
HAL Id: hal-02339296
https://hal.science/hal-02339296

Submitted on 30 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identifying and visualizing variability in object-oriented
variability-rich systems

Xhevahire Tërnava, Johann Mortara, Philippe Collet

To cite this version:
Xhevahire Tërnava, Johann Mortara, Philippe Collet. Identifying and visualizing variability in object-
oriented variability-rich systems. the 23rd International Systems and Software Product Line Confer-
ence, Sep 2019, Paris, France. pp.231-243, �10.1145/3336294.3336311�. �hal-02339296�

https://hal.science/hal-02339296
https://hal.archives-ouvertes.fr

Identifying and Visualizing Variability in Object-Oriented
Variability-Rich Systems

Xhevahire Tërnava

xhevahire.ternava@lip6.fr

Sorbonne Université, UPMC, LIP6,

Paris, France

Johann Mortara

johann.mortara@univ-cotedazur.fr

Université Côte d’Azur, CNRS, I3S,

Sophia Antipolis, France

Philippe Collet

philippe.collet@univ-cotedazur.fr

Université Côte d’Azur, CNRS, I3S,

Sophia Antipolis, France

ABSTRACT
In many variability-intensive systems, variability is implemented in

code units provided by a host language, such as classes or functions,

which do not align well with the domain features. Annotating or

creating an orthogonal decomposition of code in terms of features

implies extra effort, as well as massive and cumbersome refactoring

activities. In this paper, we introduce an approach for identifying

and visualizing the variability implementation places within the

main decomposition structure of object-oriented code assets in a

single variability-rich system. First, we propose to use symmetry,

as a common property of some main implementation techniques,

such as inheritance or overloading, to identify uniformly these

places. We study symmetry in different constructs (e.g., classes),
techniques (e.g., subtyping, overloading) and design patterns (e.g.,
strategy, factory), and we also show how we can use such symme-

tries to find variation points with variants. We then report on the

implementation and application of a toolchain, symfinder, which
automatically identifies and visualizes places with symmetry. The

publicly available application to several large open-source systems

shows that symfinder can help in characterizing code bases that

are variability-rich or not, as well as in discerning zones of interest

w.r.t. variability.

CCS CONCEPTS
• Software and its engineering→ Software product lines; Ob-
ject oriented development; Reusability.

KEYWORDS
Identifying software variability, visualizing software variability,

object-oriented variability-rich systems, tool support for under-

standing software variability, software product line engineering

1 INTRODUCTION
Variability-intensive software systems are now the usual demand

in many industry sectors. To manage their variability within a spe-

cific domain, software product line (SPL) engineering is the usual

methodological process for developing them together. At the do-

main level, the variability of these products is commonly described

in terms of their common and variable features, as reusable units,

in a feature model [28]. Further, in a forward engineering approach,

their features are realized in different software assets, including

reusable code assets at the implementation level.

In many variability-rich software systems, which do not follow

a complete SPL approach, variability is implemented with different

traditional techniques, such as inheritance, parameters, overload-

ing, or design patterns [9, 22, 56]. By these techniques, variability

is implemented in code units provided by a host language, such as

classes or functions, which do not align well with domain features.

Therefore, occasionally and orthogonal to this main decomposition,

some approaches are used for annotating (e.g., using preproces-

sors in C [37]) or putting into separate modules (e.g., with feature

modules [6]) all lines of code that belong to each specific domain

feature [7, 53]. But, while annotations in the form of conditional

compilations have received significant attention, their use is often

criticized for the code pollution due to #ifdef-s [35, 54] and for

the occurrence of syntactic and semantic errors during the prod-

uct derivation [31]. Feature modularization being considered as

desirable, it still implies massive refactoring activities and cannot

handle the fact that many variability dimensions become natu-

rally cross-cutting concerns in code [29, 57]. Currently, it is thus

acknowledged that there is still no satisfactory approach to well

structure the implementation of variability in code assets [6, 42].

Our work thus takes the assumption that, in many variability-

rich systems, one can keep unchanged the main decomposition of

code and still be able to map the domain features to the variability

implementation places in code assets. We consider that these vari-
ability places can be centers of attention in terms of design, with

several implementation techniques used together. They can also

be abstracted in terms of variation points (vp-s) with variants
1
[6],

but a proper identification of the variability implementation places

is then needed. There are studies on how to address variability by

traditional techniques [11, 22, 46, 56], or on how to partially locate

and identify domain features, mainly at the code level [8, 16, 50].

Nevertheless, there is a complete lack of approaches to identify

variation points and variants [39] implemented with different tech-

niques in a single variability-rich system. This could be due to the

fact that each traditional technique differently supports the imple-

mentation of vp-s with variants [39, 58]. Therefore, from a reverse

perspective, it indicates that each vp requires its own way to be

identified in code assets, depending on the used technique.

Herein, our contribution is threefold. First, we reuse the property

of symmetry (Section 2.2), which has been previously explored in

software [12, 24, 65–67]. From an interdisciplinary combination of

software and civil engineering, it is used to describe some relevant

and heavily used object-oriented techniques, as well as software

design patterns (Section 3.1). Then, by using their property of sym-

metry, we propose an approach to identify the implementation of

different kinds of vp-s and variants in a unified way (Section 3).

Thirdly, we present symfinder , a tool support for automatic identi-

fication and visualization of the described symmetries, so that the

determination of vp-s with variants is facilitated (Section 4).

1
their definition is given in Section 2.1

Xhevahire Tërnava, Johann Mortara, and Philippe Collet

1 /* Class level variation point, vp_Shape */
2 public abstract class Shape {
3 public abstract double area();
4 public abstract double perimeter(); /*...*/
5 }

6 /* First variant, v_Rectangle, of vp_Shape */
7 public class Rectangle extends Shape {
8 private final double width, length;
9 // Constructor omitted
10 public double area() {
11 return width * length;
12 }
13 public double perimeter() {
14 return 2 * (width + length);
15 }
16 /* Method level variation point, vp_Draw */
17 /* First variant of vp_Draw */
18 public void draw(int x, int y) {
19 // rectangle at (x, y, width, length)
20 }
21 /* Second variant of vp_Draw */
22 public void draw(Point p) { // Point defined
23 // rectangle at (p.x, p.y, width, length)
24 }
25 }

26 /* Second variant, v_Rectangle, of vp_Shape */
27 public class Circle extends Shape {
28 private final double radius;
29 // Constructor omitted
30 public double area() {
31 return Math.PI * Math.pow(radius, 2);
32 }
33 public double perimeter() {
34 return 2 * Math.PI * radius;
35 }
36 }

Listing 1: Example of variability implementations. The high-
lighted class and methods with a yellow color represent two
vp-s, at the class and method level, respectively

We applied our tooled approach in eight real open-source

variability-rich software systems (Section 5)
2
. We report on the

identified symmetries and their related vp-s and variants, showing

that the toolchain, with its visualization support, helps in finding

relevant patterns of implemented variability. We also gain more

insight into the studied systems by using two metrics on the

density and number of vp-s. Finally, we discuss threats to validity,

limitations (Section 6), related work (Section 7), and conclude the

paper by evoking future work (Section 8).

2 BACKGROUND
2.1 Variability in reusable code assets

Let us consider an illustrative example with a Java implementa-

tion of a family of geometric shapes, such as rectangles and circles

(cf. Listing 1). What is common from Rectangle and Circle is

factorized into the abstract class Shape using inheritance as a vari-

ability implementation technique. Besides, overloading is used to

implement the twoways for drawing the shapes, namely the draw()

2
The links to the symfinder experimental results (screenshots, explanations, online

demo) and the symfinder public source code are given in Appendix A

method in Rectangle, lines 17–20 and 21–24. Despite its small size,

we consider this example as representative of reusable code assets

in which several techniques are used together, such as inheritance,

overloading, or design patterns.

Regardless of the programming paradigm (e.g., object-oriented
or functional), these reusable code assets consist of three parts: core,

commonalities, and variabilities [11]. The core part is what remains

of the system in the absence of any particular feature, namely the

assets that are included in any software product within an SPL [61].

