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Observer design for a class of parabolic systems with arbitrarily

delayed measurements.

Tarek Ahmed-Ali1, Emilia Fridman2, Fouad Giri1, Mohamed Kahelras3, Francoise Lamnabhi-Lagarrigue3

and Laurent Burlion4

Abstract— An observer is designed for a class of nonlinear
parabolic PDEs with delayed point measurements. The novelty
lies is that the delay size is arbitrary. To compensate for this
arbitrary delay effect, the observer consists of several chained
sub-observers. Each sub-observer compensates a fraction of the
global delay. The resulting estimation error system is shown
to be exponentially stable provided that a sufficient number
of sub-observers is used. The stability analysis is based on
a specific Lyapunov-Krasovskii functional and the stability
conditions are expressed in terms of LMIs.

I. INTRODUCTION

The problem of designing observers for nonlinear systems

containing delays has been a hot research topic during the

past recent years. Existing works have been focused on

finite-dimensional systems described by ODEs, see e.g.

cite [1] and reference list therein. The dominant approach

consisted in starting with an exponentially convergent state

observer for the delay-free system and then modifying the

observer so that exponential convergence is preserved in the

presence of time-delay. The modification essentially consists

in introducing output or state predictors to compensate for

time delay. This has been illustrated with observers based

on drift-observability property [2] or on high-gain observers

[3], [1] , [4] . However, the involved predictors have proved

to be useful in compensating the delay effect only up to

some upper limit. To enlarge the maximum time-delay, a

set of chained predictors simultaneously operating have to

be implemented [2].

In parallel with the above ”finite-dimensional” research

activity, the ”infinite-dimensional” backstepping

transformation based approach has first been developed

for linear systems, see e.g. [5] and references therein.

This approach consists in letting the output sensor delay

be captured by a first-order hyperbolic PDE. Then,

full-order observers are designed that estimate both

the system (finite-dimensional) state and the sensor
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Université Paris Saclay, 91192 Gif-sur-Yvette, France,
mohamed.kahelras@l2s.centralesupelec.fr,

Francoise.Lamnabhi-Lagarrigue@l2s.centralesupelec.fr
4Laurent Burlion , ONERA, 31000 Toulouse,

Francelaurent.Burlion@onera.fr

(infinite-dimensional) state. The extension of this approach

to (triangular) nonlinear systems has been studied in [6],

where a high-gain type observer has been developed. The

arbitrary-size delay effect has been compensated for by

developing a PDE version of the chain observer concept.

The problem of observer design for nonlinear PDEs with

arbitrary delays measurements has yet to be solved. In this

paper, the problem is addressed for a class of parabolic

PDEs under point measurements as in [7]. In the latter paper

the results were confined to small delays. To compensate

for the effect of the arbitrary-size delay, the concept of

chain-observer is extended to fit this class of systems.

Accordingly, the initial delay PDE system representation is

re-expressed in the form of fictive delayed subsystems. The

observer is composed of elementary observers connected in

series. The interconnection is such that the first elementary

observer is directly driven by the physical system output.

Then, the elementary observer is driven by a virtual output

generated by the previous observer. Each elementary

observer can be viewed as a predictor which compensates

for the effects of the fractional time-delay. As in [7], using

an appropriate Lyapunov-Krasovskii functional, sufficient

conditions are established in terms of LMIs for the chain

observer to be exponentially convergent. The sufficient

conditions involve the minimal number of elementary

observers: the larger the delay the larger the number of

observers. Extension to sampled data delayed measurements

is presented. The paper is organized as follows: first, the

observation problem under study is formulated in Section

2; then, the observer design and analysis are dealt within

Sections 3; a conclusion and reference list end the paper.

