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Non-explosion criteria for rough differential
equations driven by unbounded vector fields

|. BAILLEUL' and R. CATELLIER?

Abstract. We give in this note a simple treatment of the non-explosion problem for rough
differential equations driven by unbounded vector fields and weak geometric rough paths of
arbitrary roughness.

1 — Introduction

Although rough paths theory has now been explored for twenty years, a few elementary
questions are still begging for a definite answer. We consider the existence problem for
the local time and occupation time of solutions to rough differential equations as the main
open problem, in relation with reflection problems. At a more fundamental level, the
question of global in time existence of solutions of a rough differential equation

dZt = F(Zt) dXt, (11)

under relaxed boundedness assumptions on the vector fields F = (V4,..., V) has not been
clarified so far. Given a weak geometric p-rough path X defined on some time interval
[0, 7], the preceding equation is known to have a solution defined on the whole of [0,T]
if the driving vector fields V; are C’;’ , for some regularity exponent v > p; see for instance
T. Lyons’ seminal paper [21] or the lecture notes [7]. One would ideally like to relax these
boundedness assumptions to some linear growth assumption, but the following elementary
counter-examples of Gubinelli and Lejay [19] shows that this is not sufficient. Consider
the dynamics (1.1) on R?, with F = (V4, V4), and vector fields V;(x,y) = (zsin(y),z) and
Va(x,y) = 0, driven by the non-geometric pure area rough path X; = 1+#(1®1). Writing
zt = (x4, yt), one sees that z is actually the solution of the ordinatry differential equation

4 = (#,5¢) = (wesin(ye)® + a7 cos(ye), @ sin(yy)).
The solution started from an initial condition of the form (a,0), with a positive, has
constant null y-component and has an exploding z-component since i; = 7.

The non-explosion problem was explored in a number of works for differential equations
driven by p-rough paths, for 2 < p < 3, especially in the works of Davie [13] and Lejay
[20, 19]. Davie provides essentially the sharpest result in the regime 2 < p < 3.

e To make it simple, assume F is C® and has linear growth: |F(z)| < |z|. Theorem
6.1 (a) in [13] provides a non-explosion criterion in terms of the growth rate of D?F

|D*F(2)] < h(|z]).
1.Bailleul thanks the U.B.O. for their hospitality, part of this work was written there.
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There is no explosion if h(r) < 1, and

foo Y2 = dr .
h(r) o

Davie’s criterion is shown to be sharp in the class of all p-rough paths, 2 < p < 3,
with an example of a rough differential equation where explosion can happen for
some appropriate choice of a non-weak geometric rough path in case the criterion
is not satisfied — see Section 6 in [13]. The limit case for Davie’s criterion is

h(r) = % We essentially recover that bound.

e Lejay [20] works with Banach space valued weak geometric p-rough paths, with
2 < p < 3. In the setting where the vector fields V; are C® with bounded derivates
and are required to have growth rate ‘V,(ac)‘ < ¢g(|z]), he shows non-explosion of
solutions to equation (1.1) under the condition that }, W diverges. The limit

case is g(r) ~ e

e The analysis of Friz and Victoir [17], Exercice 10.56, gives a criterion comparable
to ours, with an erronous proof. They use a pattern of proof that is implemented
in a linear setting and cannot work in a nonlinear framework as it bears heavily
on a scaling argument — see the proof of Theorem 10.53. One can see part of the
present work as a correct or alternative proof of their statement.

We identify in the sequel a vector field V on R? with the first order differential operator
f = (Df)(V). For a tuple I = (i,...,i;) € {1,...,£}*, and vector fields Vi,...,V,, we
define the differential operators

VI = ‘/11‘/%7 and ‘/[I] = [Wla"'a[‘/ik_pv’ik]]]a

under proper regularity assumptions on the V;. (Note that the operator Vi) is actually
of order one, so V[ 1] 1s a vector field.) The local increment z; — zs of a solution z to the
rough differential equation (1.1) is known to be well-approximated by the time 1 value of
the ordinary differential equation

[p]
ve=> > AV (s ue(2), (1.2)

k=1 re1,... 3"

where Ay := log Xy, and 0 < 7 < 1 —see [3] or [6] for instance. The following simplified
version of our main result, Theorem 6, actually gives a non-explosion result in terms of
growth assumptions on the vector fields V[ that appear in the approximate dynamics
(1.2). Pick an arbitrary p > 1 and a weak geometric p-rough path X.

. Theorem — There is no explosion for the solutions of the rough differential equation (1.1)
is the functions Vi, --- V; 1d are C? with bounded derivatives, for any 1 <n < [p] and any
tuple (i1,...,i,) € [1,€]™.

Theorem 6 is sharper than that statement as it involves the vector fields Vi — recall
Example 3 of [19]. In the case where 2 < p < 3, our non-explosion criterion becomes

D2F| v |D3F| £ ——,

D2F| v [D2F] £ 1

for a multiplicative implicit constant independent of z € R?. We mention here that we have

been careful on the growth rate of the different quantities but that one can optimize the
regularity assumptions that are made on the vector fields V; to get slightly sharper results.
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This explains the discrepancy between Davie’s optimal criterion in the case 2 < p < 3 and
our result. These refinements are not needed for the applications [4]; we leave them to
the reader. Note also here that one can replace R? by a Banach space and give versions
of the statements involving infinite dimensional rough paths, to the price of using slightly
different notations, such as in [2]. There is no difference between the finite and the infinite
dimensional settings for the explosion problem.

Our main result, Theorem 6, holds for dynamics (1.1) with a drift and time-dependent
vector fields. It is proved in Section 2 on the basis of some intermediate technical estimates
whose proof is given in Section 3. Theorem 6 holds for Holder p-rough paths. A similar
statement holds for more general continuous rough paths, with finite p-variation, such as
proved in Section 4 with other corollaries and extensions.

Notations. We gather here a number of notations that are used throughout the paper.

e Given a positive finite time horizon T, we denote by Ar the simplex {(¢,s) €
[0,T]? : 0<s<t<T}.

e We refer the reader to Lyons’ seminal article [21] or any textbook or lectures notes
on rough paths [22, 7, 17, 5, 1] for the basics on rough paths theory and simply
mention here that we work throughout with finite dimensional weak geometric
Holder p-rough paths X = 1@ X' @--- @ X[P!, with values in @Z[I;]O(RZ)@ say, and
norm

1=

%

X
|X|[l := max  sup Xt

. 1
I<i<[p] o<s<t<T |t — s|P

Note that if A = (0 OAMP--- A[p]) is the logarithm of the rough path X, we
have foral 0 < s <t < T,allie {1,---,[p]},

|Ad| =i X[t = 5|7

e Last, we use the notation a < b to mean that a is smaller than a constant times b,
for some universal numerical constant.

2 — Solution flows to rough differential equations

Pick o € [0,1]. A finite dimensional-valued function f defined on R? is said to have
a-growth if
@)
sup

reRd (1 + |1’Da
Let Vo and Vi, ---,Vy: [0,7] x R? — R? be time-dependent vector fields on R?.

< +00.

2. Assumption — Space regularity and growth. For any 1 < n < [p] and for any tuple
Ie{l,---,0}"™,
o the vector fields Vo(s,-) and Vip(s,-) are Lipschitz continuous with a-growth, and
their derivatives DVy(s, ) and DViyy are Cy (B, B), uniformly in time,
o for all indices 1 < ky,--- ,k, < [p] with 3. k; < [p], and all tuples Iy, € {1,--- , £}¥i,
the functions

Vo (s IWVir,_11(8,) - Vi (s,)Id - and - Vig, (s, -) -~ Viz (s, -)Id

are C’g with a-growth, uniformly in time.
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One can trade in the above assumption some growth condition on the V; against some
growth condition on its derivatives; this is the rationale for introducing the notion of
a-growth.

