

ˇ̌
À p1 ` Rqα wpt, sq

rps`1

p p2n ´ kq´ rps`1

p .

Here we crucially use the fact that the composition of the flows are globally Lipschitz
continuous, uniformly in n. Hence Mn converges uniformly to a limit ϕt,s ´ µt,s and

sup
xPBp0,Rq

|ϕt,spxq ´ µt,spxq| À p1 ` Rqα
ÿ

iě0

i
´ rps`1

p wpt, sq
rps`1

p À p1 ` Rqαwpt, sq
rps`1

p .

The remainder of the proof follows easily from the proof of Theorem 5 and Theorem
6. Indeed, by construction, ϕ is a flow for all dyadic points, and then by continuity
for all points, and thanks to the continuity of µ with respect to X, ϕ is continuous
with respect to X.

Note also that thanks to the superadditivity property of the control, one has

2n´1ÿ

k“0

wptni`1, t
n
i q

rps`1

p À max
iPt0,¨¨¨ ,2n´1u

wptni`1, t
n
i q

rps`1´p
p wpt, sq,

and since w is continuous on the diagonal, the above sum goes to 0 as n goes to
infinity. Local uniqueness of the flow follows – see Equation (3.4).

The proof of global existence is similar to the proof of Theorem (6). Use the sequence

of times pτβi qiPN from definition 22. We have

ϕ
τ
β
i ,s

pxq ´ x “ ϕ
τ
β
i τ

β
i´1

`
ϕ
τ
β
i´1

s
pxq

˘
´ µ

τ
β
i τ

β
i´1

`
ϕ
τ
β
i´1

s
pxq

˘

` µ
τ
β
i τ

β
i´1

`
ϕ
τ
β
i´1

s
pxq

˘
´ ϕ

τ
β
i´1

s
pxq

` ϕ
τβi´1

s
pxq ´ x.

Define Ri :“ supxPBp0,Rq

ˇ̌
ϕ
τβi s

pxq ´ x
ˇ̌

and R0 “ 0. The fourth item of the statement

follows then from the induction relation

Ri ď Ri´1 ` wpτβi , τ
β
i´1

q
rps`1

p p1 ` R ` Riq
α ` Cpτβi , τ

β
i´1

,Xqp1 ` R ` Ri´1qα.

Since wpτβi , τ
β
i´1

q ď β, one has Cpτβi , τ
β
i´1

,Xq À wpτβi , τ
β
i´1

q
1

p ., hence

Ri ´ Ri´1 À p1 ` R ` Ri´1qα
`
wpτβi , τ

β
i´1

q
rps`1

p ` wpτβi , τ
β
i´1

q
1

p
˘
.
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When α “ 1 one end up with the following bound :

Ri À Ri´1 ` p1 ` Rqwpt, sq
1

p .

When α ă 1, one ends up with

RN À

ˆ´
p1 ` Rq1´α `

1

1 ´ α

Nÿ

i“1

`
wpτi, τi´1q

rps`1

p ` wpτi, τi´1q
1

p
˘¯ 1

1´α
´ p1 ` Rq

˙
.

By using Jensen formula, one finally has the bound

Nÿ

i“1

`
wpτi, τi´1q

rps`1

p ` wpτi, τi´1q
1

p
˘

À N
1´ 1

pwpt, sq
1

p ,

which ends the proof. ◃

24. Theorem – Let p ą 2 and X be a weak geometric continuous finite p-variation rough
path and let pV0, ¨ ¨ ¨Vℓq which satisfies Assumption 20. Let ϕ stands for the solution flow
to the rough differential equation (4.1). Then each ϕt,s is of class Cn, has linear growth
and bounded derivatives. Furthermore for a suitable positive constant ε3, independent of
X, and wpt, sq ď ε3, we have

›››Dkϕts ´ Dkµts

›››
8

À wpt, sq
1`rps

p ,

for all 0 ď k ď n. Finally there exists β ą 0 and some positive constants c1, ¨ ¨ ¨ , cn,
independent of X, such that for all 0 ď s ď t ď T , and every 1 ď k ď n, we have

sup
xPRd

ˇ̌
ϕtspxq ´ x

ˇ̌
À wpt, sq

1

pNβ

and

sup
xPRd

ˇ̌
Dkϕtspxq ´ Dkϕs,spxq

ˇ̌
À wpt, sq

1

p eckNβ .

Proof – We refer to the proof of Theorem 21. The first bound of the theorem is a direct
application of Theorem 23 with α “ 0. For the existence of derivatives and the

associated bounds, one can mimic the proof of Theorem 21 by replacing |t ´ s|
1

p
`
1 `

}X}
˘p

by wpt, sq. The proof of the global bound is done in the same way as the proof
of Theorem 23. ◃
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