Notations and preliminaries

Throughout the paper the superscript T stands for matrix

transposition, R
n denotes the n-dimensional Euclidean

space with vector norm |.|, Rn×m is the set of all n × m

real matrices, and the notation P > 0, for P ∈ R
n×n,

means that P is symmetric and positive definite. In matrices,

symmetric terms are denoted ∗; λmin(P ) (resp.λmax(P ))
denotes the smallest (resp. largest) eigenvalue. The notation

(ti)i≥0 refers to a strictly increasing sequence such that

t0 = 0 and lim
k→∞

ti = ∞. The sampling periods are bounded

i.e. 0 < ti+1 − ti < h for some scalar 0 < h < ∞
and all i = 0, 1 , . . ., ∞. We also define the variable

τ(t) = t − ti, t ∈ [ti, ti+1). L2(0, l) is the Hilbert space

of square integrable functions z(x), x ∈ [0, l] with the
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corresponding norm
∥

∥z(x)
∥

∥

L2
=

√

∫ l

0
z2(x)dx. H1(0, l)

is the Sobolev space of absolutely continuous functions

z : (0, l) → R with the square integrable derivative d
dx

.

H2(0, l) is the Sobolev space of absolutely continuous

functions dz
dx

: (0, l) → R and with d2w
dx2 ∈ L2(0, l). Given

a two-argument function u(x, t), its partial derivatives

are denoted ut = ∂u
∂t

, uxx = ∂2u
∂x2 . Throughout the paper

the following lemma will be used to prove exponential

convergence of our observer.

Lemma 1: ( Halanay’s type Inequalities [9])

Let 0 < δ1 < 2δ and let V : [t0 − h,∞) → [0,∞) be an

absolutely continuous function which satisfies

V̇ (t) ≤ −2δV (t) + δ1 sup
−h≤s≤0

V (t+ s) (1)

Then

V (t) ≤ e−2α(t−t0) sup
−h≤s≤0

V (t+ s) (2)

where α is the unique positive solution of the equation

α = δ −
δ1e

2αh

2
II. SYSTEM DESCRIPTION

We consider a semi-linear diffusion equation:

ut(x, t) = uxx(x, t) + f(u(x, t), x, t) (3)

with Dirichlet conditions u(0, 0) = u(l, 0) = 0. The system

output is, y(t) = u(x̄j , t − D) where x̄j =
xj+1+xj

2 (j =
0, . . . , N−1) and the points xj divide the interval [0, l] such

that 0 = x0 < . . . < xN = l. It is supposed that xj+1 −
xj ≤ ∆. The constant D represents an arbitrarily delay and

N is the number of distributed sensors. It is also supposed

that the function f is known, of class C1, and satisfying

mf ≤ fu ≤ Mf , for some scalar constants mf and Mf .

III. OBSERVER DESIGN

We will present an observer, which ensures exponential

convergence for an arbitrarily delay D. This chain

is constituted by m sub-observers in cascade. Each

sub-observer will estimate the state u(x, t + k
m
D − D)

by using the estimation provided by the previous one in

the chain. The last sub-observer in the chain provides the

estimation of the u(x, t). As we will see below, by using

a suitable Lyapunov functional , we will derive sufficient

conditions involving both delay D, and the number of

sub-observers in the chain m.

As in [2] we introduce the following notations for the delayed

states :

u0(x, t) = u(x, t−D),

uk(x, t) = u(x, t+
k

m
D −D), k = 1 . . . ,m

Using these notations we easily check that :

uk+1(x, t) = uk(x, t−
D

m
)

and

um(x, t) = u(x, t)

where m is the number of sub-observers in the considered

chain.