. Assumption — Time regularity and growth. There exists some reqularity erponents
K1 = H;# and Ko = % with the following properties.
o One has

’Vo(t,x) — Vo(s,x)’
sup sup
2€B(0,R) 0<s<t<T [t — |
e Foralll <n < |[p] and 1 < ki,--- ,kn, < [p], with >, ki < [p], for all tuples
Iie {1, -, d}¥, we have
Vi (@) - Vi (@& ) (@) = Vi (s,0) -+ Vi (s, ) (@)
sup sup

2€B(0,R) 0<s<t<T [t — s|m2

< (1+ R)%,

< (14 R)”.

We assume that the derivative in x of the Vi, 1(t,-) - Vir,1(t,-) also satisfies the previous
estimate.

Let X be an Rf-valued weak geometric Holder p-rough path. Set Ay := log Xy, for all
0 < s<t<T,and denote by s the time 1 map of the ordinary differential equation

[p]
v =(t—s)Vo(s,m(@) + > > ALV (s, ue(@)) (2.1)

k=1req1,... 03"

that associates to x the value at time 1 of the solution path to that equation with initial
condition x. Note that Assumption 1 ensures that equation (2.1) is well-defined up to
time 1 . Following [3], we define a solution flow to the rough differential equation

dor = Vo(t, pp)dt + F(t, ¢r)dXy, (2.2)

where F := (V7,...,V}), as a flow locally well-approximated by u. Here, we take advantage
in this definition of some variant of the definition of [3] introduced by Cass and Weidner
in [10]. For a parameter a, the notation C, stands for a constant depending only on a.

Definition — A flow ¢ : A x R? — R? is said to be a solution flow to the rough
differential equation (2.2) if there exists an exponent n > 1 independent of X, such that
one can associate to any positive radius R two positive constants Crx and ex such that
one has

sup |prs(2) — pus(x)| < Crx [t — 8|7, (2.3)
2€B(0,R)

whenever |t — s| < ex.

Note that we require the flow to be globally defined in time and space, unlike local flows
of possibly exploding ordinary, or rough, differential equations. The latter are only defined
on an open set of Ry x R? depending on X. This definition differs from the corresponding
definition in [3] in the fact that e is required to be independent of X. We first state a
local in time existence result for the flow, in the spirit of [3].

. Theorem — Let the vector fields Vy and (V1,...,Vy) satisfy Assumption 1 and Assump-
tion 2.



e There exists a positive constant ay such that for all R > 0, and all (t,s) € Ap with

|t — s| (1+ R)M o] (1 + HXH) < aq, (2.4)

there is a unique flow o : [s,t]?> x B(0, R) — R satisfying the estimate (2.3) with

1
1= L G =t (1 )

for some universal positive constant as. One writes o(X) to emphasize the depen-
dence of ¢ on X.

e Given a weak geometric rough path X and (s,t) € Ap and R such that condition
(2.4) holds, then o(X') is well-defined on [s,t] x B(0, R) for X sufficiently close to
X, and o(X') converges to p(X) in L®([s,t] x B(0,R)) as X' tends to X.

One says that ¢ depends continuously on X in the topology of uniform convergence on
bounded sets. As you can see from the statement of Theorem 5, the quantity |t — s| is
only required in that case to be smaller than a constant depending on X and R, unlike
what is required from a solution defined globally in time. The proof of Theorem 5 mimics
the proof of the analogue local in time result proved in [3]. As the proof of latter contains
typos that makes reading it hard, we give in Section 3 a self-contained proof of this result.

. Theorem — Let Vo and (V1,...,Vy) satisfy Assumption 1 and Assumption 2. There
exists a unique global in time solution flow ¢ to the rough differential equation (2.2).

e One can choose in the defining relation (2.3) for a solution flow

_1+10p]
p
for some universal positive constants ci,co.

e One has for all f € CIEPH and all |t — s| < ex the estimate

Cex=a(l+ X)), Crx = ea(l+ R)*(1+ [X]) P

foersl@) = {f(2) + (t = V(s f+2 Y XE Vil )f @)

k=1 1efo,--- 03"

S HfHClEP]+1(1 + R)(lpl+1) (1+ HXH)[p]+1|

sup
2€B(0,R)

When f = Id, one can replace (1 + R)*PI+Y) py (1 + R)® and Iflep by 1 in the
previous bound.

o The map that associates ¢ to X is continuous from the set of weak geometric Holder
p-rough paths into the set of continuous flows endowed with the topology of uniform
convergence on bounded sets.

e Finally, there exists two positive universal constants c3,cq such that setting
N = [03(1 + ||X||)p],
one has for all (t,s) € Arp,

1 f=ry
|t —s|» N )
(1+R) <1+C4m -1 s Zfa<1

ifa=1.

sup s () — x| <
z€B(0,R)

B

1+ R)|t — s|Pec4N‘t s|



The non-trivial part of the proof consists in proving that one can patch together the
local flows contructed in Theorem 5 and define a globally well-defined flow. As this requires
a careful track of a number of quantities, we provide a proof of the technical results in
Section 3. Since it is the main contribution of this work, we also give a proof of this
theorem using some results of lemmas and propositions of Section 3.

Proof of Theorem 6 — Fix (s,t) € A7. Forn > 0and 0 < k < 2" set t} := k27" (t—s)+s
and pi’ 1= pugn, gm0 -opyn n. Here is the makor input for the proof of the statement.
Proposition 16 below states the existence of universal positive constants ¢; < 1 and
¢o such that for

1
sl (14 X)) <
we have for all n > 0 the estimate

(14 X + Ry, (2.5)

sup  |ugy(2) — pes(2)] < e
z€B(0,R)

An elementary Gronwall type bound proved in Lemma 9 also gives the estimate
lpe,s| < R+ ca(1+ R)°.

Putting those two bounds together, one gets the existence of a positive constant ¢
such that one has

<R+c¢(l+R)%,
L*(B(0,R))

for all 0 < k < 2" — 1. Let n = n(R) be the least integer such that

O+« 0
Hﬂt"tg L Henen

a
(1+ 2c)h’f% .

This is the smallest integer such that for all the intervals (¢}, ¢}, ;) satisfy the assump-
tion of Theorem 5, with starting point pmep oo ,Ut?tg( ) and z € B(0, R). Then,

1
275 (1+ RYBIFT [t — s[7 (14 |X]) <

we have for all mg, -+ ,man_1 € N,
mon _q mo [p]+1
n Ot O lmin — < -5 1+R 1+ X
‘/‘t ot Heingn /‘tSHLOO(B(OvR)) cft | )*(1+1X])
Sending successively mon_1,...,mg to 00 and using the continuity of ¢ with respect

to its R%-valued argument gives

02|t—s| L4 Rye 1+ X+ (26

HSDthtng O O Ypmgn — His
Set, for € B(0, R),
Pts(T) 1= Pagem, | 00 pgn(T).

Splitting the intervals (¢7,t},,) into dyadic sub-intervals, one shows that for all u €

[s,t] of the form u = k2~ N(t — §) + s, one has
Ptu © Pu,s (.%') = (Pt,s(x)-
Finally, since the map
(2,8,1) = pen_, in(2)
is a continuous for all 0 < k < 2™ — 1, so is . This proves the first item of Theorem

6.

The second item is a byproduct of the bound of Equation (2.3) and Corollary 13
below. The third item of the statement is straightforward given that ¢ is constructed
from patching together local solution flows.



