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Abstract— This paper presents a novel reference governor
scheme capable of ensuring constraint satisfaction for discrete-
time linear systems subject to parametric uncertainties. Given
a pre-stabilized system, the proposed method generates a
sequence of recursively feasible references that guarantee con-
straint enforcement by exploiting invariance properties. At
each time step, it is shown that the next reference can be
computed in closed-form by solving a set of simple second
order inequalities. Parametric uncertainties are then addressed
by either computing a quadratic common Lyapunov function or
using suitable bounds on the parameter-dependent Lyapunov
function. The efficiency of the method is illustrated by means
of numerical examples.

Index Terms— uncertain systems, constrained systems, opti-
mal control, reference governors.

I. INTRODUCTION

A common issue in control engineering is the discrepancy

between the nominal model of a real-world plant and its

actual dynamic behavior. Parametric uncertainties can be par-

ticularly problematic in the presence of system constraints,

since the unforeseen mismatch between the nominal model

and the plant behavior may lead to undesired constraint viola-

tions. As a result, one of the major challenges in constrained

control is the need to guarantee constraint enforcement even

in the presence of uncertain parameters.

Constrained control under parametric uncertainties has

been addressed in the context of Model Predictive Control

(MPC). Possible solutions include generating a control ac-

tion that takes into account all possible trajectories of the

uncertain system [1], using a local controller to confine the

effects of model uncertainties to a tube centered on a nominal

trajectory [2]–[4], and computing a sequence of one-step

controllable ellipsoidal sets [5], [6].

Another class of solutions for constrained systems is the

Reference Governor (RG), which is an add-on unit capable of

ensuring constraint satisfaction by manipulating the reference

of a pre-stabilized system [7], [8]. Robust reference governor

schemes have been developed using both trajectory pre-

diction tubes [9]–[11] and invariance-based considerations

[12], [13]. Applications have been reported in [14], [15].
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As detailed in the recent survey [8], most RG formulations

generate an online optimization problem that is typically less

computationally expensive to solve than more general MPC

methods. A closed-form solver, referred to as a “Fast RG”

(FaRG), has been presented in [16] for the case of linear

time-invariant systems. Moreover, the recently introduced

Explicit Reference Governor (ERG) has shown that it is

possible to avoid solving the optimization problem altogether

by manipulating the reference in a continuous-time setting

[17]. A digital implementation of the ERG has been reported

in [18], and relies on the assumption that the sampling period

is sufficiently small to ensure the accuracy of forward Euler

approximations.

The objective of this paper is to develop a Fast RG scheme

for the constrained control of linear systems with parametric

uncertainties. The contribution of the paper is twofold: first,

it illustrates how the tools developed in the ERG framework

can be tailored to discrete-time to obtain an optimization

problem that admits a closed-form solution; second, it pro-

vides a systematic off-line approach for constructing robust

strongly invariant sets that guarantee constraint enforcement

for any parameter belonging to a convex polytope.

The paper is organized as follows. Section II introduces

a novel discrete-time ERG scheme for the case of perfectly

known model parameters, where the system trajectories can

be bounded using Lyapunov level-sets. Section III extends

this result to the case of uncertain parameters by either i) em-

ploying a Quadratic Common Lyapunov Function (QCLF),

or ii) constructing suitable bounds based on a Parameter

Dependent Lyapunov Function (PDLF). Numerical compar-

isons with existing schemes are then presented in Section

IV. Section V concludes the paper with a brief summary and

some closing remarks.

II. DISCRETE-TIME IMPLEMENTATION OF THE EXPLICIT

REFERENCE GOVERNOR FOR LINEAR SYSTEMS

The objective of this section is to illustrate how the

typically continuous-time ERG framework can be tailored to

the discrete-time case. To this end, we consider a discrete-

time linear time invariant model in the form

x+ = Ax+Bv,
y = Cx+Dv,

(1)

where x+ denotes the successor of the plant state x ∈ R
nx ,

v ∈ R
nv is the reference input, and y ∈ R

ny is the

constrained output vector which must satisfy

y ∈ Y := {y | y ≤ h}. (2)
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For the remainder of the paper Ci (resp. Di) will be used to

indicate the ith row of matrix C (resp. D) for i ∈ {1 : ny}.

