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It is numerically demonstrated by means of a magnetohydrodynamic code that precession can trigger dynamo
action in a cylindrical container. Fixing the angle between the spin and the precession axis to be 1

2 π , two limit
configurations of the spinning axis are explored: either the symmetry axis of the cylinder is parallel to the spin
axis (this configuration is henceforth referred to as the axial spin case), or it is perpendicular to the spin axis (this
configuration is referred to as the equatorial spin case). In both cases, the centro-symmetry of the flow breaks
when the kinetic Reynolds number increases. Equatorial spinning is found to be more efficient in breaking the
centro-symmetry of the flow. In both cases, the average flow in the reference frame of the mantle converges to a
counter-rotation with respect to the spin axis as the Reynolds number grows. We find a scaling law for the average
kinetic energy in term of the Reynolds number in the axial spin case. In the equatorial spin case, the unsteady
asymmetric flow is shown to be capable of sustaining dynamo action in the linear and nonlinear regimes. The
magnetic field is mainly dipolar in the equatorial spin case, while it is is mainly quadrupolar in the axial spin case.

DOI: 10.1103/PhysRevE.93.043113

I. INTRODUCTION

The idea that precession can be an efficient mechanism to
generate the Earth’s magnetic field through dynamo action has
long been debated (see, for example, Ref. [1]). Observations
of some planetary dynamos could contribute to resolve this
issue, but definite evidence is still lacking [2]. Despite the lack
of astrophysical evidence, precession has nevertheless recently
attracted the attention of the experimental dynamo community
since this mechanism has the potential to generate large-scale
fluid motions without requiring any pump or impellers. For
example, an ambitious project at the DREsden Sodium facility
for DYNamo and thermohydraulic studies (DRESDYN) [3]
consists of building a precession-driven MHD (MagnetoHy-
droDynamics) experiment running at large magnetic Reynolds
numbers. The device will be a large cylinder of diameter and
height equal to 2 m. It will be filled with liquid sodium and
will undergo rotation about its symmetry axis and precession
about another axis (which can be the equator). The planned
maximum rotation and precession frequencies are 10 and 1 Hz,
respectively, leading to a magnetic Reynolds number of a few
hundreds. Even though numerical simulations of the Dresden
experiment with very large kinetic Reynolds numbers (at least
106) are out of reach with present-day computers, we think
that numerical simulations are useful complements and can
shed some light on specific aspects of this experiment.

Because of the large computing resources required, it
is only recently that precession driven dynamos have been
numerically explored: see Ref. [4] for dynamos in spheres
and Ref. [5] for dynamos in spheroids. Since neither spheres
nor spheroids are convenient for large-scale experiments, it
is instructive to investigate whether similar results can be
obtained in cylindrical containers. Many experiments have
been conducted in cylinders with varying aspect ratios, various
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angles between the precession and the spin axis (always
assumed to be the symmetry axis), and varying ratios of
precession to spin frequencies (see, e.g., Refs. [6–9]). An
increasing number of numerical studies have been performed
as well; see, for instance, Refs. [10–15]. With the exception
of Ref. [10], all the works referred to above have been mainly
devoted to hydrodynamic studies. In Ref. [10] we have studied
the dynamo capabilities of a cylinder spinning around its
symmetry axis and precessing at a strong rate around an axis
perpendicular to the symmetry axis. (This configuration is
henceforth called the axial spin case in the rest of the paper.)

The main motivation of the present paper is to present
new hydrodynamic and magnetohydrodynamic results in a
precessing cylinder in order to inform precession-driven
dynamo experiments. The first objective is to investigate the
influences (both hydrodynamics and magnetohydrodynamics)
of the angles between the symmetry axis, the spin axis, and
the precession axis. The second objective is to investigate the
magnetohydrodynamic effects of the electric conductivity and
magnetic permeability of the side walls and lid walls of the
container. Being limited in computer resources, we test only
two extreme configurations: the axial spin case as in Ref. [10]
and the equatorial spin case where the symmetry axis and the
precession axis are both perpendicular to the spinning axis.
We investigate which of these two configurations is the most
efficient in breaking the centro-symmetry and which one gives
the lowest dynamo threshold.

The paper is organized as follows. Section II describes the
numerical setting and the two configurations that are used in the
paper to apply the rotation and the precession, namely, the axial
and the equatorial spin forcings. SFEMaNS, the magnetohy-
drodynamic code that we use in all our computations, is briefly
described in Appendix A 1. Section III presents hydrodynamic
studies in relation with the precession-driven experiment at
the DRESDYN facility. A large range of kinetic Reynolds
numbers is explored for the axial spin case. Simulations
at Reynolds numbers as high as 15 000 are done by using
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the entropy viscosity stabilization method summarized in
Appendix A 2. The two spinning strategies for precession
forcing are investigated and compared. Equatorial spinning
is observed to be more efficient to break the centro-symmetry
of the flow than axial spinning. Section IV contains new results
of dynamo action in the axial spin case with varying properties
of the vessel walls. It is shown that using lateral walls made
of copper helps the dynamo effect. It is also numerically
demonstrated in this section that precession can generate
dynamo action in the equatorial spin case. But, although
centro-symmetry is more easily broken by equatorial spinning
than by axial spinning, it is observed that the critical magnetic
Reynolds for the axial spin configuration is lower than for the
equatorial spin case. Section V contains a discussion of our
results and concluding remarks.