Choose finally a positive constant c3 big enough such that setting

v = [ iy

1
one has 52 < ex and (1 + |X|) N7 < 1. Define also

ti = %(t—s)—i—s,

and Ry := 0 and
R;:= sup |gotis(x) — £C|,

2€B(0,R)
for 1 <7 < N. Note that
[p] i ,
1+ [X] i 1
Cltsa—tl x| = 2. (71 it —s|p < |t —s|7,
i=1 P

for a universal positive multiplicative factor. We thus have
O1s(®) = = @rt,y (ri16(2)) =ty (01, s(2))
+ ity (@ti_ls(x)) — 1, s(x)
+ 1 _,s(T) — 2,
and there is an absolute positive constant K such that
Ri<Ri+K(+R+Ri)|t—s|7;
the bounds on ¢s(z) — x given in the statement follows from that relation. >

As a corollary of Theorem 6, one proves in Theorem 24 the differentiability of the
solution flow with respect to some parameters. This theorem will be of crucial importance
in the forthcoming work [4]; we state it here in a readily usable form.

. Assumption — Let A be a Banach, parameter space and let U be a bounded open subset
of A. Let (V;)o<i<s be time and parameter-dependent vector fields on R with the following
reqularity properties.
o There exists some exponents ki > % and Ko > [%], such that we have for all
integers (1, By with 0 < f1 + B2 < [p] + 1,

DI DLV (¢, ., ) — D D2V (s, .. H
H GURD) o(s, )LOO([Rde)

su
OSSS$ST |t — s|r1

e For all 1 < i< ¥, and all integers By, fa with 0 < Py + P2 < [p] + 2, we have
HDngngVi(t, ..) — DE* D2 V(s

< 400,

-
sup L*®(RIxU)

0<s<t<T |t — s|r2

< 400

Refer to Definition 22 in Section 4.3 for the definition of the local accumulation Ng
of X.

. Theorem — Let X be a RY valued weak geometric Holder p-rough path and suppose that
Vo, Vi, -+, Vi satisfy Assumptions 7. Let p(a,-) stand for all a € U for the solution flow
to the equation

de(a,-) = Vo(t,a, o(a, -))dt + a(t, a, o(a, -))dXt. (2.7)
Then for all 1 < s <t < T, the function (a,z) — @is(a,x) is differentiable and



o for |t — 5|%(1 +|X|) €1, anda e U,

sup | Dagprs(a, )| < [t — s|7 (1 + | X])¥!

xeRd

e there exists positive constants B and c such that one has

sup | Dagprs(a,2)| < [t — s|7 (1 + |X]) e

xeRd

forall0<s<t<T.

3 — Complete proof of Theorem 5

The structure of the proof is simple. One first proves C? estimates on the time r map
of the ordinary differential equation (2.1), this is the content of Lemma 9. Building on
a Taylor formula given in Lemma 11, and quantified in Lemma 12 and Corollary 13, one
shows in Proposition 15 that the p’s defined what could be called a ’local approzimate
flow’, after [3]. We then follow the construction recipe of a flow from an approximate flow
given in [3], by patching together the local flows. The crucial global in time existence
result is obtained as a consequence of a Gronwall type argument, as can be expected from
the fact that, in their simplest form, the growth assumptions of Theorem 6 mean that all
the vector fields appearing in the approximate dynamics have a-growth. Readers familiar
with [3] can go directly to Section 4.

Recall the definition of y, as the solution of the ordinary differential equation (2.1)
defining ju;,. The first step in the analysis consists in getting some local in space C?
estimate on y,(-) — Id, with y,(-) seen as a function of the initial condition x in (2.1). Set

[p]

Clo—slyx = [t — s+ > [t = s|» | X]".
=1

. Lemma - Assume Vy and (V1,...,Vy) satisfy the space regularity Assumption 1, and
pick (s,t) € Ap with

1
t— s (14 X)) < 1.
Then

o [yr(z) — x| < (1+]2])"Clspx;
o [Dy:(z) —1d| < Cp_yp x|
o [D*yr(2)] < Oy yx|-

The maps y.(+) are thus C}, uniformly in r € [0,1].



Proof — Apply repeatedly Gronwall lemma. We only prove the estimate for y,(z) — 2 and
leave the remaining details to the reader. It suffices to write

[p]
lyr(z) — x| <(t — )|V (s, x)| + Z Z ’AZ’SIH‘/[]](S,.%')‘
k=1re{1,... 0}*
+ (t—s) f
0

(s,yu(:v)) fVO(s,x)‘du
[p]
+Z Z ’A ’f ’V S, Yu( —V[]s,x)‘du

k=17ef1,...

sc70t—-sLHXH) Ll + [ o) — aldu).

to get the conclusion from Gronwall lemma, using the fact that Cj;_g x| < 1, for

|t — s|p( + |X]) < 1. The derivative equations satisfied by Dy, and D?y, are used
to get the estimates of the statement on these quantities, using once again that the
condition of the statement imposes to C' to be of order 1. >

10. Remark — Would Assumption 1 require in addition that the vector fields Vy(s,:) and
Vin(s,-) were CZ)H? with a-growth, uniformly in 0 < s < T, we would then have the
estimate

sup | DMyp(w)] < Clr—sf Jx»
2<k<n+2
1
under the assumption that |t — s|? (1 + || X||) < 1

The second step of the analysis is an elementary explicit Taylor expansion; see [3] for
the model situation. Given 1 < n < [p], set

?::{(rn’...7r1)e[0’1]" : rngrn_lg...gm}

and
jn,[p] = {([l,... ,In)E {1’... ,d}k‘l X oeee X {1,... ,d}kn : Z kn, < [p]};
m=1

indices k,, above are non-null.

11. Lemma - Assume Vy and (Vi,..., V) satisfy the space regularity Assumption 1. For
any 1 < n < [p] and any vector space valued function f on R? of class C™ we have the
Taylor formula

f(us(@)) = f(@) + (= s)(Vols, ) f) (x)
F LS LA (Vo) Y50 @)

i=1 " T [p m=1
£ 3 TTAE [ (V) Vi) (@)
jn [p] m=1 1



where
1

(@)= (0 =9) [ {00.90) (@) = (s )@
n—1 %

s M) [T A [ 0 Ving )+ Vi 5:)5) (s (@)
i=1 " T [p] m=1 A

£ N TLA [ () Vi 05) (@) dr
=2 Ji—1,[p] m=1 1

ki+-4ki=[p]+1

Proof — The proof is done by induction, and relies on the following fact. For all u € [0, 1]
and all g € C!(B; B), we have

g(wg(x):@S)L’"(%(S,.>g)(yu)du+ 5 Af,;ffor(vms,o)g)(yu)du;

1<k<[p]
16{17"' 7£}k

this is step 1 of the induction. For step 2, apply step 1 successively to ¢ = f and
u =1, then g = (V(s, )f) and u = r. This gives
Flpus(@)) = f(z) = (¢t =) (Vo(s, ) f) (2)
1
=) | {000 @) - (Vals, ) ) @)} dr
0
2 A M) @)

1<k<p]
Te{1, 0}F

+ t - Afslf f VO )f) (ym) dradry

1<k<
Ie{1,- ,E}

b8 T (Vo Ving 600 ) .

1<k ka<[p
Le{l, ,E}’“l
126{17"' 7€}k2
The last term of the right hand side can be decomposed into
5 Z 1_[ A?s A Iz] )‘/[11](55).]0)(:6)

32 [p]m 1

b 3 T Akt f { Va5, MWiaaa (5, 19) ) = (Vi (5, )Vi) 517 @) dradi

Ja,[p) m=1 H
+ Z H Akm fm J- 12](8’ ')V[h](sv )f) (yTz) dradry;
k1+ko=[p]+1 m=1 At
I1,1p]

this proves step 2 of the induction. The n to (n + 1) induction step is done similarly,
and left to the reader. >



12.

