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Abstract

Fission gases, especially Xenon, produced during irradiation in a nuclear fuel,
have very low solubility in the UO2 fuel matrix and precipitate into bubbles.
These gas bubbles interact with point defects of the fuel (vacancies, self-
interstitials, etc.) causing significant microstructural evolution which may
eventually affect the overall performance of the fuel. Spatially resolved mod-
els are developed to predict and model the microstructural change at the
mesoscale. We present a new model, which focuses on modeling the interac-
tion between point defects and xenon gas bubbles. This new model overcomes
the limitation of the existing cluster dynamics models as it can account for
spatialization as well as the limitation of the spatially resolved phase-field
models as it can also account for very small defect clusters, even below the
individual grid spacing. The modeling of the phenomena of coalescence of
two bubbles in a vacancy supersaturation and the vanishing of a small bubble
in the presence of a larger bubble (Ostwald ripening) prove the credibility of
the new model. 2-D analysis of a case depicting the movement and growth
of bubbles in a vacancy concentration gradient is presented and is in good
agreement with the associated physics.
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1. Introduction

When fission takes place in a nuclear reactor, the nuclear reactions lead
to the generation of fission products, including inert gas atoms and certain
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disorder in the nuclear fuel in the form of defects such as vacancies, auto-
interstitials and gas in substitution. The fission gases, Xe and Kr, which have
a fission yield of about 0.3, have very low solubility in the fuel matrix and
often precipitate into bubbles. The point defects interact with the Xenon
bubbles and other microstructural features like as-fabricated pores and grain
boundaries in the fuel. Such interactions can lead to macroscopic effects like
swelling and fission gas release which have a direct impact on the thermo-
mechanics of the fuel rod and must be considered in any fuel performance
code [1].
The fission gas bubbles can be either small nanobubbles within the grain
(intra-granular) or larger bubbles on grain boundaries (inter-granular). The
mechanism of fission gas release out of the fuel can be understood as a two
step process: the transfer of gas atoms from the grain to the grain boundaries,
and then the coalescence and interlinkage of grain-boundary bubbles to give
pathways to outside the fuel. While the latter is clearly observed at high tem-
peratures (T ≥ 14000C), it has recently been questioned for base irradiation
[2]. The former step of gas atoms transfer within the grain has been a topic
of debate for the past few decades [3, 4]. If the gas bubbles are considered as
perfect traps for gas atoms and according to the effective diffusion theory, the
gas should be trapped in the large number of intra-granular bubbles during
annealing at high temperatures and should not escape the grain within the
duration of annealing. However, it has been long observed that, in practice,
the fission gas release from the grain to the grain boundaries may reach val-
ues higher than ≈ 60% [5]. Several mechanisms have been proposed for the
explanation of such behaviour in the past. For example, MacEwan et al. [6]
suggested that the thermal resolution of gas atoms from bubbles, providing
a source term for their migration to grain boundaries, could be a possible
mechanism. This approach assumes that the inert gases are not essentially
insoluble in UO2. Through an experiment using ion implantation of krypton
into UO2, Evans et al.[7] concluded to the non realism of the mechanism of
thermal resolution of gas atoms. However, they searched for the evidence
of thermal resolution through the shrinking of the bubbles, whilst, in the
case of thermal resolution, there would initially be Ostwald Ripening, and
hence, possibly, growing of the bigger bubbles at the expense of the smaller
ones. Only then, as the free surface is farther, the shrinking of these bub-
bles would follow at the profit of the free surface. So, from our point of view,
thermal resolution cannot be completely excluded from the possibilities to be
explored. Evans [8] further proposed that the mechanism could be explained
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by the directed motion of bubbles up the concentration gradient caused by
the arrival of thermal vacancies from grain boundaries. He also carried out
a quantitative assessment [9] of the mechanism by using numerical calcula-
tions to simulate the phenomenon. The model used by Evans, however, is
not completely mechanistic because he postulates that the bubbles situated
at the front (defined by Cv ≈ 0), undergo a local fractional swelling, ∆S, (a
key parameter of his model) before the front progresses inwards the grain.
This maintains the vacancy gradient long enough to allow bubbles that are
in the gradient to reach the grain boundary. However, this has never been
demonstrated. Another scenario could be that the vacancies diffuse inwards
the grain and that the vacancy gradient becomes nil before most of the bub-
bles can reach the grain boundary. So, there arises a need to develop more
mechanistic new models that would explicitly describe the bubble and their
interaction with vacancies.
For a few years, spatially resolved models have been developed in the mesoscale
to understand the microstructure in greater detail. The advantage of using
the mesoscale is that material characteristics at the microstructure-level such
as grain boundaries or other defects, can be represented in local detail and
their interactions with atomic processes can be considered explicitly. Models
based on Cluster Dynamics [10, 11] have been used to study the interactions
of defects and gas bubbles. Although very efficient, these models lack space
correlation of the microstructural elements. Even the spatially resolved mod-
els, such as the Phase Field Models [12, 13] have some limitations as they
cannot model very small bubbles, less than the individual grid size. More-
over, a very high resolution meshing is required to simulate the continuous
field evolution across the diffuse interface, which can be computationally de-
manding.
In this paper, we present a new spatially resolved model for the interaction
between point defects and fission gas bubbles. The model intends to nu-
merically simulate, in greater detail, the mechanism of directed gas bubble
migration up a vacancy gradient, as proposed by Evans [8]. The phenomena
of coalescence and vanishing of bubbles is simulated and a 2-D test for the
movement and growth of bubbles is described in this paper. The successful
implementation of these phenomena in the model provide us confidence to
further analyze the mechanism of gas migration in a vacancy concentration
gradient. The methodology adopted in the model is described in section 2.
The general results for the phenomena simulated in the model are described
in section 3 and some discussion and conclusions are presented in Section 4.
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2. Model description