II. NUMERICAL SETTING

Let us consider a cylindrical vessel C of radius R, height L,
and center of mass O. The vessel contains a conducting fluid
and is embedded in a nonconducting media (air, vacuum, etc.).
The container rotates about the so-called spin axis passing
through O and aligned with the unit vector es ; the spinning
angular velocity is constant and equal to �ses . The cylinder is
also assumed to precess about a second axis passing through
O and aligned with the unit vector ep forming an angle α

with es (0 < α < π ) (see Fig. 1). The precession vector ep

is fixed in a Galilean reference frame, i.e., the laboratory
frame. The constant precession angular velocity is �pep. We
use the cylindrical coordinate system centered at O for the
computations. The Oz axis is the line passing through O and
parallel to the axis of the cylinder; the Oz axis is oriented
by choosing a unit vector ez. The origin θ = 0 of the angular
coordinate (0 � θ < 2π ) is the half plane passing through O

and spanned by ez and ep (the axial spin case; see below)
or spanned by ez and es (the equatorial spin case). The third
coordinate, denoted r , is the distance to the Oz axis.

Let R and U = R�s be the reference length and velocity
scales, respectively. The fluid density, ρ, is assumed to be
constant, and the reference pressure scale is P := ρU 2.
The magnetic permeability and the electric conductivity of
the conducting fluid are constant: μ0 (equal to the vacuum
permeability) and σ0, respectively. These quantities are used
as reference magnetic permeability and electric conductivity,

FIG. 1. Schematic representation of the axial spin (a) and the
equatorial spin (b) configurations in the laboratory frame.

respectively. The reference scale for the magnetic induction
is chosen so that the reference Alfvén speed is 1, i.e., B :=
U

√
μ0ρ.

Six parameters govern the flow: the aspect ratio of the
container L/R, the precession angle α (angle between the
spin axis es and the precession axis ep), the spin angle
(angle between the symmetry axis ez and the spin axis
es), the precession rate ε = �p/�s (ratio of the precession
and spin angular velocity, also called the Poincaré number),
the kinetic Reynolds number Re = R2�s/ν (where ν is the
kinematic viscosity), and the magnetic Reynolds number
Rm = μ0σ0R

2�s . Note that Re is in fact the inverse of the
Ekman number.

We start by fixing the ratio of the height of the cylinder to
its radius, L/R, to be equal to 2, since this is the nonresonant
aspect ratio that has been chosen for the DRESDYN exper-
iment. In passing, we refer to Refs. [14,15] for interesting
hydrodynamic studies on resonant aspect ratios. Choosing the
precession axis orthogonal to the spin axis (i.e., α = π/2)
and the precession rate ε = 0.15, we are left with two limit
configurations: one called axial spin for which the spin angle
is 0 and the symmetry axis of the cylinder remains fixed in the
precessing frame, and another one called equatorial spin for
which the spin angle is π/2 and the symmetry axis rotates in
the precessing frame (see Fig. 1). In the axial spin case, the
wall speed is tangent to the wall and only the viscous stress at
the wall drives the flow, whereas, in the equatorial spin case,
the flow is put into motion by the pressure at the wall and is
therefore inertially driven.

The nondimensional set of equations can be written in two
frames of reference. For the axial spin case, the computations
can be performed in the precessing frame since the geometry
of the container is fixed in this frame; the equations are then
written as follows:

∂tu + (u·∇)u + 2εep×u + ∇p = 1

Re
�u +

[
∇×

(
B
μr

)]
×B,

(2.1)

∇·u = 0, (2.2)

∂tB = ∇×(u×B) − 1

Rm
∇×

[
1

σr

∇×
(

B
μr

)]
, (2.3)

∇·B = 0, (2.4)

where u, p, and B are the velocity field, the reduced
pressure including the centrifugal term, and the induction field,
respectively, and σr and μr are the relative conductivity and
permeability of the various materials, respectively. The spin
axis coincides with the symmetry axis i.e., es = ez and the
precession axis ep = ex is fixed in the precession frame. The
term depending on ε on the left-hand side of (2.1) is the Coriolis
acceleration. The no-slip boundary condition on the velocity
field is written as follows in the precession frame of reference:
u|∂C = reθ , i.e., u = eθ at r = 1 and u = reθ at z = ±1.

To avoid dealing with moving boundaries in the equatorial
spin case, the computations are performed in the reference
frame of the walls of the container (henceforth called the
mantle frame); the momentum equation is then written as
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FIG. 2. Time evolution of the total kinetic energy K(t) in the precession frame for different Reynolds numbers as indicated: (a) DNS at
Re = 1200,2000,3000,4000; (b) DNS computation at Re = 4000 and LES computations at Re = 4000,7500,10 000,15 000.

follows:

∂tu + (u · ∇)u + 2�(t)×u + ∇p

= 1

Re
�u +

[
∇×

(
B
μr

)]
×B − d�

dt
×r, (2.5)

where es = ex is fixed in this frame and ep rotates around
es . Hence, the Coriolis acceleration on the left-hand side
depends on the total angular velocity �(t) = ex + εep(t) =
ex + ε[sin(t)ey + cos(t)ez], and the term − d�

dt
×r on the right-

hand side is the so-called Poincaré force. The no-slip boundary
condition on the velocity field is written u|∂C = 0, i.e., u = 0
at r = 1 and u = 0 at z = ±1.

III. HYDRODYNAMIC STUDY

In this section we examine the above two configurations
in the hydrodynamic regime; i.e., we set B = 0. The only
control parameter is Re. At low Reynolds number, the flow
is centro-symmetric for both cases, meaning that u(r,t) =
−u(−r,t); it is steady for the axial spin case, and it is
unsteady for the equatorial spin case. Loss of centro-symmetry
is observed at large Reynolds numbers. The loss of centro-
symmetry is monitored by inspecting the symmetric and
antisymmetric components of the velocity field: us(r,t) =
1
2 [u(r,t) − u(−r,t)] and ua(r,t) = 1

2 [u(r,t) + u(−r,t)]. All
the computations have been done on centro-symmetric grids,
but centro-symmetry has not been otherwise enforced.

