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RAILWAY DETECTION: FROM FILTERING TO SEGMENTATION NETWORKS

B. Le Saux, A. Beaupere, A. Boulch

DTIS, ONERA, University Paris Saclay,
F-91123 Palaiseau, France

ABSTRACT

This paper deals with classification of remote sensing data
to extract objects for industrial mapping. While land-cover
or urban mapping have been extensively studied, industrial
cartography remains a field yet to explore, in spite of tremen-
dous needs. We present and compare here four approaches
for railway detection in very high resolution images. They
use various kind of filtering approaches, including the trained
filters of fully convolutional networks. Moreover, they bene-
fit from different a-priori and post-processing techniques to
make them more robust. We evaluate all approaches on a
challenging dataset captured on an operating station site with
complex objects.

Index Terms— Rail detection, Railway detection, Filter-
ing, Neural Networks

1. INTRODUCTION

With the development of new, practical means such as Un-
manned Aerial Vehicles (UAVs), monitoring of industrial
sites by remote sensing is now a reality. Remote sensing
has been adopted in various industries such as oil and gas,
mining or transports. In this latter field, it may answer to a
crucial need of railway operators: ensuring the optimal safety
of the passengers. Indeed, the knowledge of the current op-
erational state of the infrastructure is essential to network
administrators [[1].

The recent use of drones in this sector allows a signifi-
cant increase in information gathering efficiency, notably by
providing in good time extremely high resolution aerial im-
ages of railway furnitures. Currently, these images are used
as a visual support for manually marking relevant elements of
the infrastructure (rails, speed beacons, overhead line poles
and catenaries, etc.), aggregated as a normalized blueprint of
the railroad studied division. Automating image recognition
procedures for cartography stands as a crucial optimization in
this sphere.

Most railway detection works benefit from the newly
available sensing capacities. The measurement precision is
crucial, and first works relied on airborne LiDAR data to ex-
tract railroad objects [2]. At that time, it was considered that
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the enormous amount of image data and radiometric varia-
tions imped the use of imagery. More recently, approaches to
process very high resolution imagery were proposed: in [3],
detection is performed through histogram of oriented gradi-
ents and support-vector machine learning, mostly applied to
bolique images.

This paper is organized as follows. In Section [2| we
present how data are acquired and pre-processed. We de-
scribe four approaches for rail detection in Section [3] We
assess and compare these approaches on a challenging dataset
which corresponds to an operational use case in Section []
We present our concluding remarks in Section [5}

2. DATA ACQUISITION

In the following, we present the procedures for data acqui-
sition and geometric processing which allow to build ortho-
rectified images of a railway station. They were established
by SNCEF, the French railway operator, and are deployed in
railway cartography projects, such as the one which lead to
the Rennes dataset used in the experiments of Section 4]

Data acquisition. The raw images are collected with a
Sony Alpha NEX-7 camera, embedded on a light multi-rotor
drone performing at an average altitude of 50 m above ground
level. The internal pixel size of the camera is 3.9 um and ren-
ders 6000 x 4000 RGB, 8-bit-depth-per-band images, with a
4:2:0 chrominance compression format. Each frame is tagged
with Global Positioning System (GPS) and inertial measure-
ments of the drone at the instant of shooting. Ground Con-
trol Points (GCPs) are physically set on the studied scene and
their geolocation is manually obtained by means of a high
precision GPS pole. GCPs are used to improve the precision
and accuracy of the produced data.

Data processing. A 3-dimensional scene reconstruction
based on the GCPs and points automatically matched by a
SIFT algorithm is computed using the inertial and GPS values
with the Pix4D software [H Then, the ground surface is mod-
eled using multi-scale geometric and color features [4]. The
final ortho-rectified image is obtained by projecting retroac-
tively segmented ground pixels from the original frames onto
the terrain model, allowing a vertical rendering at any point.
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This process drastically reduces perspective errors and rail
obstruction hazards. The parameters used during acquisition
and processing ensure a 0.011 m/pixel final resolution.

Cartography and ground truth. The ortho-rectified im-
age is used by image analysts to manually draw maps of the
railway station, which include platforms, signals, buildings
and above all, rails. These vector maps follow the SNCF-
developed EPURE norm, which implies that rails are rep-
resented as segmented lines anchored to points located on
the center of the rail width every 10 m. This standard does
not take rail curvature into account to avoid interpolation in
railway track studies and analysis. Consequently, the real
ground-truth is defined as the geo-located anchor points, an
not as the whole map.

3. RAIL DETECTION ALGORITHMS

In the following we present the four approaches for rail detec-
tion which we will compare in Section 4]

User aided correlation matching. The first approach is
a looped cross correlation matching process. The process is
the following. A user provides an oriented rectangular sam-
ple of a rail in the image. The direction parameter serves
in establishing an oriented triangular search area with a top
apex angle of 2 x 11°, consistent with rail curvature. Sev-
eral matches are found in the area but only the nearest to the
original is retained if it gets a correlation score over 0.4. The
new found oriented rail segment becomes the next matching
pattern and the process is repeated until no further match is
found. Using the previous user input, the algorithm restarts
from the beginning using the opposite direction.