The components of h are designated by hi.

Assumption 1: ‖Ci‖ > 0, ∀i ∈ {1 : ny}.

Assumption 2: A is a Schur matrix.

Note that Assumption 2 is reasonable given that reference

governors are used to augment a pre-stabilized closed-loop

system. Following from this assumption, I −A is invertible

and the associated steady state x̄v satisfies

x̄v = C̄v, (3)

with C̄ = (I −A)−1Bv. Based on existing ERG results, the

following subsection details how constraint enforcement can

be ensured using Lyapunov functions.

A. Lyapunov-based ERG

Consider a family of Lyapunov functions of the form

Vi(x, v) = (x− x̄v)
TPi(x− x̄v), (4)

where the matrices Pi are computed ∀i ∈ {1 : ny} by solving

the following set of convex optimization problems offline:


















min Trace(Pi)
s.t. ATPiA− Pi ≤ 0

Pi ≥ CT
i Ci

Pi > 0
Pi = PT

i .

(5)

Remark 1: It is worth noting that, although the condition

Pi ≥ CT
i Ci is not necessary for defining a Lyapunov

function, it has been shown to enhance the ERG performance

by aligning the ith Lyapunov level sets to the corresponding

constraint [19]. This remark also applies to equations (19)

and (23) in the next section, where the constraint Pi ≥ CT
i Ci

can be dropped at the expense of the FaRG performances.

Given the individual Lyapunov functions (4), let Γi(v) be

the value of the largest Lyapunov level-set that does not

violate the ith constraint. As detailed in [19], for linear

systems and quadratic Lyapunov functions these threshold

values can be computed analytically as

Γi(v) =
(Cix̄v +Div − hi)

2

CiP
−1

i CT
i

, (6)

which, for simplicity of notation, will be rewritten using

Γi(v) = γi(C̄iv − hi)
2, (7)

where H̄i = CiC̄ + Di is a nonzero vector and γi =
(CiP

−1

i CT
i )

−1 is guaranteed to be a positive scalar due to

Assumption 1 and equation (5). As detailed in [17], it fol-

lows from the contractive properties of Lyapunov functions

that constraint satisfaction can be guaranteed by enforcing

Vi(x, v) ≤ Γi(v), ∀i ∈ {1 : ny} at each time instant. To do

so, it is convenient to define the dynamic safety margin

∆(x, v) = min
i∈{1:ny}

∆i(x, v), (8)

where

∆i(x, v) = Γi(v)− Vi(x, v). (9)

The key idea of the ERG is to generate the reference v
in a way that recursively ensures ∆(x, v) ≥ 0. In previ-

ous ERG designs, this was achieved in continuous-time by

manipulating the derivative v̇ [17]. The following section

illustrates how the Lyapunov-based ERG results can instead

be implemented in a discrete-time setting.

B. Fast implementation in discrete-time

To compute the reference at the next timestep, consider

the linear interpolation

v+ = v + λ(r − v), (10)

where v ∈ R
nv is the currently applied reference, r ∈ R

nv

is the desired reference, and λ ∈ [0, 1]. Based on the notion

of recursive feasibility [8], the following is assumed:

Assumption 3: The initial condition (x(0), v(0)) is such

that ∆(x(0), v(0)) ≥ 0.

The objective of the FaRG is to maximize λ ∈ [0, 1] such

that ∆(x, v+) ≥ 0. This will recursively enforce Assumption

3 for all (x, v) since ∆(x, v+) ≥ 0 implies ∆(x+, v+) ≥ 0
due to the non-increasing property of Lyapunov functions.