We propose the following observer structure :

for k = 1 :

û1
t (x, t) = û1

xx(x, t) + f(û1(x, t), x, t)

− L(û1(x̄j , t−
D

m
)− y(t)),

∀x ∈ [xj , xj+1), (4)

for k = 2, . . . ,m :

ûk
t (x, t) = ûk

xx(x, t) + f(ûk(x, t), x, t)

− L(ûk(x̄j , t−
D

m
)− ûk−1(x̄j , t)),

∀x ∈ [xj , xj+1),

(5)

It is readily checked that the observation error systems
ek(x, t) = ûk(x, t) − uk(x, t) undergoes the following
equations:
for k = 1 :

e
1
t (x, t) = e

1
xx(x, t) + f(û1(x, t), x, t)− f(u1(x, t), x, t)

− Le
1(x̄j , t−

D

m
),

∀x ∈ [xj , xj+1),

(6)

for k = 2, . . . ,m :

e
k
t (x, t) = e

k
xx(x, t) + f(ûk(x, t), x, t)− f(uk(x, t), x, t)

− L(ûk(x̄j , t−
D

m
)− û

k−1(x̄j , t)),

∀x ∈ [xj , xj+1),

(7)

Using the fact that

uk(x, t−
D

m
) = uk−1(x, t)

then, for k = 1 :

e
1
t (x, t) = e

1
xx(x, t) + f(û1(x, t), x, t)− f(u1(x, t), x, t)

− Le
1(x̄j , t−

D

m
),

∀x ∈ [xj , xj+1),

e
1(l, t) = e

1(0, t) = 0, (8)

for k = 2, . . . ,m :

e
k
t (x, t) = e

k
xx(x, t) + f(ûk(x, t), x, t)− f(uk(x, t), x, t)

− Le
k(x̄j , t−

D

m
) + Le

k−1(x̄j , t),

∀x ∈ [xj , xj+1),

e
k(l, t) = e

k(0, t) = 0,

(9)

which leads to :
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for k = 1 :

e
1
t (x, t) = e

1
xx(x, t) + Ψ(x, t, e1)(û1(x, t)− u

1(x, t))

− Le
1(x̄j , t−

D

m
),

x ∈ [xj , xj+1),

e
1(l, t) = e

1(0, t) = 0,

(10)

for k = 2, . . . ,m :

e
k
t (x, t) = e

k
xx(x, t) + Ψ(x, t, ek)(ûk(x, t)− u

k(x, t))

− Le
k(x̄j , t−

D

m
) + Le

k−1(x̄j , t),

∀x ∈ [xj , xj+1),

e
k(l, t) = e

k(0, t) = 0,

(11)

where

Ψ(x, t, ek) =

∫ 1

0

fu(û
k + θek, x, t)dθ

Remark: The well-posedness for the system (3) and

the error system (10)-(11) can be proven with the same

arguments than those used in [7], see also [10]. For instance,

consider

w(t) = e1(., t) (12)

of the error system (10). The equation (10) can be rewritten

as a differential equation in the Hilbert space H = L2(0, l)
with the norm ‖.‖L2

ẇ(t) = Aw(t) + F (t, w(t)), t ≥ 0 (13)

where the operator A is defined by:

A =
∂2

∂x2
(14)

and has the dense domain:

D2(A) = {w ∈ H2(0, l) : w(0) = w(l) = 0}. (15)

The nonlinear term F : R ×H2(0, l) → L2(0, l) is defined
on functions w(., t) as:

F (t, w(., t)) = Ψ(x, t, w(x, t))w(x, t)− Lw(x̄j , t−
D

m
)

= Ψ(x, t, w(x, t))w(x, t)− Lw(x, t−
D

m
)

+L

∫ x

x̄j

wξ(ξ, t−
D

m
)dξdx (16)

Let us also define the following Hilbert space

D1(A) = {w ∈ H1(0, l) : w(0) = w(l) = 0}, (17)

Using relevant material on fractional operators degrees [11]

and Henry’s theorem [12] , we get: if w(t0) ∈ D1(A), then

w(t)− w(t0) =

∫ t

t0

[Aw(s) + F (s, w(s))]ds (18)

holds for all t ≥ t0.