Assumptions:

• Only vacancies are considered as point defects in the model.

• Bubbles are assumed to be spherical and remain so. This assumption
is justified for the intra-granular bubbles.

• No irradiation is considered in the model, i.e. it is only applicable for
annealing tests.

2.1. Representation

In the model, the perfect infinite solid is modeled by a portion of it as a
mono-crystal having cavities (bubbles). The limit conditions are either peri-
odic or symmetric along the x-axis and periodic in the other direction(s). At
present, no grains, grain boundaries or different solid phases are considered
in the model. The model is developed to function in both 2-D and 3-D, but
for the results presented in this paper, only 2-D analysis has been done for
simplicity.
In the representation of the model, the solid portion, which is a rectangle in
2-D or a cuboid in 3-D, is discretized on a regular mesh. The independent
variables which are sufficient to represent the model are spins and fields.

(i) Spins
The first variables, spins, are simply integer numbers allocated to the
cells (pixel in 2-D/voxel in 3-D) to categorize them in the mesh. For a
cell in the solid region, the spin is 2. Spin is 0 for a cell in a cavity and
1 for the cells in the interface between solid and cavity (Fig.1). A rule
is that a 1-cell will always be between a 2-cell and a 0-cell i.e. a solid
and cavity cannot be immediate neighbours and will always have an
interface between them. The 1-cells are imagined to be partially solid
and partially void. It is also imagined that a defect arriving towards a
1-cell will immediately reach the solid/void surface.

(ii) Concentration fields
The other variables, the fields, represent the concentrations and are cal-
culated by a system of Ordinary Differential Equations (ODEs). The
fields for a 2-cell are the concentration of defects, which here, are the
concentration of vacancies Cv. For a 1-cell the fields are the concen-
tration of crystalline atoms, Ca. All the concentrations are expressed
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Figure 1: Representation of a regular mesh in 2-D with fuel matrix and cavity with Spins
designated to each cell

in fraction of sites. Ca in particular, is the number of U atoms in the
cell divided by the number of U-sites in the cell. So, Ca is assimilated
to the solid fraction (rs) in the interface cell. No fields are required for
the 0-cells. The equilibrium concentration of vacancies at the consid-
ered temperature in the proximity of a surface with curvature κ and
exposed to a pressure Pb are denoted as Ceq

v (κ, Pb). The method to
calculate the equilibrium concentrations of vacancies in the vicinity of
over-pressurized bubbles has been presented by Noirot [14] and the ex-
pression for this is:

Ceq
v = exp

[
−(εv − svT )

kT
− Ω

kT
(Pb − γbκ)

]
(1)

where, εv is the formation energy of vacancies (more precisely, Schot-
tky defects, with εv = 2.47 eV), sv is the excess entropy of vacancy
formation, T is the annealing temperature in K, Ω is the volume of
one UO2-site and it is equal to 40.9x10−30m3, k is Boltzmann Constant
and γb is the surface tension at the solid-bubble interface. The excess
entropy of vacancy formation, sv, is equal to

sv = kln
[
(
ν

ν ′
)α
]

(2)
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where, ν is the perfect crystal vibration frequency, ν ′ is the vibration
frequency of atoms influenced by the vacancies and α is the number
of vibrational modes that are altered by the introduction of a single
vacancy [15, p.59]. In this article, we have taken sv = 0, but as the
value of sv is not known precisely, it can be considered as a parameter
in further studies.
The 1-cells have a two-fold usage in the model. Firstly, they contain the
Ca variable, which integrate every arrival or removal of U atoms with
time. Secondly, the 1-cells are also used to provide a limit condition
for the diffusion of vacancies in the 2-cells by imposing that, within
the 1-cells, the vacancy concentration Cv is equal to the equilibrium
concentration Ceq

v (κ, Pb).

(iii) Bubbles
The bubbles in the model are supposed to be and remain spherical. The
bubbles are entities that store specific information about each bubble
in the model. Among these are the position of their center, the total
volume of the 0-cells included in the bubble, the total volume of the
bubble, the gas content and the list of 1-cells forming the interface. In
this study, we can consider the presence of gas in the bubbles, but we
do not consider gas in the solid.

2.2. Non-dimensionalization

The physical quantities used in the expressions are non-dimensionalized
as follows:

• Energies by Ead = 1.6 ∗ 10−19J , which corresponds to 1eV

• Distances by lad = 10−9m, which corresponds to 1nm

• Time by tad =
l2ad
Dv

, where Dv is the vacancy diffusion coefficient

As a consequence of non-dimensionalization, the non-dimensional value of Dv

is equal to 1. Concentrations of vacancies (Cv) and crystalline atoms (Ca)
are already non-dimensionalized as they are expressed in fraction of sites.
The non-dimensional values are represented with a tilde in the expressions
used in the paper.
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2.3. General algorithm of the model

The model simulates microstructure evolution with time by taking into
account the various aspects of interaction between defects and bubbles such
as diffusion of defects and the update of bubble characteristics and shape. A
general algorithm adopted in the model for a time step is depicted in Figure
2 and the detailed description of these aspects are presented in the following
sections.

Figure 2: A general algorithm of the model

2.3.1. Diffusion of point defects and crystal atoms

(i) For the 2-cells
The diffusion of defects is governed by the Fick’s law. A defect balance
equation is written for each 2-cell interacting with its neighbours. So
the non-dimensionalized defect balance equation is:

∂Cv

∂t̃
= −∇̃.φ̃v (3)

where, φ̃v = −D̃v∇̃(Cv) (4)
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here φ̃v represents the flux of vacancies between 2-cells.

(ii) For the 1-cells
For the 1-cells, the atom balance equation is written as:

∂Ca

∂t̃
= −∇̃.φ̃a (5)

The flux of atoms, φ̃a, however, can occur through different phenomena.
Exchanging with a 2-cell, the flux of atoms is a consequence of the flux
of defects (here, only vacancies) and can be determined as:

φ̃a = −φ̃v (6)

The flux of atoms could also be along the interface (i.e. exchanging
with another 1-cell) due to surface diffusion. In the model, the surface
diffusion is not explicitly taken into account as a flux of atoms between
two 1-cells. It has, however, been incorporated in the hypothesis about
the shape of the bubbles being and remaining as spheres.