Following from equation (8), the dynamic safety margin

is guaranteed to be non-negative if each of the individual

quantities

∆i(x, v
+) = γi(H̄iv

+− hi)
2− (x− C̄v+)TPi(x− C̄v+),

is non-negative. By substituting (10), one obtains

∆i(x, v
+) = aiλ

2 + biλ+ ci, (11)

with

ai = γi(H̄i(r−v))2−(r−v)T C̄TPiC̄(r−v),

bi = 2γi(H̄iv−hi)H̄i(r−v)+2(r−v)T C̄TPi(x−C̄v),

ci = ∆i(x, v).

Note that, due to Assumption 3, λ = 0 is always a feasible

solution. The scalar λ can thus be obtained by solving the

optimization problem






max λ
s.t. aiλ

2 + biλ+ ci ≥ 0, ∀i ∈ {1 : ny}
λ ≤ 1.

(12)

The following theorem provides a systematic method for

computing the solution to (12) using a closed-form approach.

Theorem 1: Consider the optimization problem (12) sat-

isfying ci ≥ 0, ∀i ∈ {1 : ny}, and let I0 = {i | ai =
0, bi + ci < 0} and I1 = {i | ai 6= 0, ai + bi + ci < 0}.

Given the initial solution estimate

λ̄1 = min(λ0, λ1, 1) (13)

with

λ0 = min
i∈I0

ci
−bi

, λ1 = min
i∈I1

−bi −
√

b2i − 4aici
2ai

, (14)

let the recursion counter be initialized as k = 1 and let

Ik+1 = {i | ai > 0, −bi/2ai < λ̄k, aiλ̄
2
k + biλ̄k + ci < 0}.

Then, the following holds
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1) If Ik+1 = ∅, the current λ̄k is the maximizer of (12);

2) If Ik+1 6= ∅, the estimate update

λ̄k+1 = min
i∈Ik+1

−bi −
√

b2i − 4aici
2ai

, (15)

is such that Ik ∩ Ij = ∅, ∀k 6= j.

Proof: Whenever ci ≥ 0 and aiλ̄
2 + biλ̄ + ci ≥ 0,

it is trivial to show that there exists λ ∈ (0, λ̄) such that

aiλ
2 + biλ + ci < 0 only if ai > 0 and −bi/2ai ∈ (0, λ̄).

As a result, ∀i ∈ Ik, the condition aiλ
2 + biλ + ci ≥ 0

is guaranteed to hold ∀λ ∈ [0, λ̄k]. This recursively ensures

Ik ∩ Ij = ∅ since λ̄j < λ̄k, ∀j > k. To prove that Ik = ∅
implies that λ̄k is the solution to (12), it is sufficient to note

that, by construction, ∀λ ∈ (λ̄k, 1] there exists i ∈ I0 ∪ I1 ∪
. . . ∪ Ik−1 such that aiλ

2 + biλ+ ci < 0.

The main advantage of Theorem 1 is that it recursively

guarantees constraint enforcement for all indices belonging

to the set {i | ai ≤ 0} ∪ I1 ∪ . . . ∪ Ik−1. Consequently, v+

is guaranteed to be assigned after solving at most ny first or

second order equations. The following section illustrates how

this result can be extended to account for model parametric

uncertainties.

III. EXTENSION TO LINEAR SYSTEMS WITH

PARAMETRIC UNCERTAINTIES

The objective of this section is to extend the results of

the previous section to the following class of constrained

discrete-time linear systems with parameter uncertainties,

x+ = A(p)x+B(p)v,
y = Cx+Dv,

(16)

once again subject to the output constraints (2). The uncertain

systems matrices [A(p), B(p)] are allowed to lie in a matrix

polyhedron of the form

A(p) =

np
∑

j=1

pjAj , B(p) =

np
∑

j=1

pjBj , (17)

where the vector p = [p1, . . . , pnp
]T belongs to the unit

simplex

P :=

{

p ∈ R
np

∣

∣

∣

∣

∣

np
∑

j=1

pj = 1 , pj ≥ 0

}

. (18)

As in the previous section, it is assumed that the system

has been pre-stabilized so that it asymptotically tends to a

target steady-state x̄v = C̄v. For details on how to design a

pre-stabilizing feedback loop for parameter dependent linear

systems, the reader is referred to [20], [21].