11

Given f € CgL(Rd, [Rd), set

[ £l = [£(O)] +  sup HD’ffH
ke{l

EY (]

A function g € C"(R%,R?) is said to satisfy Assumption H if for all 1 < ky,... k, < [p]
with Y8 ki < [p], and all tuples I, € {1,...,0}* the functions

Vb(S, ')‘/Y[In_l](s") : ‘/Y[Iﬂ(s")g and ‘/Y[In](s") : ‘/Y[Iﬂ(s")g

are CZ, with a-growth, uniformly in s € [0,T].

Lemma — Assume Assumption 1 holds, and pick a function f € C'(R%,RY), for some
2 <n<|[p]. Given (s,t) € Ap with |t — s|%(1 +IX])) < 1, we have

n no 1 ]
sup  |eid (@) < 1 fn(1+ R (1 + X — )7,
z€B(0,R)

for all positive radius R.
o If furthermore D"*1f exists and is a bounded function, then

1+(p]

(14 R)™ (1 + X))t =)

sup ’D Efe
zeB(0,R)

o If finally f satisfies Assumption H, then the previous bound on Dmetsf holds with
(1+ R)* in place of (1 + R)™.

Proof — Write dr for dr;...dr; on AY, and recall that

=2 ji*l,[p] m=1
k1+-+ki=[p]+

Recall also that C};_, x| < 1 under the assumption of the statement.

o As we have for all positive radius R, and all points z,y € B(0, R), the estimate

Vo(s, ) f(z) = Vo(s, ) F )] < If (1 + R) %2 — ]

uniformly in 0 < s < T, it follows from Lemma 9 that

](t—s> | {06600 @0 = Vit 1) @) Jar| < 171t = 5) Coygpg (1 4+ B

0

Note that if Vy(s,-)f is globally Lipschitz continuous one can replace (1 + R)?® above
by (1 + R)“.
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We estimate the size of the spatial derivative of the first term in the above decompo-
sition of e?s’f writing

(6= [ (D(36(5.) (0r(2)) Do (0) — D5 )1) ()
< ‘(t —5) Ll dr(D(Vo(s, )f) (x)) <Dyr(x) — Id)‘
+ \(t ~s) f dr(D(Vo(s. ) (vr (@) = D(Va(s.)f) (x) ) Dyr (=)

0

dr

1 o
< flnlt = sr (14 R (14 |X]) !
Once again, one can replace (1 + R)?* by (1 + R)® if f satisfies Assumption H.

o The two other terms in the decomposition (3.1) of Eg’f are estimated in the same
way. Remark that

sup | (Vols, MWiag(5,) - Vi) (5, ))@)] < 1711 + BYEHe
z€B(0,R)

and that

sup [ D(Vols: )Ving (5,°) -+ Vi (s, 1) @)] < IFfa (1 -+ R)D
zeB(0,R)

One can replace in the previous bounds the first term (1 + R)(*De by (1 + R)* and
the second term (1 + R)+D® by 1 if f satisfies Assumption H. So

Z al Z t o S H Akm’lm f i+ (Vb(s’ .)V[Ii](s’ ) e V[Il](s’ )f) (yri+1) dr

S Il (t =) (1+ R)™ (1 +x))
and
n—1

IEPHEEIRETE
Tilp)

2:1

J e PV Va0 50) Vi (601) 00} Do)

1
< flnsr (= )5 (1 + R)™ (1 + |X]) P!

Once again, if the function f satisfies Assumption H, one can replace (1 + R)"® by
(1 + R)* in the first bound and (1 + R)"™ by 1 in the second bound.

The analysis of the last term in the right hand side of the decomposition (3.1) for €}
is a bit trickier since greater powers of |X| can pop out. Indeed, one has

DY HA’“’"’“ f (Vi () Vi (s, )f f (o) dr

=2 Ji1[p)
k1+-+ki=[p]+1

7f

[p] [p]+i [p]+i
Sl X5 (LX) =]

=1
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But recall that |t — s\%(l + [X]) < 1, so we have (1 + HXH)%I\t - s|% < 1, Hence
for all i € {1,--- ,[p]}; this gives the expected upper bound. The same idea is used
for the spatial derivatives. Once again, one can replace (1 + R)"® by (1 + R)“ if the
function f satisfies Assumption H. >

13. Corollary — We have

[p]
foms@) = {f@) + (= Vols, ) f@) + Y, Y, XE'Vils,)f @)

k=1 I€{07 7£}k

sup
z€B(0,R)

[p]+1

o 1
< [ Flper (1 + RXEIHD (14 x P e g5

for all f € CIEP]H with a-growth, and 1 < k < [p]. We also have

[p]

sup |pes(z) — (x + (t—s)Vo(s,z) + Z Z Xﬁ’ﬁ&(s,x))‘

z€B(0,R) k=1 IE{O,---,Z}k
[p]
< (1+ R (1+ X)) P — 5557
and
[P]

sup |Dpys(x) — (Id + (t —s)DVy(s,x) + Z Z XfS’IDVI(s,x))‘

z€B(0,R)

k=1 reqo,.-- 03"

[p]+1

< (1+ R (1+ X)) — o5

Proof — We only have to bound the sum over J,, 1) of the terms

11 At Ln ar (Vg (s, -+ Ving (590 @) = (Vinag(5:) -+ Ving (5, @)

for n = [p], thanks to lemmas 11 and 12. We have ky = -+ = kpp; = 1, on Jp) ] As
we know that we have

[(Vis.)1) @) — (Vi(s. 1) )] £ (L4 B f il — vl
for all € {1,--- ,d}[p], and all z,y € B(0, R), it follows that

Z (Atls) . fAn {(Vl[z)] (8:°) Vi (s, )f) (Yrn)

Ily"'vl[p]e{lv"'vg} 1

— (Vi (s,7) -+ ,Vfl(s,-)f)(x)} dr

1 [p] i+[p] .
< (4 BRI g 5 e
k=1
a([p]+1) 1+[r) [p]+1
<(1+R) (t—s) 7 (1L+][X]) .
The first estimate of the corollary follows then from the fact that exp(As) = Xis.
The two other estimates are consequences of the fact that the identity map satisfies
Assumption 1 and Assumption H. >

14. Remark — As in Remark 10, one can require that Vo and V|5 are more regular, and ask



14

o Forall 1 < ki, -k, < [p], with 31 ki < [p], and all I, € {1,--- ,£}%i, the

functions
‘/0(87 ')‘/[In_l] (37 ) e ‘/[11] (37 ) and ‘/[In] (S, ) e ‘/[11] (S, )

are C§+" with a-growth, uniformly in time.

Under that stronger reqularity assumption, we have for all 2 < k <n +1,

sup
z€B(0,R)

D* pug(@)—{ (£ = 5)D*Vi(s, @ +Z Z Xﬁg’D’fvz(s,m}’
J= 1[6{0

[p]+1
<1+ R)® (14 X)) ﬁfﬂ%

The next proposition shows that p satisfies a localized version of an approzimate flow;
see [3].