Theorem 1: Given D and m, consider the system (3)

and the observer (4)-(5). Given positive constants ∆, δ, L >

Mf −
π2

l2
, R and δ1 such that 2δ > δ1, let there exist positive

scalars p1, p2, p3, r and g such that :

δp3 < p2 ;
∆

π
LR−1(p3 + p2) < δ1p3 (19)

and

Φmf
< 0 ; ΦMf

< 0 (20)

where

Φφ =





Φ11 − λ Φ12 Φ13

Φ12 Φ22 Φ23

Φ13 Φ23 Φ33



 (21)

with

Φ11 = 2δp1 + g − re−2δ D
m + 2p2(φ+

∆

2π
LR)

Φ12 = −p2 + p1 + p3φ

Φ13 = re−2δ D
m − p2L

Φ22 =
∆LRp3

π
− 2p3 + r

(

D

m

)2

Φ23 = −Lp3

Φ33 = −(r + g)e−2δ D
m

λ =
2π2

l2
(p2 − δp3). (22)

Then all the observation errors
∫ 1

0

(

ek(x, t)
)2

dx and

∫ 1

0

(

ekx(x, t)
)2

dx (k = 1, ..,m) globally exponentially

decay to zero as t → +∞ . The above LMIs are always

feasible for large enough m.

Proof :

The proof of the above theorem, will be performed by

induction.

For k = 1 consider the first observation error :

e1t (x, t) = e1xx(x, t) + Ψ(x, t, e1)(û1(x, t)− u1(x, t))

− Le1(x̄j , t−
D

m
),

∀x ∈ [xj , xj+1),

e1(l, t) = e1(0, t) = 0, (23)

and the following Lyapunov-Krasovskii functional as in [7]

V
1(t) = p1

∫ l

0

(

e
1(x, t)

)2

dx+ p3

∫ l

0

(

e
1
x(x, t)

)2

dx

+ g

∫ l

0

[

∫ t

t− D
m

e
2δ(s−t)

(

e
1(x, s)

)2

ds

]

dx

+
D

m
r

∫ l

0

[

∫ 0

−

D
m

∫ t

t+θ

e
2δ(s−t)

(

e
1
s(x, s)

)2

dsdθ

]

dx

(24)
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As in [7], differentiating the above functional we find:

V̇
1(t) + 2δV 1(t) = 2p1

∫ l

0

e
1(x, t)e1t (x, t)dx

+ 2p3

∫ l

0

e
1
x(x, t)e

1
xt(x, t)dx

−
D

m
r

∫ l

0

∫ t

t− D
m

e
2δ(s−t)

e
1
s(x, s)

2
dsdx

+

∫ l

0

[(D

m

)2

r(e1t (x, t)
2 + g(e1(x, t))2

− ge
−2δ D

m
(

e
1(x, t−

D

m
)
)2
]

dx

+ 2δp1

∫ l

0

(e1(x, t))2dx

+ 2δp3

∫ l

0

(e1x(x, t))
2
dx (25)

using the descriptor method [13] for each j and by summing
these expressions for all j = 0, .., N − 1, this leads to:

0 = 2

∫ l

0

[

p2e
1(x, t) + p3e

1
t (x, t)

]

[−e
1
t (x, t) + e

1
xx(x, t)

+ Ψ(x, t, e1)e1(x, t)− Le
1(x, t−

D

m
)]dx

+ 2

N−1
∑

j=0

∫ xj+1

xj

[

p2e
1(x, t) + p3e

1
t (x, t)

]

× L

∫ x

x̄j

e
1
ξ(ξ, t−

D

m
)dξdx (26)

Using Wirtinger inequality:

−
D

m
r

∫ l

0

∫ t

t−D
m

e2δ(s−t)e1s(x, s)
2dsdx ≤

−r

∫ l

0

e−2δ D
m

(∫ t

t−D
m

e2δ(s−t)e1s(x, s)ds

)2

dx (27)

Here p2 and p3 are free parameters. Combining (25)-(26),
we deduce by using the classical inequalities (Jesnsen, Young
and Wirtinger) that:

V̇
1(t) + 2δV 1(t) ≤

∫ l

0

η
TΦφηdx

+
∆

π
LR

−1(p3 + p2)