Assumption 4: A(p) is a Schur matrix, ∀p ∈ P .

Assumption 5: (I −A(p))−1B(p) = C̄, ∀p ∈ P .

Note that Assumption 5 is reasonable in many applications

where the steady-state of the system does not depend on the

model parameters. A notable example are mechanical sys-

tems, where the steady-state is typically achieved when the

position is equal to the reference and all velocities are equal

to zero. The following subsections develop Lyapunov-based

FaRG strategies that are robust to parametric uncertainties.

A. QCLF-based Robust FaRG

The most straightforward option for dealing with para-

metric uncertainties is to determine the invariants using a

Quadratic Common Lyapunov Function (QCLF). This can

be done by considering the same Lyapunov functions as in

(4), but computing the matrices Pi, ∀i ∈ {1 : ny} by solving

the following offline convex optimization problems


















min Trace(Pi)
s.t. AT

j PiAj − Pi ≤ 0, ∀j ∈ {1 : np},
Pi ≥ CT

i Ci,
Pi > 0,
Pi = PT

i .

(19)

If a solution to (19) exists, then the Lyapunov-based FaRG

presented in the previous section can be applied with no

further modifications and can even handle time-varying pa-

rameters. This is due to the fact that (19) ensures

A(p)TPiA(p)− Pi ≤ 0, ∀p ∈ P. (20)

However, depending on A(p), equation (20) may not admit a

solution, even though Assumption 4 holds true. To overcome

this issue, the following subsection addresses the case in

which it is not possible to find a QCLF.

B. PDLF-based robust FaRG

To address the case when (20) does not admit a solution,

let us now consider a family of Parameter Dependent Lya-

punov Functions (PDLF),

Vi(x, v, p) = (x− x̄v)
TPi(p)(x− x̄v), (21)

which can be constructed in the discrete-time case using

the result of [21, Theorem 2]. In particular, for each output

constraint i ∈ {1 : ny}, it is possible to define the matrix,

Pi(p) =

np
∑

j=1

pjPij , (22)

with p ∈ P . Each Pij can then be computed by solving the

following convex optimization problem,


























min Trace(Pij)
s.t. ∀j ∈ {1 : np},

[

Gi +GT
i − Pij GiAj

AT
j G

T
i Pij

]

> 0,

Pij ≥ CT
i Ci,

Pij = PT
ij .

(23)

In analogy to Section II, given the threshold value

Γi(v, p) = γi(p)(H̄iv − hi)
2, (24)

where H̄i = CiC̄ + Di and γi(p) = (CiP
−1

i (p)CT
i )

−1,

constraint satisfaction can be guaranteed by enforcing the

condition ∆(x, v, p) ≥ 0, with

∆(x, v, p) = min
i∈{1:ny}

∆i(x, v, p), (25)

and ∆i(x, v, p) = Γi(v, p) − Vi(x, v, p). Given the linear

interpolation (10), it follows once again that

∆i(x, v
+, p) = ai(p)λ

2 + bi(p)λ+ ci(p), (26)
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with

ai(p) = γi(p)(H̄i(r−v))2−(r−v)T C̄TPi(p)C̄(r−v),

bi(p) = 2γi(p)(H̄iv − hi)H̄i(r − v)

+ 2(r − v)T C̄TPi(p)(x− C̄v),

ci(p) = ∆i(x, v, p).

Unlike Section II, however, equation (26) cannot be used to

directly compute λ ∈ [0, 1] since p is a vector of unknown

parameters. The following theorem provides a solution to

this issue.

Theorem 2: Let system (16) be subject to the output

constraints (2), and let Assumptions 1, 4, and 5 be satisfied.

Moreover, given an unknown parameter p ∈ P , let the

current state x ∈ R
nx and applied reference v ∈ R

nv be

such that ∆(x, v, p) ≥ 0. Then, given

γ
i
= min

p∈P
γi(p), (27)

and

cij = γ
i
(H̄iv − hi)

2 − (x− C̄v)TPij(x− C̄v), (28)

it is possible to enforce the condition ∆(x, v+, p) ≥ 0 by

assigning v+ = v + λ(r − v) and choosing λ ∈ [0, 1] as

follows:

1) If ∃ i ∈ {1 : ny}, j ∈ {1 : np} : cij < 0, then λ = 0.

