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UNDERDETERMINED BLIND SEPARATION OF AUDIO SOURCES IN TIME-FREQUENCY
DOMAIN

A. Äıssa-El-Bey, K. Abed-Meraim and Y. Grenier

ENST-Paris, 46 rue Barrault 75634, Paris Cedex 13, France

ABSTRACT
This paper considers the blind separation of audio sources in
the underdetermined case, where we have more sources than
sensors. A recent algorithm applies time-frequency distribu-
tions (TFDs) to this problem and gives good separation per-
formance in the case where sources are disjoint in the time-
frequency (TF) plane. However, in the non-disjoint case, the
reconstruction of the signals requires some interpolationat
the intersection points in the TF plane. In this paper, we
propose a new algorithm that combines the abovementioned
method with subspace projection in order to explicitly treat
non-disjoint sources. Another contribution of this paper is the
estimation of the mixing matrix in the underdetermined case.

1. INTRODUCTION

Blind source separation (BSS) considers the recovery of un-
observed original sources from several mixtures observed at
the output of a set of sensors. Each mixture contains a com-
bination of the sources that results from the mixing medium
between the sources and the sensors. The term “blind” in-
dicates that noa priori knowledge of the sources and the
medium structure is available. To compensate for this lack
of information, the sources are usually assumed to be statisti-
cally independent. Blind source separation has application in
different areas, such as communications, speech processing,
image processing and biomedical engineering [1].
A challenging problem of BSS occurs when there are more
sources than sensors, and this is referred to asunderdeter-
minedblind source separation (UBSS). A time-frequency based
UBSS algorithm has been recently proposed in [2, 3] to suc-
cessfully separate speech sources using time-frequency dis-
tributions (TFDs). This algorithm provides good separation
performance when the sources are disjoint in the TF plane. It
also provides the separation of TF quasi-disjoint sources,that
is the sources are allowed to have a small degree of overlap-
ping in the TF plane. However, the intersection points in the
TF plane are not directly treated. More precisely, a point at
the intersection of two sources is clustered “randomly” to be-
long to one of the sources. As a result, the source that picks
up this point now contains some information from the other
source while the later source loses some information of its
own. However, for the other source, there is an interference

at this point, hence the separation performance may degrade
if no treatment is provided for this. An increasing in the num-
ber of intersection points degrades the separation quality. In
this paper, we propose another algorithm, combining the TF-
UBSS with subspace projection, that allows an explicit treat-
ment of the intersection points. The main assumption used in
this algorithm is that the number of sources simultaneously
present at an intersection point in the TF plane cannot exceed
the number of sensors.

2. PROBLEM FORMULATION

2.1. Data model

Let s(t) = [s1(t), . . . , sN(t)]
T represent theN nonstationary

source signals. The source signals are transmitted through
a medium so that an array ofM linear sensors picks up a
set of mixed signals represented by anM -dimensional vector
x(t) = [x1(t), . . . , xM (t)]

T . We consider the instantaneous
mixing medium that is modeled as follows

x(t) = As(t) + w(t), (1)

whereA = [a1, . . . ,aN ] is the mixing matrix andw(t) =

[w1(t), . . . , wM (t)]T is the observation noise vector. We as-
sume that anyM columns ofA are linearly independent. The
goal of BSS is to recovers(t) from x(t). WhenM < N , the
problem becomes UBSS. LetΩ1 andΩ2 be the TF supports
(i.e. the points of TF plane where the local energy of the con-
sidered sources is non-zero) of two sourcess1(t) ands2(t).
If Ω1 ∩ Ω2 6= ∅, the sources are said to be non-disjoint in
the TF plane. The second assumption is that the sources are
not necessarily disjoint, and in particular, there exist, at most,
simultaneously(M − 1) sources at the same TF point. How-
ever, we still assume that there exists for each source signal a
regionRi in the TF plane where it exists alone, i.e. the energy
of the other sources are negligible at the TF points within the
considered region.

2.2. Time-frequency representation

TF signal processing provides effective tools for analyzing
nonstationary signals and linear time-varying systems, whose
frequency content varies in time. This concept is a natural
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Fig. 1. (a)–TF disjoint, (b) TF non-disjoint

extension of both the time domain and the frequency domain
processing, that involves representing signals in a two-dimensi-
onal space the joint TF domain, hence providing a distribution
of signal energy versus time and frequency simultaneously.
For this reason, a TF representation is commonly referred to
as a time-frequency distribution (TFD). TFDs have been ap-
plied to a wide variety of engineering problems. Specifically,
they have been successfully used for signal recovery at low
signal-to-noise ratio (SNR), accurate estimation of the instan-
taneous frequency (IF), signal detection in communication,
radar processing and for the design of time-varying filter. For
more details on TFDs and related methods, see for example
the recent comprehensive reference [5].
The method presented in this paper, uses the Short-Time Fourier
Transform (STFT) that is defined as:

Sx(t, f) =

m=+∞
∑

m=−∞

h(t − m)x(m)e−j2πfm (2)

whereh(t) is the Hamming window.