Commonality is a common part of the related variant parts, which

are used to distinguish the software products within an SPL. After

the commonality is factorized from the variability and implemented,

it becomes part of the core [61], except when it represents some

optional variability [59]. Such commonalities and variabilities are

usually abstracted in terms of variation points (vp-s) with variants,
respectively, which are related to concrete elements in reusable

code assets.

By definition, a variation point identifies one or more locations

at which the variation will occur, while the way that a variation

point is going to vary is expressed by its variants [27]. In Listing 1,

class Shape is common, thus a variation point, for two variants

Rectangle and Circle.

2.2 Local symmetry and centers
Symmetry is recognized as one of the ideas bywhich people through

the ages have tried to comprehend and create order, beauty, and the

perfection of forms [25]. In physics, and generally in natural sci-

ences, the symmetry of an object is defined as a transformation (e.g.,
reflection, rotation, translation) that leaves the object seemingly

unchanged [55], or it is the immunity to a possible change [48, 49].
For example, let us consider a square of definite size and orientation

as in Figure 1a. The square will remain the same according to eight

symmetries, if it is rotated in the plan, about the center, for 0°, 90°,

180°, and 270°, or reflected by a mirror on the shown four axes.

a b c

Figure 1: a: The eight symmetries of the square. Two ver-
sions of an 11x15 array of 69 black and 96 white square
blocks - b: a random one and c: a Seljuk pattern [1, p68].

Whenever an overall symmetry is broken, it just creates other

local symmetries in the sense that the symmetry is reduced or

redistributed, which is different from a total loss of symmetry [48].

For example, ideally, a bilaterally symmetric aircraft should fly

straight ahead, but it actually flights in a zigzag way because the

flow of air past the aircraft is not bilaterally symmetric. In such

way, it must break the symmetry to maintain its stability [55].

According to Alexander’s theory of centers [2], the order, co-

herence, and beauty of any structure in nature and human made

Identifying and Visualizing Variability in Object-Oriented Variability-Rich Systems

artifacts is strongly related to local symmetries. Their geometrical
coherence makes us feel the presence of order, and it can be de-

scribed in terms of centers as building blocks. In this theory, a center
is not a point, not a perceived center of gravity, it is defined as a field
of organized force in an object or part of an object which makes that

object or part exhibit centrality. For example, in Figure 1b is shown

a random arrangement of 69 black and 96 white squares. Because of

its incoherence, it is hard even to describe it. Whereas, in Figure 1c

these squares have an organized arrangement, known as the Seljuk

pattern, which appeared in an old carpet, considered beautiful [1].

Its form of coherence makes it one of the centers in the wholeness

of that carpet, which is easy to remember and describe [2, 51].

In the theory of centers, there are around fifteen recurring struc-

tural properties that make centers more coherent structures [2,

Ch.5]. From those properties, such as levels of scale, boundaries,

or alternating repetition, a center is commonly formed by a local
symmetry [1, pg. 42]. Specifically, the Seljuk pattern in Figure 1c is a

center and its coherence is formed by other local centers recursively.

Moreover, white squares, whichmay appear as the backgroundwith

black ones, have their own (local) symmetries. Centers have been

experienced in spatial structures, in nature, buildings, works of art,

physics, or psychology [1–3].

Following some other works relating centers, symmetries, and

software, discussed in the next section, our contribution makes the

main assumption that variation points (vp-s) with variants are a

kind of centers of attention and activity in software design. We thus

base our approach on the property of local symmetry for identifying

and visualizing potential variability at the implementation level.

3 IDENTIFYING VARIABILITY
As stated in the introduction, there are many approaches for detect-

ing variability concepts, especially those for identifying features

in code [8, 16, 50], but there is no automated means for identifying

vp-s with variants in our context of object-oriented techniques [39].

The diversity of these techniques is analysed in different frame-

works, taxonomies, and catalogs, by comparing them on different

criteria [6, 20, 22, 46, 56]. For instance, in a recent catalog, 16 tradi-

tional techniques are compared and classified based on 24 proper-

ties [58]. But, despite these comparative schemas, we are not aware

that any common property of these techniques exists, and could be

used to identify the different kinds of vp-s in a uniform way. For

example, in Listing 1, the vp Shape has a class level granularity

and is resolved at runtime, whereas the vp draw has a method

level granularity and is resolved at compile time, during product

derivation [58]. Both of them resemble two different kinds of vp,
but with four different properties.

Towards a unified approach for identifying vp-s, the majority of

traditional language constructs have been shown to be describable

in terms of symmetry [12, 66, 67]. In the following we study the

property of symmetry in object-oriented techniques, show how it

can be interpreted as a local symmetry in reusable code assets, and

how this single property can be used to identify all different kinds

of vp-s.

3.1 Symmetry in software constructs
Symmetry and symmetry breaking have been explored in software,

with symmetry in the format of programs, software development

life cycles, or search algorithms. Besides, inspired by Alexander’s

theory of centers [2], symmetry has been identified in different

programming language constructs, as well as in software design

patterns [12, 24, 65–67]. In the following, we revisit the symmetry

in classes, class subtyping, and several design patterns
3
.

Symmetry in classes. In object-oriented programming, a class is

an extensible code template for creating objects, providing some

structure and behavior [64]. At its execution or object instantiation,

the definition of its structure and behavior remains unchanged,

whereas it enables changes over its instantiated objects. This de-

notes the symmetry of a class, which can be illustrated on the class

Circle in Listing 1 by:

• the possibility of changes among all potential circle objects

c1, c2, ..., cn with different areas and perimeters, and

• the defined computations of area and perimeter in the class

Circle that remain unchanged for all these objects.

In addition, these objects can be mapped from one another, such as

from c1 to c2 to c3, which represents a substitution as a symmetry

transformation. Therefore, a class defines a substitution symmetry
for its objects.

Symmetry in subtyping. In class subtyping, when inheritance

is viewed as classification of classes [44, pg.822], all classes of a

type path may change, but they must preserve and conform to a

common behavior. For example, in Listing 1:

• the possibility of a change in the abstract class Shape materi-

alizes in its potential different subtypes, such as Rectangle
and Circle. Their shown change regards the way the area

and perimeter are computed. Whereas,

• the immunity to change maps to these subtypes preserving

the behavior of their supertype Shape.

Thus, a class subtyping also defines a substitution symmetry for its

subtypes, which can be substituted as they have the same supertype.

Class subtyping is only one of the ten well-known forms of

inheritance [44, pg.822]. According to a coming study, the other

forms of inheritance also exhibit the property of symmetry and can

be described similarly [13].

Symmetry in overloading and overriding. Symmetry appears also

in software constructs at method or function level. For instance,

method or function overloading lets you define multiple functions

of the same name, but with different implementations. For example,

for each overloaded method draw() of Rectangle in Listing 1:

• the number of the taken parameters have changed (cf. lines
17-20 and 21-24), whereas

• the name and the return type have remained the same, un-
changed.

This denotes the symmetry in overloading, where the name of an

overloaded function remains unchanged while its arity or types of

its parameters change. Thus, overloading also defines a substitution

3
The proof of their symmetry by using the group theory is available elsewhere [66, 67].

Xhevahire Tërnava, Johann Mortara, and Philippe Collet

symmetry for the overloaded methods, which can be substituted

from one to another.

Further, as another construct, method overriding is used to

change the behavior of classes under inheritance and it also has a

form of symmetry. Specifically, the method overriding name, pa-

rameters, and return type, as its signature, remain unchanged while

its implementation changes in the subclass by overriding the im-

plementation in the superclass. Thus, method overloading makes

somehow possible symmetry in subtyping.

Symmetry in software design patterns. For illustration, we now
describe the symmetry in three common software design patterns,

strategy, factory, and decorator.

Like in most design patterns, strategy uses inheritance [19]. In

the strategy pattern, the decision about which algorithm to use is

deferred until runtime. It defines a substitution symmetry, where the
interface for selecting an algorithm remains unchanged, whereas
the algorithms that enable different behaviors at runtime can be

substituted, meaning that they can change.
The factory pattern defines an interface with a factory method

for creating objects, but lets subclasses decide which class to instan-

tiate. Specifically, concrete creators implement the factory method

and create products. We can define it as a specific form of sym-

metry, namely factory symmetry, where the abstract creator and
abstract product remain unchanged, whereas the concrete creators
and products vary.