2) If cij ≥ 0, ∀i ∈ {1 : ny}, ∀j ∈ {1 : np}, compute λ
as the solution to















max λ
s.t. ∀i ∈ {1 : ny}, ∀j ∈ {1 : np},

aijλ
2 + bijλ+ cij ≥ 0,

λ ≤ 1,

(29)

where

aij = γ
i
(H̄i(r − v))2 − (r − v)T C̄TPijC̄(r − v),

bij = 2γ
i
(H̄iv − hi)H̄i(r − v)

+2(r − v)T C̄TPij(x− C̄v),

Proof: The two cases are addressed separately:

1) The result ∆(x, v+, p) ≥ 0 follows directly from

∆(x, v, p) ≥ 0 since λ = 0 implies v+ = v.

2) Following from equation (27), one has

∆i(x, v, p) ≥ γ
i
(H̄iv − hi)

2 − Vi(x, v, p). (30)

Moreover, it follows from (22) that

Vi(x, v, p) ≤ max
j∈{1:np}

Vi(x, v, ej), (31)

where ej is the jth column vector of an identity matrix

of size np. As a result, ∆(x, v+, p) ≥ 0 can be

enforced by ensuring

γ
i
(H̄iv

+ − hi)
2 − Vi(x, v

+, ej) ≥ 0 (32)

for all constraints i ∈ {1 : ny} and all parameter

vertices j ∈ {1 : np}. This can be done by solving

(29), which always admits a solution λ ∈ [0, 1] since

cij ≥ 0, ∀i ∈ {1 : ny}, ∀j ∈ {1 : np}.

Remark 2: Theorem 2 details how to take advantage of

invariance properties even when the invariant set is uncertain.

The idea is that the (unknown) invariant set {x | ∆(x, v, p) ≥
0} is guaranteed to contain the set

S := {x | γ
i
(H̄iv

+−hi)
2−(x−C̄v)TPij(x−C̄v) ≥ 0, ∀i, j},

(33)

which is a strongly returnable set as defined in [12]. In-

deed, even though the set S is not invariant per se, any

trajectory initialized in S will be contained by the invariant

set {x | ∆(x, v, p) ≥ 0}, therefore ensuring constraint

satisfaction at all times. It is also worth noting that the

statement in Theorem 2 encompasses the results detailed

in Subsections II-B and III-A, and that the optimization

problem (29) can be solved explicitly using the closed-form

algorithm proposed in Theorem 1 which here guarantees to

solve at most ny × np first or second order equations.

IV. NUMERICAL EXAMPLES

Consider the following parameter-dependent linear sys-

tem,

x+ = A0(p)x+B0u, (34)

where A0(p) will be assigned in the following subsections

and B0 =
[

0 1
]T

. The system is pre-stabilized using the

control input

u = Kx− k1v, (35)

with K =
[

k1 k2
]

=
[

−0.3 −0.1
]

, and is subject to the

state and input constraints

−

[

10
10

]

≤ x ≤

[

10
10

]

, −1 ≤ u ≤ 1. (36)

The resulting pre-stabilized system can be rewritten in the

form (1)-(2) using

A(p) = A0(p) +B0K, B = −k1B0 (37)

and

C =
[

I2 −I2 K −K
]T

,

D =
[

0 0 0 0 −k1 k1
]T

,

h =
[

10 10 10 10 1 1
]T

.

The following examples detail the implementation of the

proposed FaRG to enforce constraint satisfaction depending

on the properties of A0(p). For comparison purpose, we will

detail the results obtained using a conventional RG where the

output admissible sets defined in [7] are constructed using

the computationally efficient method proposed in [22], [23].

The idea behind this method is to bound the trajectory pre-

dictions using polyhedral invariant sets which are obtained

by systematically removing redundant constraints.