A. Energy scaling with Reynolds number in the axial spin case

We solve Eqs. (2.1)–(2.2) with B = 0 for the axial spin case.
Recall that the computations for this configuration are done in
the precession frame. We start our investigations with a Navier-
Stokes run at Re = 1200 as in Ref. [10]. The initial velocity
field in the precessing frame is the solid body rotation: u0 =
ez×r. The axial circulation induced by precession is monitored
by recording the time evolution of the normalized total kinetic
energy K(t) = 1

2

∫
C u2(r,t) dV/K0, where K0 = 1

2

∫
C u2

0 dV

is the kinetic energy of the initial solid body rotation. This
computation is the same as in Ref. [10], where it was shown that
the time evolution of the total kinetic energy exhibits doubly

periodic oscillations. To enrich the dynamics we increase the
Reynolds number as reported in Fig. 2. To save computing
time, we restart computations at higher Re by using velocity
fields obtained at smaller Re. Note that the rotation period is
2π in our units. Surprisingly the time-averaged kinetic energy
of the flow decreases with the forcing intensity (characterized
by Re at ε fixed).

We perform direct numerical simulations (DNS) for Re �
4000, and we use a stabilization method with similar spatial
and time resolution for Re � 4000 (see Appendix A 2 for
details on this method). The parameters for the stabilization
method (LES in short) are tuned on at Re = 4000. Figure 2(b)
shows the kinetic energy computed with DNS at Re = 4000
for 0 � t � 300 [same results as in Fig. 2(a) shifted in
time]; the results for 300 � t � 430 are obtained with LES
at Re = 4000. The dynamical behavior of both simulations
is similar; this computation validates our LES technique and
the chosen stabilization constants, which are henceforth kept
constant at higher Re numbers.

The range of Reynolds numbers that we have explored
using our LES method is wide enough to suggest a scaling
law for the time-averaged kinetic energy, K , as a function of
the Reynolds number Re for the precession rate ε = 0.15. To
substantiate this claim we show in Fig. 3(a) the time-averaged
kinetic energy K as a function of Re. Values for Re < 1200
are extracted from our previous article [10]. The log-log
representation of the data suggests that the energy scales like
K � Re

−0.48 in the range Re ∈ [400,15 000] [see Fig. 3(b)],
which in turn suggests the following scaling law for the
temporally averaged velocity u � Re

−1/4 = Ek
1/4 (where Ek

is the Ekman number). This scaling predicts that the average
flow vanishes at large Re in the precession frame. Therefore
it should be a solid body motion about the rotation axis
in the mantle frame with angular velocity � = −ez (it is a
counter-rotation with respect to the spin rotation).

The vanishing of the velocity in the precession frame
has been observed in the ATER experiment [7]. The nearly
rigid-body rotation in the mantle frame has been discussed
in Ref. [12], where it is called geostrophic flow. It is shown
therein that both the amplitude and the volume occupied by the
geostrophic flow grow gradually as ε increases from 0.075 to
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FIG. 3. Total (time-averaged) kinetic energy K in the precession frame as a function of the Reynolds number Re: (a) in linear scale and (b)
in log-log scale with the fit Re

−0.48.

0.25 at Re = 2523; see, e.g., Ref. [12, Fig. 4(a)] (at Re = 104

in the units from Ref. [12]).
The Poincaré number being fixed ε = 0.15, it is possible

to verify whether the global energy damping is uniform when
the Reynolds number increases by inspecting the velocity at
sample points in the computational domain. The three velocity
components, averaged in time and in azimuth, at nine grid
points are shown in Table III in Appendix A 3 for Re = 1200
and 4000. All the velocity components are small compared
to the wall speed, and the amplitude of most of them indeed
diminishes when Re increases.

More graphic representations are needed to follow other
flow features. For instance, Fig. 4 shows the formation of
boundary layers as Re increases; the highest values of the axial
velocity are more and more localized near the lateral wall as
Re grows. The central part of the flow is nearly static, and all
the small scales, highly intermittent, are pushed towards the
wall.

For all the Reynolds numbers, we observe a central S-
shaped vortex deformed by the precession and connected to
the walls through viscous boundary layers (see Fig. 5). The
vorticity lines are more entangled and the central part of the
vortex is more aligned with the x axis (the precession axis) as
Re increases.

The tendency to alignment with the precession axis is also
apparent on the time-averaged velocity and vorticity fields

as displayed in Fig. 6. A similar three-dimensional structure
has been observed in Ref. [16] in simulations of a precessing
sphere in the axial spin case at ε = 0.1 and Re = 104. The
origin of this structure is attributed therein to a pair of large-
scale energetic vortex tubes (see Fig. 16 in Ref. [16]). For a
precessing cylinder, this structure is the trace of the S-shape
vortex observed at all Reynolds numbers.

We can now interpret the scaling K � 1/
√

Re as follows.
The wall localization observed above as Re → +∞ suggests
that the kinetic energy is concentrated in a small layer of
thickness δ on the lateral wall (within the volume 2πRδH ).
Hence K � πR(�R)2δH gives δ/R ≈ 1/

√
Re, which is

reminiscent of the usual thickness of a viscous boundary layer.

B. Equatorial spin forcing

We solve (2.5) with B = 0 for the equatorial spin case.
Recall that the computations for this configuration are done
in the mantle frame. We now normalize the total kinetic
energy by the kinetic energy of the solid rotation about
the equatorial axis ex . We set E⊥

0 = 1
2

∫
C(u⊥

0 )2 dV , where
u⊥

0 = ex×r, and we define the normalized total kinetic energy
in the mantle frame E⊥(t) := 1

2

∫
C u2 dV/E⊥

0 , the asymmetric
kinetic energy E⊥

a (t) := 1
2

∫
C u2

a dV/E⊥
0 , and the asymmetry

ratio r⊥
a (t) := E⊥

a (t)/E⊥(t).