∫ l

0

(

e
1
x(x, t−

D

m
)
)2

dx

(28)

where η = col{e1(x, t), e1t (x, t), e
1(x, t− D

m
)}. Since Φφ is

affine in Φ, then under (20):

∫ l

0

ηTΦφηdx ≤ 0, (29)

From this we also deduce

V̇
1(t) + 2δV 1(t)− δ1V

1(t−
D

m
) ≤

∫ l

0

η
TΦφηdx

+ (
∆

π
LR

−1(p3 + p2)− δ1)

∫ l

0

(

e
1
x(x, t−

D

m
)
)2

dx

(30)

Then we conclude under conditions of Theorem 1, that

V̇ 1(t) + 2δV 1(t)− δ1V
1(t−

D

m
) ≤ 0 (31)

By Lemma 1, V 1(t) is exponentially vanishing to zero.

Now by induction, let us suppose that the exponential
convergence is guaranteed for k − 1, and consider the
observation for k. For this case the observation error is
described by the following equation :

e
k
t (x, t) = e

k
xx(x, t) + Ψ(x, t, ek)ek(x, t)

− Le
k(x̄j , t−

D

m
) + L

∫ x̄j

0

e
k−1
x (x, t)dx,

∀x ∈ [xj , xj+1),

e
k(l, t) = e

k(0, t) = 0, (32)

The only difference between the above system and the one

of the case k = 1 is in the disturbing term
∫ x̄j

0
ek−1
x (x, t)dx

which is supposed by induction exponentially vanishing to

zero. By using the following Lyapunov-Krasovskii functional

:

V k(t) = p1

∫ l

0

(

ek(x, t)
)2

dx+ p3

∫ l

0

(

ekx(x, t)
)2

dx

+ g

∫ l

0

[

∫ t

t−D
m

e2δ(s−t)
(

ek(x, s)
)2

ds

]

dx

+
D

m
r

∫ l

0

[

∫ 0

−D
m

∫ t

t+θ

e2δ(s−t)
(

eks(x, s)
)2

dsdθ

]

dx

(33)

and similar arguments as for the case k = 1, one can easily

deduce that both
∫ l

0

(

ek(x, t)
)2

dx and
∫ l

0

(

ekx(x, t)
)2

dx

converge exponentially to zero. For large delays D, the

feasibility of the LMIs (19) and (20) is always preserved

for large enough m [10].

A. Extension to sampled-data case

In this part, we present briefly the extension of the above

observer to sampled- measurements case. In this case the

output is available only at sampling instants ti

0 = t0 < t1 < ... < ti < ..., lim
k→∞

ti = ∞.

We assume that the sampling intervals may be variable, but

upper-bounded by a known bound h:

ti+1 − ti ≤ h ∀i = 0, 1, ...

The proposed observer has the following form :

for k = 1 :

û1
t (x, t) = û1

xx(x, t) + f(û1(x, t), x, t)

− L(û1(x̄j , ti −
D

m
)− y(ti)),

∀t ∈ [ti, ti+1), ∀x ∈ [xj , xj+1), (34)
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for k = 2, . . . ,m :

ûk
t (x, t) = ûk

xx(x, t) + f(ûk(x, t), x, t)

− L(ûk(x̄j , t−
D

m
)− ûk−1(x̄j , t)),

∀t ∈ [ti, ti+1), ∀x ∈ [xj , xj+1), (35)

Then the observation error is described by the following
equations :
for k = 1 :

e
1
t (x, t) = e

1
xx(x, t) + Ψ(x, t, e1)(û1(x, t)− u

1(x, t))

− Le
1(x̄j , ti −

D

m
),

∀t ∈ [ti, ti+1), ∀x ∈ [xj , xj+1)

e
1(l, t) = e

1(0, t) = 0, (36)

for k = 2, . . . ,m :

e
k
t (x, t) = e

k
xx(x, t) + Ψ(x, t, ek)(ûk(x, t)− u

k(x, t))