A. Example 1: ‘Moderate’ Uncertainty

Consider the case

A0(p) =

[

1 0.1p1 + 0.15p2
0 1

]

, (38)

4



Fig. 1. Example 1: Invariant set obtained using [22, Algorithm 1C] (in
blue) and invariant set obtained using the QCLF-based FaRG (in green).
The system trajectories are shown to always be contained by the invariant
sets.

Fig. 2. Example 1: trajectories starting from x0 = [−9.95;−0.1] with
v0 = −9.93, p1 = 0, p2 = 1.

with p1 ∈ [0, 1] and p2 = (1−p1). Since the solution to (19)

exists, the applied reference is updated using a QCLF-based

strategy, which requires the solution of at most 6 second

order equations. Comparatively, the method proposed in [22,

Algorithm 1C] generates a problem with 100 non redundant

constraints. Figure 1 illustrates the invariant sets obtained

with the two methods, where the QCLF-based invariant

(shown in green) is only slightly smaller than the invariant

obtained with the conventional RG. The figure also shows

that the trajectories of the closed-loop system are always

contained in the invariant set. Figure 2 illustrates the output

response obtained using the two methods, where it can be

seen that the QCLF-based FaRG is only slightly slower than

the conventional RG. This minor loss in output response

performances, likely due to the smaller size of the invariant,

is counterbalanced by a computational footprint that is almost

20 times smaller (6 inequality constraints versus 100).

Fig. 3. Example 2: Invariant set obtained using [22, Algorithm 1C] (in
blue) and strongly returnable set obtained using the PDLF-based FaRG (in
yellow). The system trajectories are shown to exit the strongly returnable
set, but remain bounded by the invariant.

Fig. 4. Example 2: trajectories starting from x0 = [−9.95;−0.2] with
v0 = −6.68, p1 = 0, p2 = 1

B. Example2: ‘Large’ Uncertainty

Consider the case

A0(p) =

[

1 0.1p1 + 0.2p2
0 1

]

, (39)

where A0 is almost the same as before except that the uncer-

tain parameter variation is doubled. In this case, (19) does

not admit a solution, whereas it is possible to solve equation

(23). As a result, constraint enforcement is ensured using

PDLF-based FaRG, which requires the solution of at most 12

second order equations. Comparatively, the method proposed

in [22, Algorithm 1C] generates a problem with 108 non

redundant inequalities. Figure 3 illustrates the invariant set

obtained using the conventional RG (in blue) and the strongly

returnable set employed by the PDLF-based FaRG. In this

case, the system trajectories are shown to exit the strongly

returnable set, but are nevertheless guaranteed to ensure
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Fig. 5. Example 2: Temporal behavior of ∆(x, v, p) computed for various
initial condition and parameter values. Constraint enforcement is always
guaranteed due to the fact that ∆(x, v, p) ≥ 0

constraint satisfaction. This can be seen in Figure 5, which

shows that the actual value of ∆(x, v, p) remains positive

for all trajectories originating from the strongly returnable

set (33). As in the previous example, Figure 4 shows that

the output performance of the FaRG is comparable to the

conventional RG, even though its computational burden is

approximately 10 times smaller (12 vs 108).

Note that the discrepancy between the computational cost

of the FaRG and the conventional RG will increase drasti-

cally for higher order systems. This is due to the fact that

the complexity of the FaRG grows linearly with the system

dimensions, whereas the complexity of the RG will grow

geometrically.

V. CONCLUSION

In this paper we have developed a robust reference gover-

nor algorithm for the constrained control of uncertain linear

polytopic systems. The proposed method relies on tools

from the ERG framework, but is specifically formulated

in a discrete-time context. The offline computational effort

merely consists in determining suitable Lyapunov functions

(QCLF or PDLF) for polytopic uncertain systems. The online

computations are then reduced to solving an optimization

problem with a small number of second order equations.

Numerical results show that the proposed method can achieve

performances that are comparable to robust trajectory-based

approaches in terms of output response, while being signifi-

cantly less computationally expensive.
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