These equations are then discretized in space and time. There are several
spatial schemes or stencils available for space discretization depending on the
number or type of neighbours being used. For the present model, only the
face neighbors have been taken into consideration using a 5-point difference
scheme in 2-D and 7-point difference scheme in 3-D.
The procedure used for calculating the left hand side of equation (3) or (5) is
to calculate the flux of vacancies from the neighbour cells (n) to the present
cell (p) and then to calculate the negative divergent of the flux. So, for the
2-cells, this procedure can be represented by the equation:

∂Cv(p)

∂t̃
=

∑
n εface neighbours

D̃v

h̃2
[Cv(n)− Cv(p)] (7)

here, h is the grid size.
For a 1-cell, the procedure for the flux due to the flux of vacancies from a
neighbour 2-cell, can be represented as:

∂Ca(p)

∂t̃
= −

∑
n ε2−cell face neighbours

D̃v

h̃2
[Cv(n)− Ceq

v (κ(p), Pb(p))] (8)

where, κ(p) and Pb(p) are the curvature and pressure of the bubble whose cell
(p) is an interface cell. Once the set of space-discretized equations is written,
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a set of Ordinary Differential Equations (ODE) is obtained. Explicit scheme
of time discretization is used. For a solid cell p, the expression for time
discretization is:

Ct+1
p = Ct

p +
∑

n εface neighbours

∆t̃D̃v

h̃2

[
Ct
n − Ct

p

]
(9)

For an interface cell, the expression is analogous. Ceq
v is considered constant

with time during the time step ∆t in Figure 2.

2.3.2. Bubble volume update

For each bubble in the simulation, the total volume of the bubble needs
to be updated after the diffusion process. Then knowing the volume of each
bubble, the temperature and the equation of state of the gas, the pressure, Pb
as well as the new value of Ceq

v is determined. At the beginning of the time

step, for each bubble, the total 0-cell volume is kept into a variable V
(0−cells)
b .

At the end of a time step, the total volume of the bubble,Vb, is updated by :

Vb = V
(0−cells)
b +

∑
interface cells

(1− Ca) ∗ Vcell + ∆aΩ + ∆Vcomp (10)

here, Ca has been calculated in the diffusion phase, Vcell is the volume of one
cell and Ω is the volume of one site. The last two terms are for the error in
number of atoms ∆a and complimentary error term for balancing the volume
equation ∆Vcomp, respectively. ∆a is updated each time an interface cell of
the bubble is updated and its value is updated as:

∆a = ∆a+ (Cnew
a − Cold

a )
Vcell
Ω

(11)

∆Vcomp is required to balance the volume equation when there is a transfor-
mation of a 2-cell into a 1-cell and vice versa. When a 2-cell is transformed
into a 1-cell, an additional term is added to the summation over the inter-
face cells on the right hand side of equation 10. To restore the balance of
the equation, this additional term has to be removed and it is taken care by
∆Vcomp with the expression:

∆Vcomp = ∆Vcomp − (1− Ca) ∗ Vcell (12)
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Similarly, for a 1-cell to 2-cell transformation, there is a deficit of one term
(from the transformed 1-cell) and thus, this term is added to ∆Vcomp to
maintain the balance. Moreover, the movement of bubble is also considered
with the calculation of its new center (called Target center).

2.3.3. Re-drawing the bubble

Once the new characteristics of the bubble are updated, the list of inter-
face cells of each bubble also has to be updated. This means that the spins of
some cells may be changed and the rs = Ca (solid ratio in the interface cells)
are recalculated as if the bubble was re-drawn. ∆a and ∆Vcomp have been
introduced in equation 10 to respect the balance of crystal atoms without
demanding a very high precision when new rs values are calculated in the re-
drawing process. If the target center of the bubble is too far from its previous
center, this process of re-drawing may be done in several steps, moving the
bubble center by shorter distances. Coalescence with other bubbles is also
checked during the process. Once the re-drawing process is done for each
bubble, a new diffusion time step may begin.