FIG. 4. Snapshots of contours of the axial velocity in the equatorial plane in the precession frame: (a) at t = 302 and Re = 1200, (b) at
t = 235 and Re = 4000, and (c) at t = 850 and Re = 15 000.
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FIG. 5. Streamlines of the instantaneous vorticity field [in red
(dark gray)] from a perspective point of view and contours of the axial
velocity in the equatorial plane: (a) Re = 1200 and (b) Re = 15 000.

Figure 7(a) shows the time evolution of the total kinetic
energy in the mantle frame. The kinetic energy rapidly
increases with Re for moderate Reynolds numbers and then
seems to saturate at large Reynolds numbers. The time
evolution of the asymmetry ratio is shown in Fig. 7(b) for three
different Reynolds numbers. The asymmetry ratio fluctuates
in time, and the flow is clearly asymmetric for Re � 1000.
The asymmetry ratio seems to saturate around 6% at large
Reynolds numbers.

C. Comparison between equatorial and axial spin forcing

In order to compare the efficiency of the energy injection
of the two precession techniques we perform a change of
reference frame for the axial spin case. Let u(r,t) be the
velocity field obtained in the axial spin case; we then define
u‖(r,t) := u(r,t) − ez×r. The field u‖(r,t) is the mantle frame
representation of the velocity field obtained in the axial
spin case. It is now reasonable to compare u‖(r,t) with the
velocity field obtained in the equatorial spin case, since both
fields are represented in the mantle frame. We consequently
define E‖ = 1

2

∫
C(u‖)2 dV/K0; this choice of normalization

will become clear below. Note that the normalization of E‖ and
K is the same, but E‖ and E⊥ are normalized differently. To
summarize, E‖ is the normalized kinetic energy in the mantle
frame for the axial spin case, and E⊥ is the normalized kinetic
energy in the mantle frame for the equatorial spin case. For
example, we display the time evolution of the kinetic energy

of the axial spin case at Re = 1200 in the two reference frames
in Fig. 8(a).

We plot in Fig. 8(b) the normalized kinetic energy of
the two configurations in the mantle frame at Re = 1200.
Note that both the time-averaged value of the kinetic energy
and the fluctutations are larger in the equatorial spin case than
in the axial spin case.

We show in Fig. 9(a) the spectrum of K (axial forcing) and
E⊥ (equatorial forcing) with respect to the azimuthal Fourier
modes at some time. The computations are done at Re = 1200.
Note that the equatorial spin case needs twice Fourier modes
as much as the axial spin case, therefore the computations are
more demanding. We show in Figs. 9(b) and 9(c) snapshots
of instantaneous vorticity and velocity fields in the precession
frame for the axial spin case and in the mantle frame for the
equatorial spin case. We observe different features in the two
flows: the spin axis case displays a deformed S-shape vortex
approximately contained in a meridian plane, and the velocity
field is localized near the side wall; the equatorial spin case
shows no coherent vortical structure, and the small scales of
the velocity are localized near the wall.

We compare in Fig. 10(a) the time-averaged values of
the total kinetic energies E‖, E⊥ as a function of Re. We
have seen in Sec. III A that at large Re the velocity (in
the axial spin case) in the mantle frame tends to a nearly
rigid body rotation about the spin axis ez. The normalized
time-averaged kinetic energy E‖ approaches the value 1 in
this frame (whence the normalization by K0 chosen above).
In the laboratory frame, this motion corresponds to a nearly
rigid rotation about the static precession axis. In the equatorial
spin case, we observe that the kinetic energy E⊥ (computed
in the mantle frame) seems also to converge to the value 1.
An easy way to visualize the flow in the mantle frame is to
choose the meridian plane (x = 0) orthogonal to the spin axis.
Figure 11 shows the velocity field for Re = 1200 and 4000 at
two arbitrary times in the meridian section (x = 0). Although
the boundary conditions require that the velocity vanishes on
the container walls, we observe that the flow speed is maximal
close to the walls and even exceeds the wall speed in the
inertial frame. The cylinder spins counterclockwise about the
x axis, but the rotation of the bulk flow appears to be clockwise
in the (x = 0) plane, meaning that the viscous and pressure
forces exerted by the moving walls fail to drive the fluid at

FIG. 6. Streamlines of the mean velocity field [in yellow (light gray)] and of the mean vorticity field [in red (dark gray)] in the precession
frame. Illustrated are 100 streamlines for u with endpoints distributed uniformly on the Ox axis and 20 streamlines for ∇×u with endpoints
distributed uniformly on a sphere of radius 0.2: (a–b) Re = 1200 and (c–d) Re = 4000.
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FIG. 9. Comparison between the axial and equatorial spin cases: kinetic energy azimuthal spectra as a function of the azimuthal mode m

(a) and snapshot at Re = 1200 of the vorticity field lines [red (dark gray)] and contours of the axial velocity component in the equatorial plane,
(b) axial spin case [same as Fig. 5(a) in the precession frame], (c) equatorial spin case (in the mantle frame).
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function of Re; (b) time-averaged asymmetry ratio E‖

a/E
‖ and E⊥

a /E⊥ as a function of Re.

the spin rate. This fact has already been observed in the ATER
experiment [7] at much higher Re. The green isoline ux = 0
crosses the meridian plane, showing a clear spatial separation
between positive and negative values, which suggests that the
flow undergoes in the mantle frame a global rotation around
an axis roughly coinciding with the isoline ux = 0. We have
verified that this line rotates with time approximately at angular
velocity � = −ex in the plane (Oy,Oz) (data not shown), as
does the precession axis. The exact position of the precession
axis depends on the initial phase at the beginning of each
simulation.

These pictures confirm that at ε = 0.15 and for both driving
cases, when Re is large enough, the flow in the mantle frame
experiences a nearly solid body rotation around the spin axis
with an angular velocity opposite to the spinning angular
velocity; therefore in the laboratory frame, the largest scales
of the flow are close to a nearly solid body rotation around the
precession axis.