15. Proposition — Given 0 < s <u <t <T, with (t — s)% (1+ HX||)[p] < 1, we have

sup ’Mtu o ,U'us(x) - Mts(x)’ 4 D(Mtu o ,U'us)(x) - D(;“*ts)(x)
z€B(0,R)

< (1+R)™ (1+ X))

Proof — First, remark that
Htu © fhus(T) = :“uS( )+ (t = U)VO(U Hhus (2 ))

+ Z Z H Akm,[m{ )V[h](u7)}(ﬂus(x))
+5tu(ﬂus( ))7

where &5(z) := ag]’ld(x) + ¢}4(x) and

el (z) = 2 HA“’“I {VIId)(s,yrn)—(Vﬂd)(s,x)}dr,

Ie{1,-- [p]

for any 0 < a < b <T. As we also have

fras(@) — ps() = —(t — ) Vs, )

vl i
2 2 { Tkt T A} 0o ) Va0 0) (2
= i,[p]

m=1 m=1

+ Eus() + Ers (),



15

this gives
Mty © ,Uus(x) - ,LLtS(SC)
= (t—u) (VO (u, Hus (w)) - VO(Sa Mus(x)))

(6= u) (Vo (s, 1us (2) = Vo (s, 2))
[ i i i
+ Z { n AbmiIm n AFmiTm H Af;"’lm}(v[fi](sw)'"V[Il](sa')ld)(x)

+ . ll ﬁ Ai:"”]m{(v[]i](u, ) V[h](”? ')Id) (Mué(x))
= (Vi (s,) -+ Vi) (54 1) (pus (@) |
+ Z ! Z 1_[ A { ( ")""/[Il](sa')ld) (Mu,s(x))

— (Vi (s ) Ving (5. 1) )}
+ Etu (MUé(‘r)) + Eus (ZC) + éts(l‘)
= (1) +--- 4 (6).

The bounds of the statement can be read on that decomposition; we give the details
for (g, © pus)(x) and live the details of the estimate for its derivative to the reader.

It follows from Assumption 2 on the time regularity of Vp and the Viy,j... V[ jId that
1 K
O]+ (@] < (0 B (= w)(w— )™+ (14 XDt = w)? (u— 5))

1+[p]
SA+RP (t—s) 7 (1+]x])7

Lemma 12 takes care of the remainder terms (6). By using lemma 9 and the fact that
Vp is Lipschitz continuous in space, uniformly in time, one gets

(2)] < (t—u)(u—s)> (1 + XN+ Ry < (k- s) 5 (1 + X+ Ry,
To estimate the terms (3) and (5), set
g(s,+) = Vi (s,-) - Vi (s, )1d.
We start by doing a Taylor expansion of g(s, ,uts(x)) using Lemma 11, to the order
n = [p]—=2_s kj. Asg(s,) satisties Assumption H as a consequence of Assumption 1,
one can use Lemma 12 to get the expected bounds, using the fact that X, X; ., = X; s

and exp(A) = X. Details of these algebraic computations can be found in the proof
of the corresponding statement in [3]. >

Remark — One has similar local bounds for higher derivatives of iy, © phys — ts in the
setting of Remark 14.

Write here part of the conclusion of Proposition 15 under the form

SUp e © pus(@) = pus (@) < Co (14 R)* (14 X]) 7!
zeB(0,R)

)

for some positive constant Cy. Given n > 1, and 0 < s <t < T, set t} := k27"(t — 5) + s.
Pick ¢g such that

_1+[p]-»

27 5 (1+2) <1




16

and
Co
_1+[p]—p

1-2""7 (1+2¢)

16. Proposition — For all 0 < s <t < T with
1
Lit —s» (1+ |X]) < eo,
and all positive radius R, we have

1
sup Mtgntgnilo...omtg(x)futs(x)‘ Lit—s| 7 (1+R)® (1 +|x])7*

|z|<R

Proof — The proof is done by induction on n. Note first that we can take L enough to have
£ <1land Cli—s|,|x| < €0- Proposition 15 provides the initialisation of the induction.
Assume step n of the induction has been proved and set

t+$ tn+1
2

U=
so the statement of the proposition holds on the intervals (s,u) and (u,t). We have
’(Mt"“t;f{ll o OMt?“tg“) (m)’
’(utnﬂt%ll 0---0 Mt?ﬂtgﬂ)(x) — uus(x)‘ + | s ()
_ 1+[p] +[p]
<L2 7 1+ R (1+ X))+ R
+ Cle—spixg (1 + )"
<R+2(1+ R)”

and

sup ‘D,utu(x)’ < 14 2e,
zeB(0,R)

by Lemma 9. Furthermore we have

n+1 ,n+1 (O ) n+1,n+1 X
Iut2n+1t2n+1 1 Mtl tO ( ) IutS(

= (,LLthrl 1 O+ O lyn+1 yn+l Mtu) o <Mt"“ ntl O -O,utrlwltgﬂ)(x)

on+1%n+1_1 2141 2” 2” 1
+ Htu © (Mtg,fltgf{il 00 :“t’;“tg“) (@) — fpy © pys(z)
+ Hty © Mus(x) - ,Uts(x)-
We thus have for all z € B(0, R), the estimate
g, g st

1+([p]

t—s <1+R+280(1+R)°‘)a(1+HXH)[p]

+1

<z

1+(p]

+(1+20)L(1+R) (1 + |x]) P!

1
(14 R (1 + x|

from which the induction step follows given our choice of €y and L. >
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The same bound for the derivative of the approximate flow requires a bound on |t — s|
that depends on (1 + R)?, such as described here.

17. Proposition — One can find a positive constant €1 < 1 such that for 0 < s <t < T with
1 e
Colt — s[» (1 + R) W01 (1 + | X]) < e,

we have, for all positive radius R,

1+[p] 1
sup | D (s, 0+ 0 ey ) (2) = D) (8)| < Lt =572 (L4 R)™ (1+ |X]) 7

lz|<R

Proof — The proof is a variation on the theme of the proof of Proposition 16. We provide
the details for the reader’s convenience, and keep the notation u for STH We proceed

here as well by induction and loot at the 'n to n + 1’ induction step of the proof.

D(,utn+1 gl 00 /,Lt?+1tg+1) (x) — Dps(x)

on+1"9n+1_1

= {D(,u,tnﬂ 1 OO lynt1 tn+1) - DMtu} (/,Lt;z;{lthrl 0---0 Mt;tJrlthrl) (ac)

on+1%9n+1_1 241721 21 —1

X Dpgpgr, 00 i) (@)

+ {(Dﬂtu) ((Mtg;;ltnﬂ ©--0 Mq“tg“)(ﬂ?)) — Dy (,U*us(x))}

2n—1

X D(/,Lthrl gL OO Mt;t+l7tg+1) (x)

on  ston _
+ Dty (MUS('%'» <D(Mtgrflt§;{il -0 ,Uatrlt+1t61+l> (-%') - DMus(x)>
+ D(,“tu o ﬂus) (x) - D,U'ts(x)'

We know from the induction step and the R-dependent assumption on u — s that

_1+[p]

‘D(“t;ﬁlt;ﬁl SRR #ty+1tg+1)($) - Duus(:v)’ <e 2 T,

and
D (grgr 0+ 0 g ) (@)] < 14 261,
on

on_1
We also have from Proposition 16
’(Mt;’{lt;’fﬂl 0-++0 /j/t;tJrlthrl) (m)’ < (1 + 281) (1+R)—1,

and Lemma 9 gives us a uniform control on the Lipschitz size of the up,. We thus
have

‘D(/,[/tn+1 gntl 0:::0 l,l,tll+1tg+1)(:1;) — D,uts(x)‘

on+1Yon+1_4
1+(p] 1+(p]

SL(1+2e) P27 |t —s| 77

(1+ X" 1+ Ry
+L2 e (142 ft—s| 2 (14 XD 1+ Ry
FL(A+e)2 0 ft—s L+ XD A+ R)
+Colt—s| 7 (14 X+ R

1+([p]

1+([p]

(T+20)% +e1(1+2e1) + (1 + 51))) t—s|"7 (1+R)™(1+ HXH)[I)]H_

1+([p]
P

< (Co b2

An adequate choice of €1 closes the induction step, given the definition of L. >
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Remark — In the improved reqularity conditions on the vector fields stated in Remark 14,
we have for all 2 < k <n+1 and for all

ka

Colt—s[7 (1+ R)THT (14 |X]) <&,

one have

1+[p] [p]+1

sup ‘Dk(,utgnt” 00 pgnn ) () — Dk#ts(l“)‘ SLft—s[ » (1+R)*(1+|X])

2n—1
|z|<R

With all these preliminary results at hand, we are now in a position to give a proof of
our local well-posedness result, Theorem 5.