3. Results and Discussions

In order to test the capability of the model to simulate the mechanisms
related to fission gas bubble behaviour, some general tests are carried out in
2-D. The simulation domain is a 64x64 cells box. The grid size is taken as
4, so the physical domain is a 256 nm x 256 nm size box. The same domain
has been adopted for all the cases discussed hereafter. The bubble(s) are
included in the domain box with size and number of bubbles depending on
the requirements of the test case. The isothermal annealing temperature is
taken as 18000C. The following tests are carried out using the model.

3.1. Coalescence of two bubbles

Due to bubble growth and migration, coalescence between two or more
bubbles can occur in the grain. Coalescence leads to the overall coarsening
of the bubbles but also decreases the number density of bubbles within the
grain. To simulate the the phenomenon of coalescence of two bubbles, the
bubbles are modeled with the properties mentioned in Table 1.

The initial concentration of vacancies in the solid region is provided as
high as Cini

v = 1.e-2 so that coalescence can occur quickly as the two bubbles
will trap vacancies and grow. The criteria for coalescence of two bubbles is
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Bubble ID Radius (nm) Pressure (Pa)
1 12.1 28.53
2 5.9 2.85e+7

Table 1: Properties of bubbles for coalescence test

that a 1-cell of a bubble should be an immediate neighbour of a 1-cell of
the other bubble. When this condition is satisfied, the two bubbles coalesce
into one bigger bubble. During coalescence, the volume and content of the
resulting bubble is the sum of volume and content of the two bubbles. The
center of the new bubble is the barycenter (weighted by the volume) of the
centers of the two coalescing bubbles. The simulation is carried out for a
time of 2.e+7 which is equivalent to about 12 s of experiment time. The
situation before and after the diffusion is seen using Paraview [16] and is
represented in terms of rs, the solid fraction of a cell (Fig.3). It is very

Figure 3: Coalescence of 2 bubbles, at time t=0 and after diffusion at t=12s of experiment
time

well evident from Fig.3 that coalescence occurred between the two bubbles
forming a single bubble of radius 19.7 nm. The pressure within the new
bubble is 2.50e+6 Pa. The positions of the two bubbles were chosen as such
to test the periodicity condition at the boundaries, which can be seen to be
working perfectly.

3.2. Vanishing of a bubble in the presence of a large bubble

In the case of empty bubbles with different sizes, the smaller bubble
in the vicinity of a larger bubble decreases further in size and the larger
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bubble continues to grow further at the expense of the small bubble. This
phenomenon is known as Ostwald Ripening. The small bubble may even
vanish during the process. To simulate the phenomenon of Ostwald Ripening
in the model, two bubbles are modeled with different sizes and are provided
with a very large volume per atom of gas (Vat) as 1.e+6 nm3. The bubble
properties are mentioned in Table 2.

Bubble ID Radius (nm) Pressure (Pa)
1 20.0 28.53
2 5.0 28.53

Table 2: Properties of bubbles for vanishing test

The initial concentration of vacancies in the solid region is taken as Cini
v = 1.04e-6,

which is of the same order of magnitude as the two Ceq
v at the interfaces of

the two bubbles. The algorithm adopted for vanishing of a bubble is that if
the volume of a bubble gets less than a limit volume, the bubble is removed
from the lattice and replaced by an equivalent number of vacancies. This
limit volume is taken as 3% of the volume of a cell. The idea for this order
of magnitude is that, in the model, each site represents a UO2 atom, irre-
spective of the orientation of U atom. This site, which is a cuboid, has 26
neighbour sites. So, a vacancy needs 26 sites around it to be a vacancy and
thus, the concentration of vacancies cannot exceed 1

27
≈ 3.7%. The simula-

tion is carried out for a time of 9.7e+8 which is equivalent to 10 minutes of
experiment time. As expected, the small bubble vanishes and the big bubble
grows to have a new radius of 20.6 nm. The evolution of the volumes of the
big bubble and the small bubble with time are depicted in Figure 4. It can

Figure 4: Evolution of volume of the small and big bubble with the experiment time

be observed through the figure that the volume of the small bubble decreases
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up to the limit volume and then the bubble vanishes. The big bubble grows
during this time at the expense of the small bubble. The saturation in the
volume of the big bubble near the end indicates the vanishing of the small
bubble at that time.