There are, however, important differences between the
flows induced by the two forcings. For example, the centro-
symmetry is lost at Re � 800 in both cases, but the asymmetry
ratio increases faster in the equatorial spin case than in the
axial spin case; the ratio r⊥

a /r
‖
a is larger than three at large

Reynolds numbers [see Fig. 10(b)]. The equatorial spin case is

FIG. 11. Equatorial spin case: flow in the mantle frame, in the
meridian plane (x = 0) orthogonal to the spin axis, at Re = 1200 and
4000. The black arrows represent the 2D velocity field (uy,uz) in the
plane (x = 0), and the contour levels show the ux component in this
plane. The green line shows the contour level ux = 0.

therefore more efficient in breaking the centro-symmetry than
the axial spin case.

We finally propose to take another perspective on this
problem by looking at the time-averaged flows over several
turns. Figure 12 shows the time-averaged velocity and vorticity
fields at Re = 1200 for the axial and equatorial spin cases. This
figure reveals a rather structured large-scale flow for the axial
spin case while no coherent feature is apparent in the equatorial
spin case.

Based on the phenomenological argument that dynamo
action is favored by symmetry breaking, it could be anticipated
from the above observations that the equatorial spin case would
generate dynamo action at a lower threshold than the axial
spin case. However, it is shown in Sec. IV B that this intuitive
argument is incorrect.

IV. DYNAMO ACTION

We now investigate the MHD regime, where Re and Rm are
the two control parameters. The nonlinear MHD simulations
use a small magnetic seed field as initial data or restart
from a state computed at neighboring parameters. As already

FIG. 12. Time-averaged velocity field at Re = 1200 for the axial
and equatorial spin cases: vorticity field lines [red (dark gray)],
contours of the axial velocity component in the equatorial plane and
isosurface of |u|2: (a) axial spin case (with |u|2 at 0.3% of maximum
in the precession frame), (b) equatorial spin case (with |u|2 at 70% of
maximum in the mantle frame).
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FIG. 13. Snapshot at Re = 1200, Rm = 2400 for the “insulating”
case showing vorticity field lines (red lines inside the cylinder) and
magnetic field lines colored by the axial component [yellow (green)
for positive (negative) hz component]: (a) perspective view, (b) from
the top of the cylinder (in the precession frame). From Ref. [10].

observed for spherical and spheroidal dynamos, dynamo action
occurs after symmetry breaking of the flow when the magnetic
dissipation is small enough, i.e., for magnetic Reynolds
numbers Rm above a critical value Rc

m(Re).

A. Axial spin case

1. Reminder from Ref. [10]

In Ref. [10], we have explored a large range of the kinetic
and magnetic Reynolds numbers and found dynamo action
for Re = 1200 and Rm � Rc

m ≈ 775 when the solid walls
of the vessel are assumed to be insulating. The growing
magnetic field that is observed rotates in the precession frame
of reference and is dominated by the m = 2 mode: as shown in
Fig. 13(b), the magnetic field lines show a mainly quadrupolar
structure in the vacuum when seen from the top of the cylinder.

We now present in the rest of this section new results
obtained when using conducting or ferromagnetic walls of
relative thickness w = 0.1 at different places. The relative
conductivity of these additional walls is chosen to be that of
copper i.e., σr = 4.5 (and μr = 1), or the relative magnetic
permeability is taken to be that of soft iron [17], i.e., μr = 65
(and σr = 1).

2. Numerical results with thick conducting walls

We study the influence of the conducting walls with
σr = 4.5 and μr = 1. We keep Re = 1200 and vary Rm to
find the dynamo threshold, i.e., when the growth rate of the
magnetic energy is zero. We define four cases as follows. We
call the “insulating” case the configuration studied in Ref. [10],
the “side” case corresponds to adding conducting walls on the
cylindrical side of the vessel, the “lid” case corresponds to
adding conducting walls at the top and bottom of the vessel,
and the “wall” case corresponds to adding conducting walls
everywhere.

We first show in Fig. 14(a) a series of dynamo simulations
done with Rm = 300,400, and 900 for the “side” case. The
figure shows the time evolution of the magnetic energy M(t) =∫
�c

1
2 B2/μ0μr dV where �c is composed of the fluid domain

and the walls. We start the Rm = 900 run with a magnetic seed
and integrate long enough to get a decrease or an increase of
M . Dynamo action occurs when M(t) is an increasing function
of time as is the case for Rm = 900 and 400 but not for Rm =
300. The initial velocity and magnetic fields for the runs at
Rm = 400 are the velocity and the magnetic fields obtained
from the run at Rm = 900 at time t = 47. For Rm = 300, we
restart from Rm = 400 at time t = 107. Linear interpolation
of the growth rates gives an estimate of the critical magnetic
Reynolds number Rc

m ≈ 365 for the “side” case.
We perform two other series of simulations and

collect the growth rates in Fig. 14(b). The thresholds are
Rc

m(′side′) ≈ 365 < Rc
m(′wall′) ≈ 650 < Rc

m(′insulating′) ≈
775 < Rc

m(′lid′) ≈ 965. We observe that the “lid” walls are
highly detrimental to the dynamo action, whereas adding
the conducting “side” walls helps it. This phenomenon is
reminiscent of the results found in Refs. [18,19] for the von
Kármán sodium experiment.