In the decorator pattern, a set of concrete decorators wrap con-

crete components, as a means to change their behavior, while their

interfaces are preserved. This resembles a composition symmetry,
where the abstract component and abstract decorator remain un-
changed, whereas the behavior of concrete components varies, thus

change, with the concrete decorators.

Such property of symmetry is also evident for most of the other

software design patterns, such as the template or observer patterns.

Thus, for most of the other language constructs, it has been shown

that under a certain transformation, such as substitution in class,

behavior, or template symmetry, a specific property of the system

is preserved, such as structure, behavior, regularity, similarity, fa-

miliarity, or uniformity [65]. This indicates that any of them can

be described in terms of symmetry.

In Table 1 we give nine common language features and their

elements of symmetries, which are important for automating their

identification. They are based on existing studies and the way to

interpret symmetry on language features [12, 65–67]. This could be

easily extended to include symmetry in other language constructs

and design patterns.

3.2 Identifying variation points with variants
In code reuse, using only classes brings too much symmetry in

code, which is perceived as a way to lead to inflexible and rigid

programs [65]. Therefore, specifically in object-orientation, the

symmetry of programs organized in classes is usually broken by

introducing interfaces, abstract classes, and the rise of software

design patterns can be seen as a reaction to this problem [12, 65].

Wherever these other mechanisms or techniques are applied, some

local symmetries will emerge in code. Therefore, we can infer that

the usage of any of them for implementing variability, such as class

Table 1: Nine language features and their symmetries

Language feature Commonality Variability
/Unchange /Change

Class as type Class/Constructor Objects

Class subtyping Superclass/Type Subclasses

Method overriding Signature Classes under

Types of results Inheritance

Method overloading Structure Signatures

Strategy Pattern Strategy interface Algorithms

Factory Pattern Abstract Creator Concrete creators

and product and products

Decorator Pattern Components and Concrete components

decorator interfaces and decorators

Template Pattern Template of a method Method steps

Observer Pattern Subject and observer Concrete subjects

interfaces and observers

subtyping, overloading, or design patterns, denotes the existence

of a local symmetry in the wholeness of reusable code assets.

We thus build an approach to identify variability by (i) using the
fact that each implementation technique is commonly abstracted

in terms of a variation point (vp) with its variants [58], and then,

based on Sections 2.1 and 3.1, (ii) we deduce that a vp with variants

can be interpreted by the property of local symmetry. Specifically,

while vp-s resemble the unchanged parts in the design of code

assets, variants resemble their changed parts. Hence, as vp-s with

variants become much more than places where some variability

happens, we propose a new definition.

Definition 1. Variation points with variants represent the un-
changed and changed parts in software design, are realized by an
implementation technique, and abstract the structure (a.k.a., design)
and the functionality of the implemented variability. Moreover, they
mark the local symmetries in reusable code assets, which resemble
centers in Alexander’s meaning.

Based on this definition, to identify variability in terms of vp-
s with variants, we have to determine the local symmetries in

the structure of reusable code assets. For example, the variability

in Listing 1 has two local symmetries that can be abstracted as:

vp_Shape (lines 1–5) with variants v_Rectangle (lines 6–25) and
v_Circle (lines 26–36), and vp_Draw (lines 16–24) with variants

v_drawCoordinates (lines 17–20) and v_drawPoint (21–24). The
first vp resembles the symmetry in inheritance, while the second

one the symmetry in overloading. This shows how the different

kinds of vp-s can be identified by simply identifying the local

symmetries in reusable code assets.

In addition to vp-s, identifying the variants of a vp is impor-

tant, as they may have nested variability. For example, the class

Rectangle is a variant of vp_Shape but has a nested vp draw,
which has two other variants. Moreover, all nine language features

in Table 1 has a symmetry at the class or method level, indicating

that any identified vp or variant in these techniques will have a

class or method level granularity.

Identifying and Visualizing Variability in Object-Oriented Variability-Rich Systems

3.3 Density of variation points
According to Alexander’s theory, the number of local symmetries is

crucial for measuring the coherence of a structure [4]. For example,

by counting the number of local symmetries it is shown that the

Seljuk pattern in Figure 1c has far more local symmetries than the

random pattern in Figure 1b [1]. This is then identified as the reason

that makes the Seljuk pattern much more coherent, thus easy to

recognize, describe, and remember.

Similarly, we propose to use the density of vp-s within a code

unit (class or file), as a means for locating and describing the most

intense places with variability in reusable code assets. First, this is

feasible because of the nested nature of vp-s, which corresponds to

the recursive nature of centers in Alexander’s meaning. For example,

in Listing 1, the vp_Draw is a nested vp of the vp_Shape, by being

within one of its variants. This indicates that a larger amount of

variability is concentrated in this place. Therefore, we define the

density of implemented variability within a code unit as the sum of

it vp-s, their nested vp-s, and the vp-s external to the unit that any

of its vp-s depends on. This density can be simplified and discerned

directly from a visualization form of vp-s. For example, the density

at the class level in Listing 1 has one vp Shape and one variant

Rectangle, which shows in minimum one nested vp. In this case,

the density of Listing 1 is two.

4 AUTOMATIC IDENTIFICATION AND
VISUALIZATION OF SYMMETRIES

To show the feasibility of our variability identification approach, we

developed the symfinder toolchain. It enables the automatic identifi-

cation and visualization of different local symmetries, as described

in the previous sections, so that one is helped in determining vp-s
with variants in a variability-rich system, in visualizing them, and

in discerning any pattern of variability by analysis of the density

of vp-s and variants among different systems.

Figure 2 depicts the whole dockerized toolchain, which consists

of three parts, (i) sources fetching from several software projects

that are going to be studied, (ii) symmetry identification in the code

within the symfinder engine, and (iii) visualization through a web

browser. The toolchain uses scripts, an engine implemented in Java,

and a graph database (Neo4j
4
). It is also deployed within a Docker

5

container so to increase its portability and facilitate its usage.

Figure 2: The dockerized symfinder toolchain

4
https://neo4j.com/

5
https://www.docker.com/

The source fetching part of the toolkit mainly aims at automating

experiments. From a configuration file, the toolchain runs bash and

python scripts in order to fetch sources and checkout the desired

tags or commits from some git repositories (cf. Figure 2). This

enables symfinder to work easily over any software system that is

publicly available (e.g., on GitHub). Moreover, the main internal

project structure of symfinder , with some usage guidelines, is given

in Appendix A.

4.1 Identification
At the center of the toolchain is the symfinder engine (cf. Figure 2),
the main purpose of which is to automatically analyse the source

code and to build a representation of all potential vp-s, (i.e., classes).
This process is realized in two main steps. First, the classes of the

targeted system are parsed. Targeting in its first version Java-based

systems, we reused the Eclipse JDT parser to analyse Java classes.

Then, the local symmetries are identified and stored into the Neo4j

graph database.

Local symmetries are identified according to the defined sym-

metry in each language construct, technique, and design pattern

given in Table 1. Specifically, each interface, abstract class, extended

class, overloaded constructor, and overloaded method is identified.

All together, they actually represent the potential vp-s. Then, the
classes that implement or extend them, including the concrete over-

loaded constructors and methods are also identified, which should

represent respective variants. For example, after parsing the classes

in Listing 1, symfinder will identify the local symmetry in inheri-

tance among the vp Shape and its two variant classes Rectangle
and Circle. For each of them, the engine adds a class node and

keeps their relationship within the database.

For implementing the previous operations and the following

ones, the engine relies on the graph query language of the Neo4j

database to identify symmetries. This language, named Cypher
6
,

enables the creation and easy querying over nodes, relationships,

and properties with patterns covering complex traversals and paths.

For example, queries are used to identify the symmetry in the

overloaded constructors and methods within each class, as well as

to add their number as a property of the class node. In our example,

the symmetry in the overloaded draw method will be identified

within the class Rectangle and a value of one will be added to

its class node. In addition, the information for the types of class

nodes is also saved, whether it was an interface, abstract class, or

concrete class. Finally, the symfinder engine also identifies the local
symmetry in two common software design patterns, strategy and

factory. A strategy is identified by its name and by analyzing the

structural relationship of classes. The second pattern is identified by

its name and by analyzing the return types of methods, a detected

factory is a class that contains a method returning an object whose

type is a subtype of the declared method return type.

