
Mechanical properties of chains with bistable

(two-state) units

GDR MePhy

Mécanique et Physique des Sytèmes Complexes (GDR 3588 mixte INSIS/INP)

Atelier changements d’échelle, le 5 juin 2018

Stefano Giordano
IEMN UMR CNRS 8520

Laboratoire International Associé LIA LICS/LEMAC

Université de Lille, Centrale  Lille 

Avenue Poincaré, BP 60069, 59652, Villeneuve d'Ascq, France



Contents

• Introduction of the isometric or Helmholtz ensemble and the isotensional
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• The force-extension overstretching regime: the understanding of the 

plateau-like response and the saw-tooth like response.

• The chain of bistable elements (domains) as a model to interpret the 

overstretching regimes observed.

• The spin variables method to study bistability and multistability in polymer

systems.

• Generalizations to finite stiffness and Ising interaction (cooperativity)

• Perspective and conclusions



Statistical mechanics of (macromolecular) chains with

bistable (two-state) units

 Conformational transitions in

macromolecules observed by

force-spectroscopy

methodologies

(Strick et al., 2003; Ritort, 2006…)

 Elementary model for plasticity

(with hysteresis and/or martensitic

transformations)

(Ericksen, 1975; Müller and Villaggio, 1977;

Fedelich and Zanzotto 1992; Puglisi and

Truskinovsky, 2000…)



Polymer chain statistical mechanics

Free polymer: the first 

monomer is clamped while

the others are free to 

fluctuate

Probability density in the phase space

(Boltzmann/Gibbs distribution), where Z

is the classicla partition function

Stretching of the chain

Hamiltonian of the system 

with arbitrary interactions 

(FJC, WLC…)

Isometric conditions (Helmholtz ensemble)

Isotensional conditions (Gibbs ensemble)



Helmholtz ensemble: isometric conditions

Helmholtz free 

energy

JCP 137, 244907 (2012)       

JCP 136, 154906 (2012)



Gibbs ensemble: isotensional conditions

Gibbs free 

energy

JCP 137, 244907 (2012)       

JCP 136, 154906 (2012)



Force-spectroscopy methods (Neuman and Nagy, 2008)

Magnetic tweezers    Optical tweezers                                            MEMS
Atomic force 

microscope

Devices with variable stiffness kc (10−5 - 104 pN·nm−1)

(projet en cours à l’IEMN)

Equivalent Stiffness kc

Soft cantilever → Gibbs ensemble

Hard cantilever → Helmholtz ensemble



Comparison between Helmholtz and Gibbs ensembles

Helmholtz Gibbs

If we compare the Helmholtz and Gibbs partition functions we have:

(Laplace 

transform)

Is it always true that or                       ? 

Physica A 395, 2014, 154–170



Theorem (Physica A 395, 2014, 154–170)

For a polymer model described by a continuous pairing interaction 

between neighboring monomers (with convergent partition functions) 

we have ϕ=ψ-1 in the limit of N→∞ (equivalence between ensembles)

N→∞  

(It can be generalized to more general interactions: 3-body, WLC)

(Legendre transforms)

Or, in terms of Gibbs and Helmholtz free energies:



FJC

WLC

J. Chem. Phys. 136, 154906 (2012)

(bending)

H

G

H

(G)



Comments

• We have proved the equivalence between Helmholtz and Gibbs 

ensembles in the thermodynamic limit for a chain with continuous 

pairing interactions (and more general schemes with 3-body potentials, 

WLC…);

• The convergence for high valus of N is described by a power law with

specific exponents;

• The differences between the Helmholtz and Gibbs force-extension 

responses are however negligible for N>50/100 monomers (for FJC or 

WLC);

• Therefore, the differences are not relevant for long chains as DNA 

(during entropic and enthalpic stretchnig);

• Nevertheless,  the analysis of different ensembles is useful for the 

understanding of experiments in the overstretching regime, where

conformational transitions occur. 



DNA (Nature 421, 423, 2003)

N=275

N=120

N=70

N=275

Plateau like curves

Overstretching experiments (COOPERATIVE RESPONSE)

(PRL 81, 4764, 1998)

(polysaccharide)



Overstretching experiments (NON-COOPERATIVE RESPONSE)

Citoskeletal protein spectrin, N=6

Titin, N=6 Ig domains

Human tenascin-C, N=7

Protein I2712 , N=12

Sawtooth like curves

TIBS 24, p. 379–384, 1999



Chain with bistable elements

Pairing interaction potential:

Parameters:

Potential energy function with an energy

barrier M and two minima separated by 

an energy difference ΔE. Folded and 

unfolded domain lengths are xf and xu, 

respectively.



Gibbs ensemble for a chain with bistable elements

Analytical expression for the Gibbs partition function: 

where:

• The force plateau appears for 

f=ΔE/δ, where δ=xu-xf.