Note that when using walls with the same conductivity as
the liquid (i.e., σr = 1 as in Ref. [20]), the smallest threshold is
also obtained for the “side” case, and the corresponding critical
magnetic Reynolds number is Rc

m ≈ 550. This observation
suggests that increasing the conductivity of the side wall
reduces the dynamo threshold.
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FIG. 14. Conducting walls: (a) Time evolution of the magnetic energy M(t) in the conducting fluid at Re = 1200 and various Rm as
indicated (in lin-log scale) for the “side” case; (b) Growth rates of the magnetic field energy as a function of Rm for various configurations. The
values are for Re = 1200, and the thickness of either conducting wall type is taken as 0.1R, with a relative conductivity σr = 4.5 and relative
magnetic permeability μr = 1.
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FIG. 15. Conducting walls: Snapshots at (a) Re = 1200, Rm =
1000 for the “lid” case and (b) Re = 1200, Rm = 900 for the “side”
case showing vorticity field lines (red lines inside the cylinder) and
magnetic field lines colored by the axial component [yellow (blue)
for positive (negative) hz component].

Conducting walls enable currents to loop on longer scales
but also lead to different growing magnetic field structures
(see Fig. 15). The “lid” configuration and the “insulating”
configuration lead to a mainly quadrupolar magnetic field,
while the “side” case gives rise to a mainly equatorial dipolar
magnetic field. The “wall” configuration shows an oblique
dipolar magnetic field (data not shown).

3. Numerical results with thick ferromagnetic walls

We now study the influence of the ferromagnetic walls
with μr = 65 and σr = 1. We keep Re = 1200 and vary
Rm to find the threshold, i.e., when the growth rate of the
magnetic energy is zero. We define four cases as before. We
call “insulating” case the configuration studied in Ref. [10],
the “side” case corresponds to adding ferromagnetic walls on
the cylindrical side of the vessel, the “lid” case corresponds to
adding ferromagnetic walls at the top and bottom of the vessel,
and the “wall” case corresponds to adding ferromagnetic
walls everywhere. We perform linear dynamo simulations
and collect the growth rates in Fig. 16(a). The thresh-
olds obtained are Rc

m(“insulating”) ≈ 775 < Rc
m(“side”) ≈

800 < Rc
m(“wall”) ≈ 840 < Rc

m(“lid”) ≈ 880. We observe
that adding ferromagnetic walls increases the threshold in all

the cases. In the “wall” case the magnetic energy is dominated
by the m = 1, 2 modes, and the growing magnetic field is an
equatorial dipole [see Fig. 16(b)].

Although a predictive explanation of the dependence on σr

and μr of the dynamo threshold is still lacking at the present
time, the impact of the nature of the walls seems crucial for the
design of experimental fluid dynamos. For conducting walls,
the increase of Rc

m from the “side” case to the “lid” case
suggests to diminish the influence of the lid by lowering its
conductivity: for example, it would be interesting to consider
an inner lateral copper layer attached to the outer stainless
steel shell of the dynamo vessel in the DRESDYN precession
experiment. In any configuration ferromagnetic walls seem to
be detrimental to the dynamo action.

B. Equatorial spin case

We now want to test if the equatorial spin case with a higher
level of asymmetric energy is more efficient for dynamo action
than the axial case. For that purpose, various MHD runs are
performed at Re = 1200 for different values of the magnetic
Reynolds numbers Rm as in Ref. [10]. The onset of dynamo
action is monitored by recording the time evolution of the
magnetic energy in the conducting fluid, M(t). Two types of
simulations are done: linear dynamo runs are first performed by
imposing B = 0 in Eq. (2.5), i.e., the retroaction of the Lorentz
force on the velocity field is disabled; then the Lorentz force
is restored to observe the nonlinear saturation, and the full
system of Eqs. (2.2), (2.3), (2.4), and (2.5) is solved.

1. Linear regime

A first series of linear dynamo simulations is done with
Rm = 1200,2000, and 2400. The time evolution of M(t) is
shown in Fig. 17(a). The initial velocity field and magnetic
field for the runs at Rm = 2000 and 2400 are the velocity
and the magnetic fields obtained from the run at Rm = 1200
at time t = 282. Dynamo action is declared to occur when
M(t) is an increasing function of time for large times with a
positive growth rate (as is the case for Rm = 2400). Linear
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FIG. 16. Ferromagnetic walls: (a) Growth rates of the magnetic field energy as a function of Rm for various configurations. The values are
for Re = 1200, and the thickness of either ferromagnetic wall type is taken as 0.1R, with a relative conductivity σr = 1 and relative magnetic
permeability μr = 65. (b) Snapshot at Re = 1200, Rm = 1000 for the “wall” case showing vorticity field lines (red lines inside the cylinder)
and magnetic field lines colored by the axial component [yellow (blue) for positive (negative) hz component]. View from the top.
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FIG. 17. Equatorial spin case: Time evolution of the magnetic energy M(t) in the conducting fluid (a) in the linear regime from t = 275 at
Re = 1200 and various Rm as indicated (in lin-log scale) and (b) in the nonlinear regime.

interpolation of the growth rates gives the critical magnetic
Reynolds number Rc

m ≈ 2130 at Re = 1200; i.e., the critical
magnetic Reynolds number is almost three times larger than
that in the axial spin case (see Sec. IV A 1).

2. Nonlinear regime

To observe the nonlinear saturation, we use as initial data
the velocity and magnetic fields from the linear MHD run at
t = 323 for Rm = 2400 [see Fig. 17(a)]. The amplitude of the
initial magnetic field is multiplied arbitrarily by 200 to reach
saturation faster; the initial velocity field is kept unchanged.
Figure 17(b) shows that M(t) decreases rapidly over a time
period corresponding to one turnover time, i.e., until t = 329,
and begins to oscillate thereafter. After restarting the MHD
run at t = 357 with Rm = 2000 and running it until t = 405,
we observe that M(t) decreases with time. After restarting the
MHD run at t = 355 with Rm = 1200 and running it until
t = 387, we observe that the dynamo dies in a short time
lapse. A snapshot of the vorticity and the magnetic field lines at
Re = 1200 and Rm = 2400 is shown in Fig. 18. Vortex lines are
connected to the walls through viscous boundary layers. The

FIG. 18. Equatorial spin case: snapshot in the mantle frame at
t = 395 at Re = 1200 and Rm = 2400 of the vorticity field lines [gray
(red)] and the magnetic field lines colored by the axial component
[light gray (yellow) for positive axial magnetic field component and
black (blue) for negative axial magnetic field component]. (a) The
view is seen from the side (Ox is the spin axis, Oz the precession
axis), (b) from the top.

magnetic energy is dominated by the azimuthal modes m =
1,2,3, and the magnetic field lines exhibit a complex shape.