4.2 Visualization
After identifying and storing potential vp-s with variants into a

graph database, we need to provide some means to get more in-

sight regarding the variability aspect of the analysed system. To do

6
https://neo4j.com/developer/cypher/

https://neo4j.com/
https://www.docker.com/
https://neo4j.com/developer/cypher/

Xhevahire Tërnava, Johann Mortara, and Philippe Collet

Node types Parameters Visualization

Concrete class (vp), Node with black outline

Concrete class (Vari-

ant with inner vp-s)
Node without an outline

Abstract class (vp) Node with dotted outline

Interface (vp) Black node

Constructors (vp) Node with shades of red

Overloading (vp) Node of different size

Strategy pattern (vp) Node with symbol S
S

Factory pattern (vp) Node with symbol F
F

Inheritance Edge

Table 2: The eight kinds of nodes and their relationships
used for the visualization of vp-s with variants graph

so, the symfinder toolchain provides the capability to generate an

interactive visualization of the elements in the graph (cf. Figure 2).
Instead of visualizing the identified graph of vp-s with variants

by plain nodes and edges, we considered that it is important to also

visualize information regarding the used language constructs, tech-

niques, or design patterns for implementing variability. As in many

software and code artifacts visualizations [33, 34, 60, 62, 63], we

rely on the visual principles of preattentive perception [15], using

some of the seven parameters that can vary in visualization in order

to represent data, namely position, size, shape, value (lightness),

color hue, orientation, and texture. The six kinds of nodes that we

use in symfinder for the visualization of the kinds of potential vp-s
with variants are shown in Table 2.

The D3.js
7
library is used as the visualization support in the

symfinder toolchain. Although we considered using the visualiza-

tion capabilities of Neo4j and other visualization forms used in SPL

engineering [38], we decided for D3.js as it allows to visualize not

only graphs but also a plethora of chart types. We were able to con-

sider them before devising the current form of visualization, and

this could also help for future evolutions of the toolchain. Besides,

as D3.js visualizations are written in JavaScript, only a web browser

is needed, and for symfinder , a configuration JavaScript file is only

used in a template for the web page that will display the graph.

As an example, Figure 3 shows a visualization excerpt of the

identified symmetries in the JavaGeom library [14], a variability-

rich system among the ones we used in our experiments (cf. Sec-
tion 5). It shows the variation point vp_AbstractLine2D and vari-

ant v_Ray2D, which forms a comparable variability to the vp-s and

variants in Listing 1. Specifically, each vp node is represented by a

circle. A red node with a black outline visualizes a concrete class

that is a vp (e.g., vp_StraightLine2D). A red node without an

outline is a concrete class that is a variant with variability at the

method level (e.g., the v_Line2D). A red node with a dotted outline

visualizes an abstract class, whereas a black node an interface (e.g.,
vp_LinearElement2D). Multiple shades of red nodes are used to

visualize the number of constructor overloads for each class or

interface. The more overloaded constructors are present, the more

intense is the node’s color. Next, the size of the node is in func-

tion of the number of overloaded methods. For instance, the node

7
https://d3js.org/

Figure 3: Excerpt of a visualization from the identified sym-
metries in the JavaGeom library. Annotations in blue are not
part of the visualization, they show potential vp-s and vari-
ant names that are displayed when hovering a node.

vp_StraightLine2D has a more intense red color and bigger size,

thus indicating that it has potential variability at both the construc-

tor and method levels. Further, the first letter of a design pattern

is used to mark a node that represents that pattern, for example,

letter F is used for the factory pattern in vp_AbstractLine2D and

its dotted outline denotes its relation to an abstract class. Then,

depending on whether nodes are related in design, a directed edge

is used to express their relationships, such as in the case of class

extension or interface implementation in the current version of the

visualization.

With this visualization support, we expect to easily discern, in

an analysed system, some zones of interest w.r.t. variability.

5 VALIDATION
In order to check whether our tooled approach satisfies the identi-

fication and visualization of variability, we applied the symfinder
toolchain on eight object-oriented variability-rich systems. In the

following, we present the selected case studies and the obtained

results.

5.1 Validation case studies
For selecting validation case studies, we considered several criteria,

their implementation in Java, the open-source nature of the project,

their availability on a git repository, and the fact that they could

contain some implemented variabilities.

Geometry related and charting capabilities being typical of some

variability to be handled, we first selected JavaGeom, a library for

manipulating and processing several families of geometric shapes,

already used in other studies [59], JFreeChart, a charting library,

and the AWT part of the Java Development Kit. We then selected

two projects from the Apache consortium, CXF, a fully featured

Web services framework, which could contain variability in its

implementation, and Maven, the build automation tool, which ar-

chitecture is strongly based on plug-ins. We added JUnit 4, as its

architecture is based on many design patterns, at least in its pre-

vious version 3, and the Java-backend of JHispter, an application

generator for web applications and microservices, as it has been

already used as a variability case study [23]. Similarly, we also se-

lected ArgoUML, a UML diagramming application, used in different

studies on SPL engineering [40].

https://d3js.org/

Identifying and Visualizing Variability in Object-Oriented Variability-Rich Systems

Table 3: The eight variability-rich systems and their respective analysed tag or commit ID

Case study Url in https://github.com/ tag ID Total
LoC

Analysed
LoC

vps # variants

Java AWT JetBrains/jdk8u_jdk/src/share/classes/java/awt jb8u202-b1468 3,514,495 69,974 1,221 1,808

Apache CXF 3.2.7 apache/cxf/core/src/main/java/org/apache/cxf cxf-3.2.7 810,691 48,655 7,468 9,201

JUnit 4.12 junit-team/junit4/src/main/java r4.12 30,082 9,317 253 319

Apache Maven 3.6.0 apache/maven maven-3.6.0 105,342 105,342 1,443 1,393

JHipster 2.0.28 jhipster/jhipster/jhipster-framework/src/main/java 2.0.28 8,035 2,535 140 115

JFreeChart 1.5.0 jfree/jfreechart/src/main/java/org/jfree v1.5.0 137,074 94,384 1,415 2,103

JavaGeom dlegland/javaGeom/src _
a

33,287 32,755 720 919

ArgoUML marcusvnac/argouml-spl/src _
b

178,906 178,906 2,451 3,079

commit ID: a
7e5ee60ea9febe2acbadb75557d9659d7fafdd28

b
bcae37308b13b7ee62da0867a77d21a0141a0f18

5.2 Conducted experiments
We applied the symfinder toolchain to analyse and understand the

variability of each case study. Details and metrics on the eight case

studies are presented in Table 3, with the URL to their public repos-

itory, the analysed source package, their analysed tag or commit ID,

its total size in lines of code (LoC)
8
, and the size of their analysed

source package.

Among the case studies, we experimented with different configu-

rations of symfinder . At first, we sought to show that our toolchain

can be used to analyse a whole software system or only a desired

part of it. For this reason, in some case studies we aimed to identify

the variability of the whole software system, such as in Apache

Maven 3.6.0, and in some others, of only a single source package,

such as the AWT library in the JDK 8 (cf. Table 3). Depending on
the system, we used commit IDs or tags to grab one specific version,

which we have used to tailor the visualization which is presented in

this paper. To validate the interoperability of our tool, we made suc-

cessfully the same experiments in three operating systems, Linux,

Mac, and Windows. All the conducted experiments included in this

paper are available from https://deathstar3.github.io/symfinder-

demo/, with extracted screenshots, more explanations on each case,

and a deployed online demonstration of the visualization.

5.3 Results
When conducting the experiments, we could successfully visualize

the potential variability of each case study and relate it to the used

software constructs. For example, in Figure 4 is shown an excerpt

from the identified variability in JFreeChart 1.5.0. To ease the read-

ing, the visualization itself can be zoomed in and out, as in Figure 5,

and its class name appears when hovering a node. The usage of

the visualization also enables us to improve its functionality, as

discussed in the following paragraphs.