Proof of Theorem 5 — We treat existence and uniqueness one after the other. We keep
the above notations, and set, in addition,

fits = Pty _, © " © Hapeg -
Local in time existence — For all z € B(0, R),

pis (@) = pis(@) =

2n
n+l n+1 ©-:--0 n+1 yn+1 O ( n+1 ,n+1 O n+1 n+1)
kzl <Mt2n+lt2n+1_1 Mt2k+3t2k+2 Mt2k+2t2k+1 Mt2k+1t2k

— n+l n+1 ©--+0 n+l ,n+1 O( n+1 n+1))
’ut2n+1t2n+1,1 ’ut2k+3t2k+2 Mtk+lt2k

O fugngn O+ O fignin (). (3.2)
It follows from Proposition 17 that the maps

Hyn+1 n+1 O+ O Uyn+tl 4nt1
bon+1lon+1_q Lok +atorto

are Lipschitz continuous, uniformly in n, with a Lipschitz constant that depends
neither on X nor on R. Furthermore, thanks to Proposition 16,

’Iu’tzt271 o---0 /Lt{btg(ﬂt) <R+ 261 (1 + R)a
Finally, Proposition 15 tells us that

[p]+

n n —pleltizp Lilp] a 1
) — @) <277 ft—s| r (1+ R (14 X)L (3.3)

The sequence pj, is thus uniformly convergent on the ball B(0, R) to a limit, contin-
uous, function denoted by ys; it satisfies the estimate

1+([p] a 1
sup | rs (@) — pus(@)| S [t—s| 7 (14 R)™ (14 |X])P*.
zeB(0,R)

Finally, for all dyadic points a € [s,t] and all x € B(0, R), we have by construction

Pta(T) © Pas(T) = p1s(T).

As X is an Holder continuous rough path, the function (x;s,t) — ps(z), from
B(0O,R) x {0 < s <t < T} to R is continuous. The continuity of ¢ as a func-
tion of (x;s,t) follows in a straightforward way; its continuous dependence on X is a
consequence of the continuous dependence of p with respect to X. Note however that
¢s is only defined at that stage for s and ¢ close enough.
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Uniqueness — Let 1 stand for another solution flow, with associated constants £x and
CRrx, and exponent 77 > 1. Take R and (s,t) satisfying the conditions of Proposition
17, with [t — s| < 63 x. Then

15 (@) = Ys(2)

‘ Pts (L ( wts ‘:u'ts — Pts (1’) ’ +

< |ut(@) - %m\
2"n—1

t 4

< thn_y © 'u't2+2t7§+1) © Bty (3.4)

- (,Utgntgn_l °© Mtg+2tg+l) °© T/thHt") O thyngn O+ 0thmyn (x)

< |ty (@) = o) + 277D,
Local uniqueness follows from that estimate. We have used here the fact that the
are Lipschitz continuous, uniformly in n, and that

sup  [rs — fee(@)] < Crex It — o7
zeB(0,R)

4 — Corollaries and extensions

We emphasize in the Section 4.1 and Section 4.2 two consequences on solutions to rough
differential equations of the above results/computations. Young and mixed rough/Young
equations are considered in Section 4.1, and differentiability of the solution flow with
respect to parameters is considered in Section 4.2. The estimates on the derivative flow
we get there will be used in the forthcoming work [4] on limit theorems for systems of
mean field rough differential equations. We worked so far in with weak geometric Holder
p-rough paths; one can actually work with general rough paths, controlled by arbitrary
controls [21]. A non-explosion criterion with quantitative estimates is provided in Section
4.3 in this more general setting.

4.1 - Young and mixed rough-Young differential equations

The proofs of theorems 5 and 6 do not use the fact the the drift term is driven only
by time. Instead we treat the signal ¢ — ¢ as a Lipschitz path, and deal with it using
Young differential calculus techniques. A direct counterpart of this approach is a loss of
regularity in the coefficients, either in time and space. A real reward of this approach,
which does not modify the proof but requires only more notations, is an extension of the
results to a mixed Young-Rough differential equation.

Let Vp and F = (V4,...,V}) be given; let another family G := (W1,...,W,,) of vector
fields on B be given. A solution flow to the mixed rough-Young differential equation is
defined as in Definition 4, with the ’approximate flow’ u;s defined as the time 1 map of
the ordinary differential equation

yr = Vo(s,yr)(t — s) +ZY;SW S, Yr —|—Z Z A V[ﬁ(s,y,n).
k= Ie{1,-
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The constants ¢ and C' that appear in the defining estimate (2.3) are now allowed to

depend on R, X and Y.

Corollary — Let X be an Rf-valued weak geometric Hélder p-rough path and Y be an
R™-valued %—Hﬁlder path, with 1—1) + % > 1 and p = 2. Assume (Vo,F) and (W;,F) satisfy
Assumption 1 and Assumption 2 for all 1 < i < m. Assume furthermore that there exists
a positive exponent k such that k + % > 1, and

’Wz(t7 .%') - Wi(87 1’)’
sup sup
2€B(0,R) 0<s<t<T |t — s|*

< (14 R)“.

Then the rough differential equation
dpy = Vo(t, pe)dt + G(t, 1) dYy + F (L, ) dXy,
has a unique global in time solution flow.

On can choose the constants ex y and Crx y such that

1 1

(t—s)s (L+[Y]) + (t—s)r (L+X]) S 1,
and
Crxy = (14 R)™ (1+ Y] +[X]) (1 + |x])™
and

N = max {[(1+ Y7, [(1+ X7}

The proof is left to the reader since it is a direct modification of Section 3, with more
notations.

4.2 — Derivative flow

Rough differential equations
dor = Vo(t, pr)dt + F(t, ¢r) dy (4.1)

generate flows of diffeomorphisms under appropriate regularity conditions on the driving
vector fields. The pair (¢, Dp), made up of ¢ and its differential, also satisfies an equation,
with ’triangular’ structure

d(Dy) = DVy(t, p¢) Dy dt + DF(t, o) Doy dX;.

One can find results on derivative flows in the book [17] of Friz and Victoir, Chapter 11;
see also the interesting works [11] and [12] of Coutin and Lejay. One gets another proof
of the differentiability of the flow with respect to the initial point as a direct byproduct of
the results of Section 2. Pick p > 2.

Assumption — Let V and Vi,...,Vp be a set of time dependent vector fields on B such
that there exists two exponents with ki > %, and Ko + % > 1, such that

“‘/()(t? ) - ‘/0(87 )“C§+”

sup < 40
0<s<t<T |t — s|m
and each V; satisfies the estimate
[Vatt, ) = Vis, ) gan
sup b < +oo.