− Le
k(x̄j , t−

D

m
) + Le

k−1(x̄j , t),

∀t ∈ [ti, ti+1), ∀x ∈ [xj , xj+1),

e
k(l, t) = e

k(0, t) = 0, (37)

As we can easily see, the unique difference with the observer
without sampling measurements is for the first sub-observer
(k = 1). In order to study the convergence of the case k = 1,
we use the following modified Lyapunov-Krasvoskii inspired
from [8], [14]:

V
1(t) = p1

∫ l

0

(

e
1(x, t)

)2

dx+ p3

∫ l

0

(

e
1
x(x, t)

)2

dx

+ g

∫ l

0

[

∫ t

t− D
m

e
2δ(s−t)

(

e
1(x, s)

)2

ds

]

dx

+
D

m
r

∫ l

0

[

∫ 0

−

D
m

∫ t

t+θ

e
2δ(s−t)

(

e
1
s(x, s)

)2

dsdθ

]

dx

+ Wh
2
e
2δh

∫ l

0

∫ t

ti−
D
m

e
2δ(s−t)

(

e
1
s(x, s)

)2

dsdx

−
π2

4
W

∫ l

0

∫ t− D
m

ti−
D
m

e
2δ(s−t)

[

e
1(x, s)

− e
1(x, ti −

D

m
)

]2

dsdx (38)

By generalized Wirtinger’s inequality [14], the W-terms
expression in V 1,

h
2
e
2δh

∫ l

0

∫ t

ti−
D
m

e
2δ(s−t)

(

e
1
s(x, s)

)2

dsdx

−
π2

4

∫ l

0

∫ t− D
m

ti−
D
m

e
2δ(s−t)

[

e
1(x, s)− e

1(x, ti −
D

m
)

]2

dsdx

(39)

is nonnegative and does not grow in the jumps [14]. By

differentiating it, we obtain:

h
2
e
2δh

∫ l

0

(

e
1
t (x, s)

)2

dx

− 2δh2
e
2δh

∫ l

0

∫ t

ti−
D
m

e
2δ(s−t)

(

e
1
s(x, s)

)2

dsdx

−
π2

4

∫ l

0

[

e
1(x, t−

D

m
)− e

1(x, ti −
D

m
)

]2

dx

+
π2

2
δ

∫ l

0

∫ t− D
m

ti−
D
m

e
2δ(s−t)

[

e
1(x, s)− e

1(x, ti −
D

m
)

]2

dsdx

(40)

Using the same computation as in [14], we can easily derive

the following theorem:

Theorem 2: Given D, h and m, consider the system (3)

and the observer (34)-(35). Given positive constants scalars

∆, δ, L > Mf − π2

l2
, R and δ1 such that 2δ > δ1, let there

exist positive scalars p1, p2, p3, r, W and g such that :

δp3 < p2 ;
∆

π
LR−1(p3 + p2) < δ1p3 (41)

and

Φmf
< 0 ΦMf

< 0 (42)

where

Φφ =











Φ11 − λ Φ12 Φ13 p2L

Φ12 Φ22 +Wh2e2δh Φ23 p3L

Φ13 Φ23 Φ33 0

p2L p3L 0 −W π2

4











(43)

with Φ11,Φ12,Φ13,Φ22,Φ23 and Φ33 given by (22).

Then all the observation errors
∫ 1

0

(

ek(x, t)
)2

dx and

∫ 1

0

(

ekx(x, t)
)2

dx (k = 1, ...,m) globally exponentially

decay to zero as t → +∞.

IV. EXAMPLE

Let us consider the following example :

ut = uxx(x, t) + 1.02π2u(x, t) (44)

with u(x, 0) = sin(x) and let yj = u(x̄j , t − D), j =
1, ..., N−1, where D is an arbitrarily delay and û(x, 0) = 0.