V. CONCLUSION

Using numerical simulations, we have extended the scope
of precession forcing in hydrodynamic and magnetohydro-
dynamic regimes by assuming that the symmetry axis of a
cylindrical container does not coincide necessarily with the
spin axis. To reduce the parameter space, we have fixed the
Poincaré number, the ratio of precession to spin rotation,
to ε = 0.15, and we have chosen a container length equal
to its diameter. We have considered equatorial spin forcing
besides the more conventional axial spin case, with a spin
axis orthogonal to the precession axis. In the axial spin case,
the kinetic energy in the precession frame decreases when the
Reynolds number increases. The kinetic energy scales like
Re

−0.48, which suggests that the most energetic scales are
concentrated in a viscous boundary layer. Thus the conclusion
of the numerical simulations that there is inhibition of the spin
motion is in agreement with the experimental observations [7]
made at Reynolds numbers hundred times larger than the ones
computed in the present paper. In the precession frame, the
azimuthal speed decreases rapidly from the wall in the viscous
boundary layer, while a 3D bulk flow involving axial velocities
is formed. In the mantle frame, kinetic energy appears to
increase with the Reynolds number, since the bulk flow is
nearly in counter-rotation with respect to the container frame.

Using equatorial spin forcing, the kinetic energy increases
with the Reynolds number in the mantle frame, indicating that
the flow also tends to the rotation opposite to the spin motion.
This fact suggests that the precession acts efficiently against
the inertial forcing by the moving walls. At Re = 4000, for
example, the kinetic energy is close to 90% of that of the solid
body spin motion.

The inhibition of the flow spin may be explained as the
consequence of an alternating spin direction: at two moments
separated by a half period of precession, the directions of the
container spin are opposite in the laboratory frame. While
nobody would be surprised that a purely oscillating spin leads
to no mean flow motion, we have confirmed that the same result
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FIG. 19. Comparisons between DNS and LES results at Re = 4000 in the hydrodynamic regime. (a) Evolution of total kinetic energy K(t)
[zoom from Fig. 2(b)], (b) kinetic energy spectrum at final time as a function of the Fourier modes (0 � m � 31 with DNS and 0 � m � 23
with LES).

carries over for the two limit spin angles, with a precession rate
of 0.15 and Re � 15 000. This picture suggests a more general
conjecture, to be verified numerically and experimentally for
any container geometry: for a sufficient effective Poincaré
number (equal to the perpendicular projection of the precession
frequency w.r.t. the spin axis) and in the limit of large Reynolds
numbers, the precession forcing leads to a solid body rotation
in the bulk flow, with a concentration of viscous dissipation in
the boundary layers.

In the perspective of dynamo action, the asymmetry ratio
saturates at rather low values, although different in the axial
spin case (around 1.8%) and in the equatorial spin case (around
6%). Contrary to what could be expected from these results, the
critical magnetic Reynolds number is found to be lower for the
axial spin configuration than for the equatorial spin case. This
result contradicts the intuition that wall-normal stress would
enhance symmetry breaking and would favor dynamo action.
Inspection of the flows at Re = 1200 reveals different features
like more small scales in the equatorial spin case with a less
coherent large-scale flow.

Our results of varying wall properties of a cylinder
precessing in the axial spin configuration are encouraging for
the optimization of the critical magnetic Reynolds number
for the planned experiment at DRESDYN, where magnetic
Reynolds numbers as large as 700 are expected to be reached:
it could be interesting to add an inner copper layer inside the
stainless steel container. The question of self-excitation in a
real precession experiment is far from being settled though.
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APPENDIX

1. SFEMaNS code

All the hydrodynamic and MHD computations reported
in this paper have been done with a code called SFEMaNS.
This code uses a hybrid spatial discretization which involves
spectral and finite elements. In a nutshell we use a Fourier
decomposition in the azimuthal direction such that the problem
for each Fourier mode can be approximated independently
(modulo the computations of nonlinear terms) in the meridian
plane. We use Hood-Taylor continuous Lagrange elements for
the pressure and the velocity, i.e., piecewise linear polynomials
for the pressure and piecewise quadratic polynomials for the
velocity field. The method is third-order accurate in space for
the velocity. For the magnetic part, the algorithm solves the
problem using the magnetic induction, B, in the conducting
region (after standard elimination of the electric field) and the
scalar magnetic potential in the insulating exterior. The fields
in each region are approximated by using H 1-conforming
Lagrange elements, with a technique to control the divergence
of B in a negative Sobolev norm that guarantees convergence
under minimal regularity (see details in Refs. [21], [22, §3.2],

TABLE I. Space and time resolutions used for the DNS and LES
hydrodynamic computations in the axial spin case. NF is the number
of complex Fourier modes, τ the time step, hbdy the pressure mesh
size near the walls of the cylinder, and hint the pressure mesh size
along the axis r = 0 (the velocity field is approximated with cells
twice smaller). The last column corresponds to the total CPU time on
a IBM x3750 (in hours) for one rotation period.