5.3.1 Filtering the out of scope vp-s. Through the analysis of the ob-
tained visualization in each case study, we observed that the larger

number of vp-s and variants may hinder the analysis of a system

variability from its visualization. Therefore, we decided to add a

filtering capability in symfinder . Currently, filtering is available in
the visualization and supports to filter out all the solitary vp-s, at
once, and also any other individual vp, by giving its class name. In

8
For counting the the lines of code we used gocloc: https://github.com/hhatto/gocloc/

Figure 4: An excerpt of the JFreeChart 1.5.0 vi-
sualization after removing the out of scope vp-s
org.jfree.chart.event, org.jfree.data.general, and
org.jfree.chart.util.PublicCloneable

Figure 5: The vp-s with variants for the selected zone of in-
terest in Figure 4

Figure 4, filtering is available from the menu "Show project infor-

mation". This property helped us to analyse and identify several

interesting patterns of variability among the targeted systems.

https://github.com/
https://github.com/JetBrains/jdk8u_jdk/tree/jb8u202-b1532/src/share/classes/java/awt
https://github.com/apache/cxf/tree/master/core/src/main/java/org/apache/cxf
https://github.com/junit-team/junit4/tree/master/src/main/java
https://github.com/apache/maven
https://github.com/jhipster/jhipster/tree/master/jhipster-framework/src/main/java
https://github.com/jfree/jfreechart/tree/master/src/main/java/org/jfree
https://github.com/dlegland/javaGeom/tree/master/src
https://github.com/marcusvnac/argouml-spl/tree/master/src
https://deathstar3.github.io/symfinder-demo/
https://deathstar3.github.io/symfinder-demo/
https://github.com/hhatto/gocloc/

Xhevahire Tërnava, Johann Mortara, and Philippe Collet

J
a
v
a
A
W
T

C
X
F

J
U
n
i
t

M
a
v
e
n

J
H
i
p
s
t
e
r

J
F
r
e
e
C
h
a
r
t

J
a
v
a
G
e
o
m

A
r
g
o
U
M
L

0

100

200

38

237

13

103

2

42

7

73

#
t
r
e
e
s
(
>
1
n
o
d
e
)

trees with more than 1 node

0

1

2

·105

#
L
o
C

LoC

Figure 6: The number of places with a higher density of vp-s
and variants at the class level with the # LoC per case study

5.3.2 Understanding the identified variability. The visualization of

variability is mainly a forest-like structure. Therefore, to understand

variability, in each case study we focus the analysis on a tree of vp-s
and variants with method level vp-s. In all cases, the visualization

helped us in finding as interesting places the trees with a higher

density of vp-s and variants at the class level (cf. Section 3.3). With

the appropriate filtering, it was always easy to discern these places.

For example, in JFreeChart, we decided to focus the study in the

identified vp-s within the blue rectangle in Figure 4. A magnified

view of this excerpt of variability is given in Figure 5. Here, the

vp_Plot has several variants with method level vp-s, such as

v_PolarPlot, v_MeterPlot, or v_SpiderWebPlot, which make

possible to draw different types of plots in JFreeChart. Then,

through a manual trace in code, we observed that the vp_Plot has

abstracted the Plot class, which is a local symmetry in the

strategy pattern.

In the same way, we selected a node in the tree to analyse its

method level variability. For example, we observed that the bigger

size of the node vp_CategoryPlot corresponds to a large

number of symmetries in method overloading in class

CategoryPlot, which has 29 places with method overloading.

Then, the v_SpiderWebPlot has a darker red color as the class

SpiderWebPlot has a symmetry in constructor overloading with 3

overloaded ones.

We could also easily discern places with the largest or the small-

est amount of the factorized commonality and of the constructor

level variability. For example, Figure 9a shows an excerpt of the iden-

tified variability in the Java 8 AWT library. The node vp_Component
has a bigger size than the nodes vp_Menu or vp_ItemSelectable,
indicating that the vp_Component has a larger amount of common-

ality for its variants. But, the node vp_Window has a darker red

color, indicating that it supports more variability at the constructor

level than the vp_Component. Similarly, we analysed each desired

vp regarding its provided functionality.

J
a
v
a
A
W
T

C
X
F

J
U
n
i
t

M
a
v
e
n

J
H
i
p
s
t
e
r

J
F
r
e
e
C
h
a
r
t

J
a
v
a
G
e
o
m

A
r
g
o
U
M
L

0

1

2

·105

#
L
o
C

0

2,000

4,000

6,000

8,000

#
v
p
s

LoC # vps

Figure 7: The correlation of # vp-s with the # LoC per case
study

To have an overview of variability in each case study, we give

in Figure 6 their respective total number of trees. They correspond

to the number of places with a density higher than one vp or

variant at the class level, meaning that the solitary vp-s or variants

at the class level are excluded from the calculation. For example,

JFreeChart contains 42 places with a higher density of vp-s and

variants with method level variability. Visually, these are the trees

with more than a single node in Figure 4. Such a case is the given

tree in Figure 5 with 23 nodes. In addition, Figure 6 shows the

relationship between the number of trees with higher density and

lines of code in each case study.

5.3.3 The identified number of vp-s with variants. In order to give

more insight into the variability of a targeted system, we decided to

calculate its identified number of vp-s with variants. Interestingly

a recent literature review on metrics in SPL engineering shows that

the number of vp-s is a useful metric for analyzing variability and its

implementation in code [18]. It is used to measure the total number

of #ifdef-blocks when preprocessors are used to implement the

variability. Similarly, we used this metric to reason on the size of the

implemented variability of our targeted systems. But, in contrast

to the existing usage, and in accordance with the our vp definition

(cf. Definition 1), the number of vp-s now represents the number of

local symmetries in reusable code assets, which is complemented

with the number of their variants.

The calculation of this metric is automated within the symfinder
toolchain and is available during the visualization of variability.

In Table 3 we give the total number of identified vp-s and variants

in each case study. Figure 7 shows the correlation between the

number of these vp-s and the lines of code (LoC) per case study.

Further, we give details for the number of vp-s and variants at the

class and method levels, including the number of vp-s and variants

at the method and class constructor levels. As the vp-s that are

related to design patterns overlap with some vp-s at class level

(cf. Section 3.1), we take care to consider them only once during

the calculation.

Identifying and Visualizing Variability in Object-Oriented Variability-Rich Systems

0 1,000 2,000 3,000 4,000 5,000 6,000

variant method

variant class

vp method

vp class

vp-s / # variants

Figure 8: The total number of vp-s and variants at the class
and method level for the eight case studies

In Figure 8 are summarized the four values of vp-s and vari-

ants for the eight case studies. We can deduce from them some

interesting findings regarding the granularity level of reuse in the

observed object-oriented code. There are slightly more vp-s at the

class level than at the method level, and in the meantime, there are

over twice more variants at the method level than at the class level.

More globally it seems that both techniques at class and method

levels are equally used to implement variability, but we also need

to extend the implementation techniques we are able to identify to

draw more general conclusions on this.

5.4 Three discerned patterns of variability
From the resulted visualizations, we discerned three patterns of

variability that emerge from the different case studies.

As a first pattern, we observed that the bigger size nodes and

the darker red nodes appear usually in large trees. For example,

the vp_XYPlot in JFreeChart and the vp_Component in Java AWT

are two big nodes. Then, the v_TimeOut is a darker red node in

JUnit. They are all part of larger trees shown in Figures 5, 9a and 9b,

respectively. This indicates that the places with a higher density

of variability at the method level have a higher density at the class

level, but not conversely. Thus, the cases like in Figure 9b were rare,

where v_Assert and v_FrameworkAssert in JUnit 4.12 are two

solitary nodes which have a lot of variability at the method level.

For this reason, if needed, the single node trees could be filtered

out from the visualization.

A second pattern is a way that we can group the eight case stud-

ies into (1) those that have a smaller number of trees but a higher

density of variability, and (2) those that have a larger number of

trees but a lower density of variability. From Figure 6, most of the

case studies belong to the first group except the Apache CXF 3.2.7

and Apache Maven 3.6.0 that belong to the second group. These two

systems have almost the largest number of trees with more than

a single node, but the majority of them are trees with only two or

three nodes. For example, Figure 9c shows an excerpt of variability

from Maven. Although this system is highly variable through its

plug-in system, nothing is visible in its main project except the inter-

faces with a single implementation. Specifically, over 90% of its trees

have only one vp with one or two vp-s or variants. For instance, the

vp_RepositoryRequestwith the v_DefaultRepositoryRequest.