• Unfortunaltly, the analytical

approach cannot be used with the 

Helmholtz ensemble→Montecarlo



N=4

Ensemble comparisons with bistable elements





Spin variables approach for multistable systems 

We introduce a quadratic curve approximating each potential well of the 

multi-basin energy landscape of a unit of the chain.

The spin variable s identifies the 

potential well explored by the domain 

under consideration and represents a 

statistical variable belonging to the phase 

space of the system.

Hamiltonian in the Gibbs ensembles 

S=0
S=1

Soft Matter 13, 6877-6893 (2017)



Calculation of the partition function in the Gibbs ensemble

or, equivalently, by considering the complete expression for the Hamiltonian:

Because of the isotropy of the 

spring-like interactions, we have:

Soft Matter 13, 6877-6893 (2017)



We define χ as the ratio between the 

unfolded and folded length of each

domain and we consider each spring

characterized by the stiffness K. 

Moreover, the energy difference

between the stable states is ΔE.



Bistable freely jointed chain under Gibbs conditions

In order to define a bistable freely jointed chain we assume that K→∞ 

(it means that the domain lenght is ℓ or χℓ) and by using the Delta representation

we obtain:

which is a direct generalization of classical freely jointed chain partition function

(BFJC)

(FJC)



Langevin function:

Cooperative

behavior

Force 

plateau

𝑓∗ =
∆𝐸

𝜒 − 1 ℓ



If we look at the obtained results:

we can write:

which is a linear combination of NℓL(y) and NχℓL(χy) (two freely jointed

chain models), weighted by the average value of the spin variable.



Bistable freely jointed chain under Helmholtz conditions

The three-dimensional Laplace transform between the Gibbs and Helmholtz 

partition functions can be written in scalar form for radially symmetric functions:

which is a direct generalization of the classical Rayleigh-Polya integral describing 

the freely jointed chain partition function:

(BFJC)

(FJC)

Soft Matter 13, 6877-6893 (2017)



Calculation of the partition function in the Helmholtz ensemble

The analysis of the integral through the complex variables method allows the 

exact calculation in the following form: 

where:

and

and we can determine the average values of force and spin

Soft Matter 13, 6877-6893 (2017)



(Non-cooperative behavior)

f (Gibbs)

N=20



Equivalence of the ensembles in the thermodynamic limits

Gibbs

N=10

N=25

Soft Matter 13, 6877-6893 (2017)

Continuum Mechanics and Thermodynamics 30, 459 (2018)



Critical behavior

Force-extension curves

Effective stiffness

Extension spinoidal regions Force spinoidal regions

Soft Matter 13, 6877-6893 (2017)



Two-state freely jointed chains with extensible units

Dimensionless extensibility
Dimensionless force



Force-extension curves

(JCP submitted)

Average number 

of unfolded units



The interactions among the units

Ising potential energy (si=-1,+1; λ>0 ou λ<0):

(coupling betweeen elasticity and units folded-unfolded states)

Positive interaction (λ>0),  

analogy with ferromagnetism

Negative interaction (λ<0) 

analogy with antiferromagnetism

Utot

Folded unit

Unfolded unit

(PRE submitted)



Gibbs ensemble

Force-extension curves Average number of unfolded units

(PRE submitted)



Helmholtz ensemble

Force-extension curves Average number of unfolded units

(PRE submitted)



Perspective: heterogeneity of the chain 

Heterogeneous units 

with respects to:

 Unit length

 Unit stiffness

 Energy jump
k

k

Without heterogeneity

 Same unfolding probability for the units;

 We cannot have an unfolding pathway.

(topologic et energetic

heterogeneity)



Macromolecular

function

(Immunoglobuline, PNAS 97, 6521, 2000)

Unfolding pathway

Perspective: heterogeneity of the chain 

Heterogeneity

Quenched disorder



Perspective: unfolding dynamics

z=z0+vt

Force peaks 

histograms

(Biophys. J. 90, L33, 2006)

Constant pulling 

velocity of the 

tethered chain



decupling the characteristic  times 

mechanical

transition rates kf and ku

induced by energy barriers

Perspective: unfolding dynamics

Exploiting the spin variable approach to



Conclusion

• The rescaling (multiscale) methods for the nanomechanics of 

macromolecules strongly depend on the applied boundary conditions 

(imposed force or prescribed extension);

• This is important for the thermodynamic of small systems, which are far 

from the thermodynamic limit (small number of unit in the chains);

• The spin variable approach allows the analysis of the system within both 

the Gibbs and Helmholtz ensembles, giving results in qualitative agreement 

with experiments;

• Moreover, it can be adopted to develop several generalization concerning 

finite stiffness and Ising interactions (already implemented) or heterogeneity

and dynamics (work on progress);

• Interactions and heterogeneity will help the understanding of cooperativity 

and folding pathways in complex macromolecules (such as proteins).
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