3.3. Movement and growth of bubbles

A simple 2-D case is carried out to test the ability of the model to simulate
the movement and growth of bubbles in a vacancy concentration gradient.
One empty bubble with a radius of 30 nm is modeled at the center of the
domain. The volume per atom of gas in the bubble is provided as 1.e6 nm3.
Randomly generated bubbles with a random size distribution are provided
with volume per atom of gas approximately equal to the volume of one U site
(0.04 nm3). These highly pressurized bubbles are randomly distributed in
the domain to surround the empty big bubble. According to the mechanism
proposed by Evans [8], due to the gradient of vacancy concentration between
the small bubbles and the big bubble, there should be a directed motion
of the small bubbles up the gradient towards the big bubble. At the same
time, the smaller bubbles must also grow by trapping vacancies from the big
bubble. The simulation is carried out for an experiment time of 1 hour. The
initial vacancy concentration in the solid is taken as Cini

v = 2.e-6 ,which is
of the same order of magnitude as the Ceq

v at the interfaces of the big and
small bubbles. The bubble evolution and migration is depicted in Figure 5
for time t=0 to t=60 min.

It can be observed in the Figure 5 that at t=0 the various bubbles are
randomly distributed around the big bubble. As time progresses, the small
pressurized bubbles trap vacancies from the bigger bubble and grow. The
bigger bubble shrinks at the same time. This bubble evolution continues
while the gradient of vacancy concentration lasts between the bubbles. Once
the equilibrium values are reached, there is no further movement of the bub-
bles. It can be seen from Figure 6, that the vacancy concentration values for
the big bubble and one of the small bubbles reach an equilibrium state at
around 57 minutes of annealing time.

Further, to study the directed motion of bubbles up the vacancy gradient,
the distance of a bubble from the center of the initially big bubble is plotted
against the experiment time (Figure 7). The radius of the big bubble is also
plotted to act as a reference. It is observed from Figure 7 that the bubbles
further away from the big bubble move a very slight distance towards the
bigger bubble. The bubbles near the big bubble, on the other hand, move
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Figure 5: Movement and growth of bubbles in a vacancy gradient

much more distance towards it. For example, Bubble 5 moves a distance of
24.8 nm towards the big bubble. Some bubbles coalesce among themselves
while moving towards the big bubble and thus vanish, as Bubbles 3 and 4.
The kink in the curve for Bubble 5 at around 21 min is due to the coalescence
of Bubble 4 with it, increasing the volume and shifting the center of Bubble
5 away from the center of the big bubble. In conclusion, it can be seen
that the bubbles migrate towards the bigger bubble which has a lower value
of equilibrium concentration of vacancies, thus verifying the mechanism of
directed motion of bubbles in a vacancy gradient.

4. Conclusion

A new spatially resolved model to study the interaction between fission
gas bubbles and point defects is presented. Motivated to study fission gas
release from the grain to the grain boundary through the mechanism of di-
rected bubble migration in a vacancy gradient, the present paper discusses
the capability of this model. The phenomena of coalescence of two bubbles
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Figure 6: Equilibrium concentration of vacancies at the vicinity of bubbles with time

Figure 7: Directed motion of smaller bubbles towards the big bubble

and Ostwald ripening in the grain are simulated using the model. These
phenomena are very well simulated by the model and show good agreement
with the associated physics. To test the ability of the model to simulate bub-
ble movement and growth in a vacancy concentration gradient, a 2-D case
is analyzed. The results show the growth of small pressurized bubbles and
their movement towards the large empty bubble while the vacancy gradient
lasts. The results obtained prove the ability of the model to simulate the
phenomena associated with bubble growth and migration. This gives us the
confidence to proceed further with the model to study, in detail, gas bubble
migration within the grain and its impact to the overall fission gas release.
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