Therefore, we used this second pattern to characterize code bases

that are more variability-rich, group (1), or less, group (2). As for

Maven, it could be interesting to include code from some of its

plugins to observe whether some relevant variability zones appear.

The last pattern is revealed in Figure 7. With a single variation

in Apache CXF, it shows that the total number of the identified vp-s
at class and method level seems highly correlated with the number

of LoC of a software system. For example, JHipster 2.0.28 and JUnit

4.12 have the smallest number of analysed LoC and the smallest

number of vp-s. Similarly, ArgoUML is the largest analysed system

and has the largest number of vp-s.

6 DISCUSSIONS
6.1 Scope of our study
In this study we only considered ten common variability imple-

mentation techniques, while variability can be implemented by

other language features or paradigms, such as functional program-

ming. Then, some software systems may also vary at the statement

level [58], where no technique is really used. However, we decided

to consider only the most common variability implementation tech-

niques at the class and method level, which are evident in every

object-oriented variability-rich system, and we believe the observed

results are sufficient to show the feasibility of the approach. More-

over, we believe that our approach and toolchain can be extended

to other used techniques, and at the statement level by using the

geometry of code [10, 21], for example with line indentation [45].

6.2 Threats to validity
The validity threats we face are related to the symfinder toolchain
capabilities, and the interpretation of results.

A first threat to validity is on the selected case studies. While

the set of case studies is not very large, we have shown it is suffi-

cient to validate the current state of the tooled approach on diverse

Java-based software projects. The identification and visualization of

symmetries is effective. With a larger set of analysed systems, more

or less variability-rich, we believe the obtained results will be simi-

lar. Still, we believe that additional systems might highlight some

additional variability patterns. This calls for larger experiments

as the toolchain itself is extended, as mentioned in the previous

paragraph. This is completely in line with our future work plan.

The second threat is on the interpretation of results. First, we

explicitly decided to omit the solitary nodes based on the main

assertion in the center’s theory, where the number of local sym-

metries resembles the important places in design. But, including

them might highlight some additional patterns of variability, some

of which can be specific to the domain of the targeted system. For

example, 73% and 95% of the trees in JUnit 4.12 and JHipster 2.0.28,

respectively, are solitary nodes. We expect that the future enhance-

ments in the approach and toolchain will enable to get more insight

on this. Secondly, our experiments show identification of symme-

tries, and concrete relations between them and some variability

implementations, but we did not have any complete definition of all

present symmetries and variability implementations in the studied

code that could have acted as ground truth. Consequently, we only

stay at the level of a feasibility demonstration with the current con-

tribution. A first solution would be to examine the whole code of

Xhevahire Tërnava, Johann Mortara, and Philippe Collet

a: An excerpt of variability in Java AWT b: An excerpt of variability in JUnit 4.12 c: An excerpt of variability in Maven 3.6.0

Figure 9: Example of a: one vp with a lot of commonality, b: small trees with highmethod level variability, and c: large number
of nodes with low vp-s and variants density

some projects, and it looks feasible for JavaGeom as a starting point.

Another one is to find the information in the domain features. Cur-

rently, we did not experiment any mapping from existing domain

features to identified vp-s with variants at the code level. As the

ArgoUML case study already has a defined feature model, it could

be used for further work on mapping and some measurements on

the realizability and usefulness properties [43].

6.3 Limitations
Beside the limitations related to the threats discussed above, we

see two other limitations in our tooled approach.

First, we currently only analyse Java based systems. Even if it is

a widely used object-oriented language, we also observed that some

variability can be present in systems or subsystems that are written

in JavaScript. This is, for example, the case with JHispter, where

we could only analyse the Java backend, which deals only with the

generation capabilities. Being able to analyse both languages would

enable to study more systems, but also projects architected with

different languages, for example, with JavaScript for the frontend,

and Java for the backend.

A second limitation is the absence of navigation from vp-s or

variants into their implementation in code. This can be solved by

integrating our toolchain within a development environment, such

as Eclipse or IntelliJ, but this is a significant amount of work in

implementation and maintenance.

Finally, according to Figure 7, highly variable software systems

are likely to have a high number of LoC. Therefore, scalability is an

important concern as our toolchain has to be able to analyse large

projects. Actually, the analysis of JFreeChart 1.5.0 lasts approxima-

tively 25 minutes. In the near future, we will aim at improving the

toolchain in order to reduce analysis time, for example, by storing

more information in the graph database to reduce the number of

analysis passes over the source code.

7 RELATEDWORK
In reengineering of clone-and-own and legacy software systems

into SPL, there is a large body of work on feature location and

feature identification approaches [8]. Feature location is an activity

for recovering the traceability of some pre-existing features to the

reusable code assets in an SPL [16, 50]. Whereas, feature identifica-

tion is an activity for identifying the common and varying units, as

potential features, among some related software systems [41, 68]. In

both cases, a set of clone-and-own or legacy systems are analysed.

In contrast, we consider the class of single variability-rich systems

that represent a family of systems but within a single code base.

Then, instead of identifying the domain features, for example by do-

ing an intersection of the abstract syntax tree elements of different

systems, we identify vp-s with variants, as two variability concepts

that are closer to the code and abstract the implementation tech-

niques or the reusable design of code assets. Regarding the classifi-

cation of migration SPL engineering approaches [32], our variability

identification process belongs more to the reactive or incremental

approaches. Even if we validate it by studying pre-existing systems,

we believe that as the symfinder toolchain visualizes the identified

variability implementations, it can be used to understand and then

refactor or incrementally extend the variability of a system under

development. Future work with the integration of our toolchain in

an IDE would help in exploring this usage.

Approaches for analyzing the variability of preprocessor-based

systems seemmore closely related to our work [26, 36, 37]. Similarly,

we consider a family of systems within a single code base, and study

real software. Both approaches are likely to cover a large set of

the most used variability implementation techniques in industrial

settings. However these works aim at comprehending the usage of

C/C++ preprocessor directives for implementing variability, as a

single technique, or at extracting them as features into a feature

model. On our side, we provide some tool support for understanding

the variability of a software system implemented by a set of object-

oriented techniques, including design patterns.

Regarding the visualization, a recent mapping study shows that

there are several approaches and tools for information visualization

in SPL engineering [38]. The most common visualized artifacts are

feature models, which use trees or graphs. But, there are very few

approaches for visualizing the variability at the code level. The

existing ones use colors [30] or bar diagrams [17]. Some visual-

izations for feature-file tracing have been also proposed [5], but

they are very specific. In general, excluding the configuration pro-

cess [47, 52], it is well recognized that the majority of the tools

in SPL engineering use ad hoc visualization techniques or use the

available functionalities inside Eclipse [38]. In contrast, our visual-

ization tends to display, after filtering, trees – which are actually

disconnected graphs – conform to the nature of vp-s, variants, and

Identifying and Visualizing Variability in Object-Oriented Variability-Rich Systems

their relationships. Displaying classes, inheritance links and some

additional metrics, this visualization can be seen as related to the

ones for understanding large set of classes, such as polymetric

views [33, 34]. However the information we used is just focusing

on local symmetries and on the potential implemented variability,

but relating other software metrics (e.g. quality metrics) to our set

of information is clearly an interesting research topic. Toward that,

relations and coupling can be studied with several advanced visual-

ization techniques that are now used for software understanding,

such as visualizing large codes as cities [62, 63], as hotspot maps,

or as social networks [60].

8 CONCLUSION
Many object-oriented variability-rich systems are developed to

represent a family of systems but within a single code base. They

are also likely to use many different variability implementation

techniques (e.g., inheritance, overloading, design patterns), which

create in the code assets different kinds of variation points with

variants. In this paper, we proposed an identification and visual-

ization method that uses the property of symmetry in software

to highlight and abstract different kinds of variation points with

variants in a unified way. We relied and extended previous work

on software symmetry to systematically map nine object-oriented

language features to variability abstractions. Then, we used our

prototyped toolchain to identify the corresponding variation points

with variants on eight real Java-based systems and provided the first

form of visualization to enable software architects to spot zones of

interest w.r.t. variability. In addition, we used the density and the

number of variation points, as two metrics, to gain more insights

for the variability domain of each analysed system. As a result, we

discerned three first patterns of variability that characterize the

eight variability-rich systems.