Continuous case

We choose L = 1, ∆ = 1
50 , δ = 0.21 and δ1 = 0.1. The

following table shows the value of the delay D and the

corresponding number of sub-observers m for which the

LMIs of Theorem 1 are feasible:

D 0.42 0.85 1.2 1.70 2.13

m 1 2 3 4 5

Numerical simulations of the above example are presented

in the following. These figures show the state u(x, t) of the

system (44) and its estimates at the points x = 0.1 and

x = 0.6 . These results show that the state of the designed

observer û(x, t) converges to u(x, t) when D = 1s using

only 1 sub-observer m = 1. However, when D = 2s,

5



2 sub-observers m = 2 are required to get satisfactory

results. Further simulations show that the observer (10)-(11)

estimates the state of the system (44) for larger delays than

those presented in the previous table. Future works will be

dedicated to the improvement of the sufficient conditions

presented here by the LMIs (19) and (20).

Fig. 1. The state u(x, t) and its observations for m = 1 and m = 2 at
x = 0.1 and x = 0.6 for a delay D = 1s

Fig. 2. The state u(x, t) and its observations for m = 1 and m = 2 at
x = 0.1 and x = 0.6 for a delay D = 2s

Sampled Data Case

We consider the case where the output yj , j = 1, ..., N−1,

are periodically sampled with period h. We use the same

values of the parameters as for the continuous case. The

following tables show, for different values of the delay D, the

value of the sampling period h and the corresponding number

of sub-observers m for which the LMIs of Theorem 2 are

feasible.

for D = 0.4:

h 0.05 0.37 0.47 0.51

m 1 2 3 4

for D = 0.8:

h 0.05 0.1 0.37 0.5

m 2 3 4 8

for D = 1.5:

h 0.05 0.1 0.3 0.5

m 4 5 7 14

V. CONCLUSION

In this paper, a novel observer is proposed for a class

of parabolic systems. The main advantage of the proposed

algorithm is that it can handle arbitrary delay and sampled

measurements . This result can be easily extended to classes

of cascade ODE/ parabolic PDE. The most disadvantage of

the above algorithm is that it needs a chain of PDEs, which

can lead to some implementation issues. The simplification

of this observer is under investigation.
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[4] Besançon, G., Georges, D., and Benayache, Z. (2007). Asymptotic
state prediction for contiunous-time systems with delayed input and
application to control. The Proceedings of the European Control
Conference, 2-5.

[5] Krstic, M. (2009). Delay Compensation for Nonlinear, Adaptive, and
PDE Systems. Birkhauser.

[6] Ahmed-Ali, T., Giri, F., Krstic, M., Kahelras, M. (2018). ”PDE
based observer design for nonlinear systems with large output delay,”
Systems & Control Letters, 113, 1-8,

[7] Fridman, E. and Blighovsky, A. (2012). Robust sampled-data control
of a class of semilinear parabolic systems. Automatica, 48, 826-836.

[8] Liu, K. and Fridman, E. (2012). Wirtinger inequality and
lyapunov-based sampled-data stabilization. Automatica, 48, 102-108.

[9] Halanay,A. (1966). Differential Equations: Stability, Oscillations, Time
Lags. Academic Press, New York.

[10] Ahmed-Ali, T., Fridman, E., Giri, F., Burlion, L. and
Lamnabhi-Lagarrigue, F. (2016). Using exponential time-varying
gains for sampled-data stabilization and estimation, Automatica, 67,
244-251.

[11] Tucsnak, M., & Weiss, G. (2009). Observation and control for operator
semigroups. Birkhauser.

[12] Henry, D. (1993). Geometric theory of semilinear parabolic equations.
New York: Springer-Verlag.

[13] Fridman, E. (2014). Systems and Control: Foundations and
Applications, Introduction to Time-Delay Systems: Analysis and
Control. Birkhauser.

[14] Selivanov, A., Fridman, E. (2016). Observer-based input-to-state
stabilization of networked control systems with large uncertain delays.
Automatica , 74, 63-70.

6