0<s<t<T [t — s|r2
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21. Theorem - Let X be a weak geometric Holder p-rough path and (Vo,Vi,--- ,Vy) which
satisfy Assumption 20. Let ¢ stand for the solution flow to the rough differential equation
(4.1). Then each s is of class C™, has linear growth and bounded dem’vatz’ves Further-

more for a suitable positive constant €3, independent of X, and |t — s|» (1 + ||XH) €3, we
have

DMt = Do | ==l (11X

for all 0 < k < n. Finally there exists some positive constants ci1,- -+ , ¢y, independent of
X, such that for all 0 < s <t < T, and every 1 < k < n, we have

sup |rs(x) — 2| < [t — 5|7 (1 + |X])

xeRd

and
1
sup ’Dkapts(x) — Dkap&s(x)’ <t — s\%eck“*s‘p]\/,

xeRd

where N = [c(l + HXH)fp].

Proof — We work here with o = 0, so we know from the above computations that for
1
it —s|»(1+[X]) <1, and all 0 < k < (n + 1), we have

[p] +1
\DF (i = pas) @) < P (1 X)) (4.2)
This implies that for all 0 < k < n the function Dk is Lipschitz continuous with
Lipschitz constant not greater than a constant multiple of |t — S| (1 + HX||) It

follows from this fact and the proof of Theorems 5 and 6 that there exists some maps
Aﬁ s> such that Dk,u{g converges uniformly to Aﬁ s as n goes to 0. One then needs
to prove that the A¥ are indeed the k-th derivative of ¢ and get the bounds of the
statement. Note that the small time bounds are direct consequences of equation (4.2)
and Remark 10 once we know that the D*u?, converge.

‘We have

1 o1
pi(z+h) = 7Dkut,s(x) =0 d)‘DlH_l:u'ts()‘h + ) (L= AR,

where h? = (h,--- ,h). Hence, thanks to Remark 18, for all |t — s\% (1+|X]) <1, the
—_—
7 times

maps D12 are bounded, uniformly in n, and

n . 1+[p] 1
ROy —D’mt8< ) hi| < (14 X)) P R

0<j<k

The previous bound allows us to send n to oo, and to get, as a consequence, that
AF. = DFypu. The construction of the global in time flow and its derivatives is done
by gluing all these local flows, as above.

We now turn to the global bounds. As previously let N be the least integer such that

1 1
T»N#(1+ |X]) <1, where the implicit multiplicative constant is chosen such that
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all the previous bounds hold. Setting ¢; := ﬁ(t — ) + s, one can use the local in time
bounds on some time interval of length (;11 — ¢;). We have

thﬁ(x) — T =Ptiti (Sotzew(x)) — Mgt (Soti718(x))
+ Mgty (‘Pti—w(x)) - ‘Pti_ls(x)
+ @ti—ls(x) -
Hence, if one sets R := sup, |¢y, s(x) — x|, one has
1 1
RYSR) | +C|t—s|? Silt —s|7.

Similarly, we have

D(PtiS(x) —Id = (D‘ptiti—1 ((pti—ls(x)) = Mtiti_q (‘pti—w(x)))D‘pti—w(x)

+ (Diacs (prss(@) = 1) Dty o(a)
+ Doy, s(x) —Id.

Again,given the choice of IV, one have can use all the local bounds on ¢, Dy, and u
and Dy, and setting R} := sup,, ‘D(pti,s(m) — 1Id|, one has

1 1 1 1
R; < C|t—s‘p +Ri71(1 + ‘t—s‘)P7
and 1
1 L
sup ‘DQOS,t(DU) — Id’ <|t— S‘;er:ﬂt—s\p]v_
X

One obtains the bounds for the higher order derivatives using Faa di Bruno formula.
>

4.3 — Finite p-variation rough paths

It is well-known the global bound for the differential of the flow, or the global bound for
the flow for vector field with linear-growth, is not not good — [8], [16], [15]. Indeed, in the
setting of weak geometric Holder p-rough paths, N ~ (1 + HXH)p , and for a Gaussian rough
path X, the quantity ||X| only has Gaussian tail and [E[ec”x”p] = +oo for any p > 2 and
any positive constant ¢. To derive some moment bounds of solutions of rough differential

equations, one need more advanced tools; we recall them here for the reader’s convenience.

Definition — A weak geometric continuous rough path with finite p-variation is a contin-
uous [p]-level weak geometric rough path such that

[p
HXH [0,7],p—var *= Z

1=

]
sup 3 1Xi 5] <+

1 ™ partition of [0,T] (tr thr1)ET

Set

U)(t, S) = HXHI[)S t]

,t|,p—var’

If X is a weak geometric continuous rough path with finite p-variation then w is a
control; it is in particular increasing in its two variables, super-additive and continuous
on the diagonal. Note also that a weak geometric Holder p-rough path is always of finite
p-variation since

w(t,s) < |t —s|(1+]X])".
The advantage of using the p-variation norm instead of the Hélder norm is related to
integrability properties for random rough paths.
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Definition — Given 8 > 0 define 7'05 =0 and
TiB_,’_l = inf{t e [Tf,T] :w(Tf,t) >0} AT.
The quantity Ng := sup{i > 0 : TiB < T} is called the local accumulated variation of X.

The following result combines results from Friz and Victoir [17] and Cass, Litterer and
Lyons [§]

Theorem — Let 8> 0, p = 2 and let X be a centered Gaussian process defined over some

finite interval [0,T]. Suppose that the covariance function is of finite p-two dimensional

variation for some p € (1,2). Then for any p € (2p,4), X can be lifted as a level-[p] weakly
1

geometric continuous finite p-variation rough path, and for 5 > 0, the process Nﬁz has a
Gaussian tails, namely there exists a constant p > 0 such that

2
E [exp (,uNBp)] < +00.

In particular, for p € (2p,4), and for any constant C' > 0,
E[exp (CNg)] < 1.

Friz and Riedel gave in [16] what is now the classical proof of this result, based on
Borell’s isoperimetric inequality in Gaussian spaces. Cass and Ogrodnik [9] use heat
kernel estimates as a substitute to isoperimetry to prove a similar result for Markovian
rough paths. Compare the following definition to definition 4.

Definition — A flow ¢ : Ar x R* — R? is said to be a solution flow to the rough
differential equation (2.2) if there exists an exponent n > 1 such that one can associate
to any positive radius R two positive constants Cr and e, independent of X, such that one
has
sup  |prs(@) — pus(z)| < Cruw(t, s)", (4.3)
2eB(0,R)
whenever w(t,s) < e.

Theorem — Let X be a weak geometric continuous rough path with finite p-variation. Let
Vo and (Vi,...,Vy) satisfy Assumption 1 and Assumption 2. There exists a unique global
in time solution flow ¢ to the rough differential equation (2.2).

e One can choose n = 1+T}p], e =cy and Cg = co(1+ R)?, for some positive universal

constants c1,ca, in the defining identity (4.3).

e One has for all f € ClEp]H and all w(t, s) < e the estimate

sup
z€B(0,R)

[p]
Foers@) = {f@)+ =9Vl f + Y, Y, XEVi(s)f @)

k=1 Ie{ov 7£}k

[p]+1

< HfHCIEP]*'l (1 + R)a([P]+1)w(t7 S)T.

When f = Id, one can replace (1 + R)*[PI*) by (1 + R)* and Iflep by 1 in the
previous bound.

e The map that associates @ to X is continuous from the set of weak geometric con-
tinuous rough paths with finite p-variation into the set of continuous flows endowed
with the topology of uniform convergence on bounded sets.
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e Finally, there exists f > 0 and c3 > 0 such that one has for all (t,s) € Ap,

1

1
1—1\ 1-a
((1+R)1°‘+C4w(t,s)zl>NB ”) —(1+R)|, ifa<l
sup  |ps(z) — x| <
2eB(0,R) 1
(1 + R)w(t,s)re=Ns, if a = 1.