3. CLUSTER-BASED TF-UBSS APPROACH FOR
DISJOINT SOURCES

In this section, we briefly review the STFT method in [2],
and propose acluster-based linear TF-UBSS algorithmusing
STFT to avoid some of the drawbacks in [2].
First, under the transformation into the TF domain using the
STFT, the model in (1) leads to:

Sx(t, f) = ASs(t, f), (3)

where

Sxi
(t, f) =

m=+∞
∑

m=−∞

h(t − m)xi(m)e−j2πfm (4a)

Sx(t, f) = [Sx1
(t, f), . . . ,SxM

(t, f)]T . (4b)

andSs(t, f) is the N × 1 source STFT vector. To avoid
processing all TF points (and hence to reduce computational
cost), we apply first a noise thresholding as that for each time-
slice(t, f):

If
‖Sx(t, f0)‖

maxf {‖Sx(t, f)‖}
> ǫ, then keep(t, f0), (5)

whereǫ is a small threshold (typically,ǫ = 0.05). Then, the
set of all selected points,Ω, is expressed byΩ =

⋃N

i=1 Ωi,
whereΩi is the TF support of the sourcesi(t).
Under the assumption that all sources are disjoint in the TF
domain, (3) is reduced to

Sx(t, f) = aiSsi
(t, f), ∀(t, f) ∈ Ωi, ∀i = 1, · · · , N. (6)

where the source STFT vector has been reduced to only the
STFT of the sourcesi(t).
Now, in [2], the structure of the mixing matrix is particularas
such it has only 2 rows (i.e. the method uses only 2 sensors)
and the first row of the mixing matrix contains all 1. Then, (3)
is expanded to

[

Sx1
(t, f)

Sx2
(t, f)

]

=

[

1 . . . 1
a2,1 . . . a2,N

]







Ss1
(t, f)
...

SsN
(t, f)






, (7)

and (6) to
[

Sx1
(t, f)

Sx2
(t, f)

]

=

[

1
a2,i

]

Ssi
(t, f),

which results in

a2,i =
Sx2

(t, f)

Sx1
(t, f)

. (8)

Therefore, all the points for which the ratios on the right-hand
side of (8) have the same value form the TF supportΩi of a
single source, saysi(t). Then, the STFT estimate ofsi(t) is
computed by:

Ŝsi
(t, f) =

{

Sx1
(t, f), ∀(t, f) ∈ Ωi,

0, otherwise.

Finally, the source estimatêsi(t) is obtained by converting
Ŝsi

(t, f) to the time domain using inverse STFT [8]. For
more details, refer to this paper. It is observed that the struc-
ture of the mixing matrix, as expressed in (7) has some limit-
ing factors. First, the extension of the UBSS method in [2] to
more than two sensors is not obvious. Second, the division on
the right-hand side of (8) is prone to error if the denominator
is close to zero.
To avoid the above mentioned problems, we propose here a
modified version of the method valid for any number of sen-
sors. This method is now referred to as the cluster-based lin-
ear TF-UBSS algorithm. The clustering method proceeds as
follows: first compute the spatial direction vectors by:

v(t, f) =
Sx(t, f)

‖Sx(t, f)‖
, (t, f) ∈ Ω, (9)

and force them, without loss of generality, to have the first
entry real and positive.
Next, we cluster these vectors intoN classes{Ci | i = 1, · · · , N},
using thek-mean clustering algorithm [7]. The collection of
all points, whose vectors belong to the classCi, now forms



Table 1. Cluster-based TF-UBSS algorithm

1. Mixture STFT computation by (4).

2. Vector clustering by (9) and [7].

3. Mixing matrix and source STFT estimation
by (10) and (11).

4. Source TF synthesis by [8].

the TF supportΩi of the sourcesi(t). Then, the column vec-
tor ai of A is estimated as the centroid of this set of vectors:

âi =
1

|Ci|

∑

(t,f)∈Ωi

v(t, f), (10)

where|Ci| is the number of vectors in this class.
Therefore, we can estimate the STFT of each sourcesi(t) (up
to scalar constant) by:

Ŝsi
(t, f) = âH

i Sx(t, f), ∀ (t, f) ∈ Ωi, (11)

since, from (6), we have

âH
i Sx(t, f) = âH

i aiSsi
(t, f) ∝ Ssi

(t, f), ∀ (t, f) ∈ Ωi.