Re DNS/LES τ NF hbdy hint CPU time

1200 DNS 2 × 10−3 32 0.0125 0.0125 85
4000 DNS 10−3 32 0.008 0.024 200
4000 LES 10−3 24 0.0125 0.05 40
7500 LES 10−3 32 0.008 0.04 60
10 000 LES 10−3 48 0.008 0.04 135
15 000 LES 5 × 10−4 64 0.005 0.02 2800
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TABLE II. Space and time resolutions used for the DNS and LES
computations in the equatorial spin case. When Rm is not indicated,
only Navier-Stokes integration is performed. NF is the number of
complex Fourier modes, τ the time step, hbdy the pressure mesh size
near the walls of the cylinder, and hint the pressure mesh size along
the axis r = 0 (the velocity field is approximated with cells twice
smaller). The last column corresponds to the total CPU time on a
IBM x3750 (in hours) for one rotation period.

Re Rm DNS/LES τ NF hbdy hint CPU time

1200 – DNS 7 × 5 10−4 64 0.01 0.02 500
4000 – LES 3 × 10−4 64 0.008 0.04 2000
1200 2000 DNS 4 × 10−4 64 0.01 0.02 1800

and [23]). The coupling at the conductor/insulator interface is
done by using an interior penalty method. SFEMaNS has been
thoroughly validated with numerous manufactured solutions
and against other MHD codes (see, e.g., Refs. [24–27]).

2. Stabilization method

For Reynolds numbers beyond a few thousands, large
gradients, which produce even smaller scales by the action of
nonlinearity, are not correctly represented by the mesh due to
lack of computational resources. Energy that should have been
dissipated accumulates at the grid scale. A stabilization method
that handles this problem has been implemented in SFEMaNS.
This method, called entropy viscosity, was developed by J.-L.
Guermond et al. [28,29], and consists of adding a local
artificial viscosity made proportional to the residual of the
kinetic energy equation. This artificial viscosity induces a
diffusion proportional to the energy imbalance which allows
the unresolved scales to be better accounted for.

Let us now give some technical details on the computation
of the entropy viscosity. We consider a mesh Kh of the domain
composed of a collection of cells K with local mesh size hK .
We introduce a time step τ > 0 and set φn = φ(nτ ) for any
time-dependent function φ. Then we define the residual of the
momentum equation as follows:

Resn
NS = un − un−2

2τ
+ (un−1 · ∇)un−1 − 1

Re
�un−1

+ ∇pn−1 − fn−1, (A1)

where f takes into account the Coriolis, Poincaré, and Lorentz
forces depending of the problem setting (axial or equatorial
spin cases). This residual is computed at each time step and
over every mesh cell. The local artificial viscosity is defined
on each cell K by

νn
R|K =

h2
K

∥∥Resn
NS · un

∥∥
L∞(K)

‖un‖2
L∞(�)

. (A2)

The quantity νn
R|K is expected to be as small as the consistency

error in smooth regions and to be large in the regions where
the PDE is not well resolved. To avoid excessive dissipation
and to be able to run with CFL numbers of order O(1), we
define the entropy viscosity as follows:

νn
E|K = min

(
cmaxhK‖un‖L∞(K),ceν

n
R|K

)
, (A3)

where cmax ∈ (0, 1
2 ] and ce ∈ (0,1] are tunable constants.

Technical details about the tuning of cmax and ce are given
in Sec. 2.7 of Ref. [28]. Thus defined, the entropy viscosity
is high-order in smooth regions and first-order in regions with
large gradients.

To illustrate the behavior of the LES method, we compare
in Fig. 19(a) the kinetic energy from the DNS and LES
computations that have been done for the hydrodynamic study
of the axial spin case at Re = 4000; see Sec. III A. The
relative differences on the kinetic energies of the DNS and
LES computation are less than 2%. We show in Fig. 19(b)
the energy spectrum at final time of the DNS and LES
computations at Re = 4000. It is clear that the entropy
viscosity technique reproduces correctly the energy spectrum
of the DNS computation, thereby validating our LES approach.

For completeness we show in Table I the spatial and time
resolutions that have been used in the hydrodynamic study of
the axial spin case at Re � 4000, as reported in Sec. III A. We
show also in this table the total CPU time (in hours) on a IBM
x3750 for one rotation period, (i.e., wall clock time multiplied
by the number of processors used). Note that the MHD runs are
a little over six times more expensive than the hydrodynamic
runs.

We show in Table II the typical spatial and time resolutions
that have been used in the equatorial spin simulations. The
total CPU time (in hours) that is reported corresponds to one
rotation period. The computations have been done on a IBM
x3750 machine.

TABLE III. Time and azimuthal average of the velocity field at various positions in the precession frame for the axial spin case at two
illustrative Reynolds numbers.

Positions Radial velocity Azimuthal velocity Axial velocity

z r Re = 1200 Re = 4000 Re = 1200 Re = 4000 Re = 1200 Re = 4000

−0.7 0.25 −0.0117 −0.0067 0.0637 −0.0279 −0.1081 0.0010
0.5 −0.0115 −0.0051 0.0795 −0.0406 −0.0622 −0.0145
0.75 −0.0075 −0.0031 0.1225 0.0028 0.0050 −0.0094

−0.45 0.25 −0.0278 0.0040 0.0670 −0.0302 −0.0683 0.0059
0.5 −0.0393 −0.0052 0.0700 −0.0574 −0.0490 −0.0069
0.75 −0.0330 −0.0078 0.1053 −0.0198 0.0040 −0.0050

0 0.25 −0.0176 −0.0008 0.0815 −0.0515 −0.0007 0.0020
0.5 −0.0321 0.0044 0.0588 −0.0787 0.0003 −0.0003
0.75 −0.0307 0.0006 0.0876 −0.0225 0.0003 −0.0014
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3. Mean velocity components

We report in Table III time and azimuthal averages of the
velocity field at various positions in the precession frame for
the axial spin case. The computations have been done at
Re = 1200 and Re = 4000. We observe that the amplitude

of most of the components is small compared to unity, which
is the wall speed in the precession frame, and decreases in
absolute value when Re increases. Note the change of sign of
the averaged azimuthal velocity when passing from Re = 1200
to Re = 4000.
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