One gets back Theorem 6 when X is an Hélder p-rough path, with N replaced by Ng.

Proof — The proof follows exactly the same steps as the proofs of Theorems 5 and Theorem
6. We give here the main changes and leave the computations to the reader.

First, there is no loss of generality in assuming that |t—s| < w(¢, s); replace if necessary
w(t,s) by w(t,s) = [t —s| +w(t,s). Set

[p]
C(t, s, X) Z

One can replace the constant Cj;_| x| by C(t,s,X) in Lemma 9 and Remark 10 as
soon as w(t,s) < 1; this ensures that C(t,s,X) < 1. Lemma 11 remains the same
as it relies only on algebraic manipulations. In Lemma 12, one has to assume that

'BI?T

1+[p]
w(t,s,X) < 1, and one can replace (1 + HXH)[p]H\t — 5] > in the estimates by

1+[p]
w(t, s) b~ recall |t — s| < w(t,s). The same replacement is done in Corollary 13
and Remark 14. Finally, using the inequality |t — s| < w(t,s) and the fact that the
real-valued functions u — w(t,u) and u — w(u, s) are increasing, one can also replace
1+[p] 1+[p]

(1+ HXH)[p]HH — s > by w(t, s) > in Proposition 15.
The proofs of Proposition 16 and Proposition 17 are a bit different, but the spirit is
the same. The main difference is that one cannot say immediately that w(t, HTS) <

w(t,s). But given (t,s) € Ap, there exists @ € (s,t) such that w(t,u) = w(u,s) <
Sw(t,s). Consider any sequence of embedded partitions (7")nen = ((t?)ie{o }> .

ne
with mesh going to 0. One proves by induction the existence of constants 0 < 5 < 1
and L > 0 such that for w(t,s) < 3, one has for all k < n,
[p]+1

sup g e 00 0 ki () — pres (@) < L(1+ R)*w(t,s) 7
z€B(0,R)

Let the integer 0 < ¢ n be such that t”“ < @ < t""L. One closes the induction

io+1°
n+1

and proves the follovvlng bound for all n € D\I by taking u = ¢;"7, using the fact that

(tn+1 )+w( tn+1) - 0.

io+10 ¥ U tig n—00

The same trick holds for the proof of Proposition 17, assuming that
w(t,s)(1 + R)1+ < .

One can again replace in Proposition 16,Propositino 17 and Remark 18 (1+]X) [p1+1 |t—
1+[p] 1+[p]
|

by w(t,s) »
For the proof of the local existence, one can proceed as in Lemma 2.1 of [14], and as
in the proof of Theorem 5. Let (( 7)ief0,.-- ”})nelN be the sequence of dyadic partitions.
Remark that since w is superadditive, there exists i such that w(ty ¢ ;) < (2" —
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1)~tw(t,s). Define the partition 7 = {s =tg, < --- <! | <t <--- <th, = t}and
set My's := pi's — pt,s, and
MY i= pun, m, OO fign g O fign  gn O fign  gn O fign gm — [l s.
t,s 2mvan 1 14+22"i+1 i+12"i—1 i—12"i—2 1°70 »S

‘We have

o~

Msp — MZ?S - {'utgn Agn_y OO HER 58, © (“tﬁpt? © Mt?ytﬁl)
= Bt tg_y © 0 O pa g en O (e )} O puy ity © by ()
3
The induction hypothesis and the bound w(t, s)(1 + R) ™+ < 3, then give

[p]+1 p]+1
p

M2, — M| < (28 =17 7 (L4 R)%w(s,t)

Repeating this operation until we get the trivial partition of [s,t] we see that
2’7’L
k
MtT,LS = Z Pt,ss
k=0

with
[p]+1 [p]+1

pEs(@)] < (L + R)¥w(t,s) v (2" —k) 7
Here we crucially use the fact that the composition of the flows are globally Lipschitz
continuous, uniformly in n. Hence M™ converges uniformly to a limit ¢; s — p14,s and

_[pl+2 [p]+1 [pl+1
sup |ors() — prs(x)] < (1 +R)® Zz 5 w(t, s) “ < (14 R)%w(t, s) *5
$€B(0,R) =0

The remainder of the proof follows easily from the proof of Theorem 5 and Theorem
6. Indeed, by construction, ¢ is a flow for all dyadic points, and then by continuity
for all points, and thanks to the continuity of y with respect to X, ¢ is continuous
with respect to X.

Note also that thanks to the superadditivity property of the control, one has

2" —1
[p]+1 [p]+1—p
Z ’I,U( zn-'r17 zn) P $ ie{or?aé}ifl}wQ?—i_l’t?) P ’U}(t, 8)7
k=0 b K

and since w is continuous on the diagonal, the above sum goes to 0 as n goes to
infinity. Local uniqueness of the flow follows — see Equation (3.4).
The proof of global existence is similar to the proof of Theorem (6). Use the sequence

of times (Tf )ien from definition 22. We have

oo @) —w =055 (05 (@) —pps (¢ (7))
g, (s (@) ¢ (@)

Ti—ls

+ @Tiﬁ_ls(w) - .

Define R; := sup,ep(o,r) ’@T@S(:U) - x’ and Ry = 0. The fourth item of the statement

follows then from the induction relation
+1

8 8 it o B8 o
Ri<Rii+w(r,1,_y) » 1+R+R)*+C(r;,7,_1,X)(1 + R+ Ri—1)“.

i i—1 i i—1

1
Since w(Tf,Tf_l) < 3, one has C(Tiﬁ,Tiﬁ_l,X) < w(Tf,Tf_l)E., hence

[p]+1
Ri—Ri_1S(1+R+R,~_1)°‘(w(rB T'B )p: —i—w(rﬁ Tﬁ )%)

i li—1 i i—1
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When o = 1 one end up with the following bound :

R < Ri_t + (1 + Rywl(t,s)7.

When a < 1, one ends up with

N 1
1 [p]+1 1\
Ry < (((1 +R)' + T ; (w(ri, Ti1) it w(n,n—1)zl7)) 1+ R)).

By using Jensen formula, one finally has the bound

N

[p]+1 1 1-1 1
Z (w(rs,7i-1) 7 +w(m,i1)?) SN rw(t,s)r,
i=1
which ends the proof. >
24. Theorem — Let p > 2 and X be a weak geometric continuous finite p-variation rough

path and let (Vy, -+ Vy) which satisfies Assumption 20. Let ¢ stands for the solution flow
to the rough differential equation (4.1). Then each ¢y s is of class C™, has linear growth
and bounded derivatives. Furthermore for a suitable positive constant €3, independent of
X, and w(t,s) < 3, we have

1+[p]
HDk(Pts - Dk,“ts " < w(ta 3) L
for all 0 < k < n. Finally there exists f > 0 and some positive constants ci,--- ,Cn,

independent of X, such that for all 0 < s <t < T, and every 1 < k < n, we have

1
sup ‘gots(m) — x’ < w(t,s)» N

xeRd

and

1
sup [D*g(2) — DFgq o(2)] S wit,s)re*e.

xeRd

Proof — We refer to the proof of Theorem 21. The first bound of the theorem is a direct
application of Theorem 23 with @ = 0. For the existence of derivatives and the

1
associated bounds, one can mimic the proof of Theorem 21 by replacing |t — s|? (1 +

IX]))? by w(t,s). The proof of the global bound is done in the same way as the proof
of Theorem 23. >
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