This algorithm is summarized in Table 1.

4. SUBSPACE-BASED TF-UBSS APPROACH FOR
NON-DISJOINT SOURCES

We propose here to use an appropriate subspace projection to
estimate the TFDs of the individual sources, under the pre-
viously stated data assumptions. Under the TF non-disjoint
condition, consider a source point(t, f) ∈ Ω at which there
areK contributing sourcessα1

(t), . . . , sαK
(t), with K < M .

Then, (3) is reduced to the following

Sx(t, f) = ÃSs̃(t, f), ∀(t, f) ∈ Ω (12)

whereÃ ands̃ are defined by:

s̃ = [sα1
(t), . . . , sαK

(t)]T , (13a)

Ã = [aα1
, . . . ,aαK

]. (13b)

Let Q
Ã

be the orthogonal projection matrix onto the noise
subspace of̃A. Then,Q

Ã
can be computed by:

Q
Ã

= I − Ã
(

ÃHÃ
)−1

ÃH . (14)

We have the following observation:
{

Q
Ã
ai = 0, i ∈ {α1, . . . , αK}

Q
Ã
ai 6= 0, otherwise

. (15)

Table 2. Subspace-based TF-UBSS algorithm

1. STFT computation.

2. Single-source point selection; mixing matrix esti-
mation by,k-mean algorithm.

3. For all source points, perform subspace-based
TFD estimation of sources by (14), (16) and (17).

4. Source TF synthesis by [8].

If A is known or a priori estimated, then this observation gives
us the criterion to detect the indicesα1, . . . , αK ; and hence,
the contributing sources at the considered TF point(t, f). In
practice, to take into account noise, one detects the column
vectors ofÃ minimizing:

{α1, . . . , αK} = arg min
β1,...,βK

{

‖Q
Ã
Sx(t, f)‖ | Ãβ

}

(16)

whereÃβ = [aβ1
, . . . ,aβK

].
Next, TFD values of theK sources at TF point(t, f) are esti-
mated by:

Ŝs̃(t, f) ≈ Ã#Sx(t, f). (17)

whereÃ# represents the pseudo-inverse ofÃ.
Now, to apply the above procedure, we need to estimateA

first. This is performed here by clustering all the spatial di-
rection vectors in (9) as for the preview TF-UBSS algorithm.
Then within each classCi we estimate the far-located vec-
tors from the centroid (in the simulation we estimate vectors
v(t, f) such that:‖v(t, f)−âi‖ > 0.8 max

v(t,f)∈Ωi

‖v(t, f)−âi‖

leading to a reduced size classC̃i.
This is to essentially keep the vectors corresponding to theTF
regionRi (which are ideally equal to the spatial directionai

of the considered source signal). Finally, theith column vec-
tor of A is estimated as the centroid ofC̃i.
Table 2 provides a summary of the subspace projection based
TF-UBSS algorithm.

5. SIMULATIONS AND RESULTS

Simulation results are illustrated in the figures below. In this
simulation, we have used uniform linear array ofM = 3 sen-
sors. It receives signals fromN = 4 independent speech
sources, lasting 8192 samples. In figure 2, the upper line rep-
resents the original source signals, the second line represents
the M mixtures and the bottom one represents the sources
estimates by our algorithm. In figure 3, we compare the per-
formance of our method with the TF-UBSS method of Table 1
(i.e. modified method of [2]). The plots represents the aver-
age normalized MSE (NMSE) of the estimated sources versus
the SNR in dB. For the subspace-based method we have used



K = 2 for all TF points. As can be observed, a significatif
gain is obtained, thanks to our subspace projection.
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Fig. 2. Blind source separation example for 4 speech sources
and 3 sensors in instantaneous mixture case: the upper line
represents the original source signals, the second line repre-
sents theM mixtures and the bottom one represents estimates
of sources by our algorithm.

6. CONCLUSION

This paper introduces a new approach for blind separation
of non-disjoint and nonstationary sources using TFDs. The
proposed method can separate more sources than sensors and
provides, in the case of non-disjoint sources, a better separa-
tion quality than the method proposed in [2]. This method is
based on a vector clustering procedure that estimates the mix-
ing matrixA, and subspace projection to separate the sources
at the intersection points in the TF plane.
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Fig. 3. NMSE versus SNR for 4 speech sources and 3 sen-
sors: comparison of the performance of our algorithm with
the modified TF-UBSS
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