We expect this contribution to be a concrete step towards better

understanding of variability implementation with traditional tech-

niques, and also to resume the discussion on how to implement

the variability within the main decomposition of code. In the fu-

ture, we first plan to improve the scope of the toolchain regarding

the identification of symmetry in other language features, being

object-oriented or functional. Then, we plan to integrate with a

development environment that will help to automate the naviga-

tion from the visualization to code and also map domain features

to the identified variability in code. We also plan to analyse and

visualize the evolution of the variability implementation patterns

in large projects over time and discern new ones. For this reason,

we aim at exploiting other software metrics [18]. We also expect to

study other properties than symmetry that come from Alexander’s

theory of centers, aiming to better identify how they could help in

understanding large software projects and their variability, such as

using the property of good shape to identify the symmetry at the

statement level.

A APPENDIX
Current public release. The latest publicly released source code

of the symfinder tool, tagged splc2019-artifact, is available for down-
load at https://github.com/DeathStar3/symfinder.

symfinder usage guidelines. In Figure 10 is shown the main

project structure of symfinder. The numbers on the right side show

the sequence of steps to reproduce any of the presented

experiments.

/

d3

index.html.....⑥

experiments........①

experiments.yaml

src

main

resources ..⑤

junit-r4.12

...

build.sh............②

run.sh..............③

visualization.sh...④

README.md

Figure 10: The project
structure in symfinder

The README.md file contains a
detailed guide on the technical re-

quirements, how to set up an ex-

periment, to run it, and how to vi-

sualize the resulting data for anal-

ysis. This guide is valid for three

operating systems, GNU/Linux,

macOS Sierra 10.12 or newer, and

Windows 10 64-bit (Pro, Enter-

prise or Education). The main re-

quirements for the toolchain are

Docker
9
and Docker Compose

10
,

so to facilitate the overall porta-

bility.

The experiments.yaml file in

① is used to set up an experiment.

It requires the git repository url
of the targeted system with its tag

ID or commit ID, for instance, the

url of JUnit with tag r4.12, given
in Table 3. The provided file con-

tains a default configuration that corresponds to all eight analysed

systems in Table 3. Still, one can change the configuration to analyse

another set of systems.

In ② and ③, build.sh and run.sh are the main scripts to build

and run an experiment. Basically, run.sh downloads the sources
of the targeted system and starts a Docker Compose environment,

whereas visualization.sh in ④ generates the visualization data.

The downloaded copy of a system is saved locally in the resources
folder, such as the junit-r4.12 subfolder in ⑤. Then, index.html
is used to access the generated visualization of the identified vari-

ability for a targeted system (⑥). It can be opened locally using a

web browser, through http://localhost:8181.

The README.md file also contains a visualization example, which

is annotated to explain the different elements of visualization.

symfinder demonstration website. The generated visualizations

of the identified variability for the eight analysed systems are avail-

able at https://deathstar3.github.io/symfinder-demo/. This site also

contains a larger set of examples, enriched with explanations, from

the identified variability in each analysed variability-rich system.

REFERENCES
[1] Christopher Alexander. 1993. A Foreshadowing of 21st Century Art: The Color and

Geometry of Very Early Turkish Carpets (Center for Environmental Structure, Vol
7). New York: Oxford University Press.

[2] Christopher Alexander. 2002. The nature of order: an essay on the art of build-
ing and the nature of the universe. Book 1, The phenomenon of life. Center for
Environmental Structure.

[3] Christopher Alexander. 2002. The process of creating life: Nature of order, Book

2: An essay on the art of building and the nature of the universe. Berkeley: Center
for Environmental Structure (2002).

[4] Christopher Alexander and Susan Carey. 1968. Subsymmetries. Perception &
Psychophysics 4, 2 (1968), 73–77.

9
https://www.docker.com/

10
https://docs.docker.com/compose/

https://github.com/DeathStar3/symfinder
http://localhost:8181
https://deathstar3.github.io/symfinder-demo/
https://www.docker.com/
https://docs.docker.com/compose/

Xhevahire Tërnava, Johann Mortara, and Philippe Collet

[5] Berima Andam, Andreas Burger, Thorsten Berger, and Michel RV Chaudron. 2017.

Florida: Feature location dashboard for extracting and visualizing feature traces.

In Proceedings of the Eleventh International Workshop on Variability Modelling of
Software-intensive Systems. ACM, 100–107.

[6] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[7] Sven Apel and Dirk Beyer. 2011. Feature cohesion in software product lines:

an exploratory study. In Software Engineering (ICSE), 2011 33rd International
Conference on. IEEE, 421–430.

[8] Wesley KG Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R

Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into

software product lines: a systematic mapping. Empirical Software Engineering 22,

6 (2017), 2972–3016.

[9] Rafael Capilla, Jan Bosch, and Kyo-Chul Kang. 2013. Systems and Software
Variability Management. Springer.

[10] J Coplien. 1998. Space: the final frontier. C++ Report 10, 3 (1998), 11–17.
[11] James O Coplien. 1999. Multi-paradigm design for C++. Vol. 53. Addison-Wesley

Reading, MA.

[12] James O Coplien and Liping Zhao. 2000. Symmetry breaking in software pat-

terns. In International Symposium on Generative and Component-Based Software
Engineering. Springer, 37–54.

[13] James O. Coplien and Liping Zhao. 2019. Toward a general formal foundation of
design. Symmetry and broken symmetry. Technical Report. A VUB Lecture Series

Publication. Working draft.

[14] David Legland. 2019. JavaGeom - Geometry library for Java. https://github.com/

dlegland/javaGeom/tree/master/src [Online].

[15] Stephan Diehl. 2007. Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer Science & Business Media.

[16] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.

Feature location in source code: a taxonomy and survey. Journal of software:
Evolution and Process 25, 1 (2013), 53–95.

[17] Slawomir Duszynski and Martin Becker. 2012. Recovering variability information

from the source code of similar software products. In 2012 Third International
Workshop on Product LinE Approaches in Software Engineering (PLEASE). IEEE,
37–40.

[18] Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid. 2018. Metrics

for analyzing variability and its implementation in software product lines: A

systematic literature review. Information and Software Technology (2018).

[19] Eric Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra. 2004. Head first
design patterns. " O’Reilly Media, Inc.".

[20] Claudia Fritsch, Andreas Lehn, and Thomas Strohm. 2002. Evaluating variability

implementation mechanisms. In Proceedings of International Workshop on Product
Line Engineering (PLEES). sn, 59–64.

[21] Richard P Gabriel. 1996. Patterns of software. Vol. 62. Oxford University Press

New York.

[22] Critina Gacek and Michalis Anastasopoules. 2001. Implementing product line

variabilities. In ACM SIGSOFT Software Engineering Notes, Vol. 26. ACM, 109–117.

[23] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,

and Patrick Heymans. 2017. Yo variability! JHipster: a playground for web-apps

analyses. In Proceedings of the Eleventh International Workshop on Variability
Modelling of Software-intensive Systems. ACM, 44–51.

[24] Kevlin Henney. 2003. The Good, the Bad, and the Koyaanisqatsi. In Proceed-
ings of the Second Nordic Pattern Languages of Programs Conference, VikingPLoP,
Vol. 2003.

[25] Weyl Hermann. 1952. Symmetry. Princeton University Press.

[26] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf Leßenich,

Martin Becker, and Sven Apel. 2016. Preprocessor-based variability in open-

source and industrial software systems: An empirical study. Empirical Software
Engineering 21, 2 (2016), 449–482.

[27] Ivar Jacobson, Martin Griss, and Patrik Jonsson. 1997. Software reuse: architec-
ture, process and organization for business success. ACM Press/Addison-Wesley

Publishing Co.

[28] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-

terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[29] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. 2012. A variability-

aware module system. In ACM SIGPLAN Notices, Vol. 47. ACM, 773–792.

[30] Christian Kästner, Salvador Trujillo, and Sven Apel. 2008. Visualizing Software

Product Line Variabilities in Source Code.. In SPLC (2). 303–312.
[31] Maren Krone and Gregor Snelting. 1994. On the inference of configuration

structures from source code. In Proceedings of 16th International Conference on
Software Engineering. IEEE, 49–57.

[32] CharlesW Krueger. 2001. Easing the transition to software mass customization.

In International Workshop on Software Product-Family Engineering. Springer, 282–
293.

[33] Michele Lanza and Stéphane Ducasse. 2003. Polymetric views-a lightweight visual

approach to reverse engineering. IEEE Transactions on Software Engineering 29, 9

(2003), 782–795.

[34] Michele Lanza, Stéphane Ducasse, Harald Gall, and Martin Pinzger. 2005. Code-

crawler: an information visualization tool for program comprehension. In Proceed-
ings of the 27th international conference on Software engineering. ACM, 672–673.

[35] Duc Le, Eric Walkingshaw, and Martin Erwig. 2011. # ifdef confirmed harmful:

Promoting understandable software variation. In 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 143–150.

[36] Duc Minh Le, Hyesun Lee, Kyo Chul Kang, and Lee Keun. 2013. Validating

consistency between a feature model and its implementation. In International
Conference on Software Reuse. Springer, 1–16.

[37] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael

Schulze. 2010. An analysis of the variability in forty preprocessor-based software

product lines. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1. ACM, 105–114.

[38] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2018. A

systematic mapping study of information visualization for software product line

engineering. Journal of Software: Evolution and Process 30, 2 (2018), e1912.
[39] Angela Lozano. 2011. An overview of techniques for detecting software variability

concepts in source code. In International Conference on Conceptual Modeling.
Springer, 141–150.

[40] Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi, Jairo Aponte,

Eduardo Figueiredo, and Marco Tulio Valente. 2018. Feature location benchmark

with argoUML SPL. In Proceeedings of the 22nd International Conference on Systems
and Software Product Line-Volume 1. ACM, 257–263.

[41] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and Yves Le

Traon. 2017. Bottom-up technologies for reuse: automated extractive adoption

of software product lines. In Proceedings of the 39th International Conference on
Software Engineering Companion. IEEE Press, 67–70.

[42] Andreas Metzger and Klaus Pohl. 2014. Software product line engineering and

variability management: achievements and challenges. In Proceedings of the on
Future of Software Engineering. ACM, 70–84.

[43] Andreas Metzger, Klaus Pohl, Patrick Heymans, Pierre-Yves Schobbens, and

Germain Saval. 2007. Disambiguating the documentation of variability in software

product lines: A separation of concerns, formalization and automated analysis. In

Requirements Engineering Conference, 2007. RE’07. 15th IEEE International. IEEE,
243–253.

[44] Bertrand Meyer. 1988. Object-oriented software construction. Vol. 2. Prentice hall
New York.

[45] Richard J Miara, Joyce A Musselman, Juan A Navarro, and Ben Shneiderman.

1983. Program indentation and comprehensibility. Commun. ACM 26, 11 (1983),

861–867.

[46] Thomas Patzke and D. Muthig. 2002. Product line implementation technologies.
Programming language view. Technical Report 057.02/E. Fraunhofer IESE.

[47] Andreas Pleuss and Goetz Botterweck. 2012. Visualization of variability and

configuration options. International Journal on Software Tools for Technology
Transfer 14, 5 (2012), 497–510.

[48] Joe Rosen. 1995. Symmetry in science. Springer.
[49] Joseph Rosen. 2008. Symmetry rules: How science and nature are founded on

symmetry. Springer Science & Business Media.

[50] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques.

In Domain Engineering. Springer, 29–58.
[51] Nikos Salingaros. 2014. Complexity in architecture and design. Oz 36, 1 (2014),

4.

[52] Denny Schneeweiss and Goetz Botterweck. 2010. Using Flow Maps to Visualize

Product Attributes during Feature Configuration.. In SPLC Workshops. 219–228.
[53] Stefan Sobernig, Sven Apel, Sergiy Kolesnikov, and Norbert Siegmund. 2016.

Quantifying structural attributes of system decompositions in 28 feature-oriented

software product lines. Empirical Software Engineering 21, 4 (2016), 1670–1705.

[54] Henry Spencer and Geoff Collyer. 1992. # ifdef considered harmful, or portability

experience with C News. (1992).

[55] Ian Stewart and Martin Golubitsky. 2010. Fearful symmetry: is God a geometer?
Courier Corporation.

[56] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. 2005. A taxonomy of variability

realization techniques. Software: Practice and Experience 35, 8 (2005), 705–754.
[57] Peri Tarr, Harold Ossher,WilliamHarrison, and StanleyM Sutton. 1999. N degrees

of separation: multi-dimensional separation of concerns. In Proceedings of the
1999 International Conference on Software Engineering (IEEE Cat. No. 99CB37002).
IEEE, 107–119.

[58] Xhevahire Tërnava and Philippe Collet. 2017. On the Diversity of Capturing

Variability at the Implementation Level. In Proceedings of the 21st International
Systems and Software Product Line Conference-Volume B. ACM, 81–88.

[59] Xhevahire Tërnava and Philippe Collet. 2017. Tracing Imperfectly Modular

Variability in Software Product Line Implementation. In The 16th International
Conference on Software Reuse.

[60] Adam Tornhill. 2015. Your code as a crime scene: use forensic techniques to arrest
defects, bottlenecks, and bad design in your programs. Pragmatic Bookshelf.

[61] C Reid Turner, Alfonso Fuggetta, Luigi Lavazza, and Alexander L Wolf. 1999. A

conceptual basis for feature engineering. Journal of Systems and Software 49, 1
(1999), 3–15.

https://github.com/dlegland/javaGeom/tree/master/src
https://github.com/dlegland/javaGeom/tree/master/src

Identifying and Visualizing Variability in Object-Oriented Variability-Rich Systems

[62] Richard Wettel and Michele Lanza. 2007. Visualizing software systems as cities.

In 2007 4th IEEE International Workshop on Visualizing Software for Understanding
and Analysis. IEEE, 92–99.

[63] Richard Wettel and Michele Lanza. 2008. Visual exploration of large-scale system

evolution. In 2008 15thWorking Conference on Reverse Engineering. IEEE, 219–228.
[64] Wikipedia contributors. 2019. Class (computer programming) — Wikipedia,

The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Class_

(computer_programming)&oldid=884947448 [Online; accessed 26-February-

2019].

[65] Liping Zhao. 2008. Patterns, symmetry, and symmetry breaking. Commun. ACM
51, 3 (2008), 40–46.

[66] Liping Zhao and James Coplien. 2003. Understanding symmetry in object-

oriented languages. Journal of Object Technology 2, 5 (2003), 123–134.

[67] Liping Zhao and James O Coplien. 2002. Symmetry in class and type hierarchy.

In Proceedings of the Fortieth International Conference on Tools Pacific: Objects for
internet, mobile and embedded applications. Australian Computer Society, Inc.,

181–189.

[68] Tewfik Ziadi, Luz Frias, Marcos Aurélio Almeida da Silva, and Mikal Ziane. 2012.

Feature identification from the source code of product variants. In 2012 16th
European Conference on Software Maintenance and Reengineering. IEEE, 417–422.

https://en.wikipedia.org/w/index.php?title=Class_(computer_programming)&oldid=884947448
https://en.wikipedia.org/w/index.php?title=Class_(computer_programming)&oldid=884947448

	Abstract
	1 Introduction
	2 Background
	2.1 Variability in reusable code assets
	2.2 Local symmetry and centers

	3 Identifying variability
	3.1 Symmetry in software constructs
	3.2 Identifying variation points with variants
	3.3 Density of variation points

	4 Automatic identification and visualization of symmetries
	4.1 Identification
	4.2 Visualization

	5 Validation
	5.1 Validation case studies
	5.2 Conducted experiments
	5.3 Results
	5.4 Three discerned patterns of variability

	6 Discussions
	6.1 Scope of our study
	6.2 Threats to validity
	6.3 Limitations

	7 Related work
	8 Conclusion
	A Appendix
	References