This approach allows to drastically reduce the time for
manual extraction of rails in aerial images, but nevertheless
requires user inputs for each railway.

Line detection with conditional morphological and ori-
entation filters. In the second approach we use various mor-
phological and orientation filters to extract rails (cf. Fig. [I).
To reduce false detections, we first eliminate shadows from
the images using Normalized Difference Index as described
by Singh et al. [3]]. Knowledge of pixel size allows us to ap-
ply a differential Top-Hat transformation [6] using a disc as
a structuring element with a diameter corresponding to the
rail width, increasing the relevance of the filter. Lines are de-
tected on the resulting image using the curved-line extraction
algorithm described in [[7]].

Two kinds of constraints are introduced to improve the re-
sults through post-processing. First we use the French railway
Geographic Referential of Infrastructure (GRI) to get a global
orientation of the tracks. We compare it to the resulting lines
and thus eliminate mis-oriented results. A set of morpholog-
ical operations (i.e. dilation, opening, union, closing) is then
applied on the candidate regions to concatenate the results.
Second, using the knowledge that each rail is located 1.5 m
away from its sibling, a discriminant parallelism and distance

analysis is finally applied.
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Fig. 1. Workflow of the line detector based on conditional
morphological and orientation filters.

Line detection with Touzi filters. Touzi filters [8] are
commonly used for edge extraction in extremely noisy envi-
ronments, originally introduced for speckle filtering in radar
images. Given an orientation a priori (available from the GRI
for example), the filter computes a radiometry ratio between
rectangular areas on both sides of the chosen direction. By
thresholding the resulting map, pixels which belong to strong,
long-enough edges are extracted.

In a second time, a vectorization process is performed by
applying a step-by-step search along the direction of the de-
tected edges. It allows to get rid of mid-detections due to
wires or pylons.

Semantic Segmentation Networks. In this last approach,
we use a Convolutional Neural Network (CNN) designed for
supervised, semantic segmentation. CNNs are feed-forward
neural networks comprised of learnable convolution kernels.
Those filters perform feature extraction in order to build an in-
ternal, abstract representation of the input, optimized for later
classification. We use a standard fully convolutional network
(FCN) with an encoder-decoder structure: SegNet [9]. FCNs
usually get RGB images as inputs and infer structured dense
predictions by assigning a semantic class to every pixel of the
image. We follow the approach of Audebert ef al. [10, [11]]
defined for aerial image segmentation.

CNNs are supervised algorithms which require training
data. Manually designed maps described in Sec.[2|are used to
generate training rasters at the image resolution. They com-
prise a range of objects which can be extracted from the vector
maps such as rails, buildings, electrical equipment, etc. How-
ever they are often inconsistent: more than 90% of the image
points remain unlabeled, some classes (e.g. buildings) are
partially annotated, and some classes only have a few sam-
ples while others are better represented.

The encoder part of the SegNet is initialized with pre-
trained VGG-16 weights, while the decoder part is randomly
set. It is trained on 128 x 128 patches with stochastic gradient
descent. Moreover, to deal with the class imbalance problem,
partial loss of class c in the cross-entropy function is weighted
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Fig. 2. Fully-convolutional network for railway detection and
training data. At test phase the encode-decoder network gets
unknown images and predict a segmentation map.

4. RAILWAY DETECTION RESULTS

The Rennes dataset used in this study was acquired over the
railway station of Rennes, France, in 2017, following the pro-
cedure described in Section[2] For processing purposes, it was
segmented in 5000 x 5000 ortho-rectified images at resolution
of 2cm per pixel. It comprises 34 images for training (i.e set-
ting hyper-parameters of the algorithms or actually training
the segmentation network) and 21 images for testing which
were not seen before the evaluation (see Fig. B}a for some
examples).

The test area implies 1172 rail control points (RCPs)
(cf.[2) which establish a consistent common testing set. The
ground-truth for evaluation comprises those RCPs and a small
neighborhood around them (12 pixels) for taking into account
the width of rails, which lead to more than 14k pixels. This
allows to measure the localization precision of the detection
with respect to the rail: centered or on the edge. The various
rail detection algorithms were evaluated according to the pro-
ducer accuracy Ace. = % where |P| is the number of rail
pixels in the ground-truth, and 7" is the number of true pos-
itives i.e the number of points that received the “rail” label.
These accuracy results are summarized in Table [T} Besides
the overall results on the whole test set (denoted by all test)
which also contains neighboring urban areas with buildings
and roads, we also focus on a smaller set of 3 images with
mostly railways (hereafter the rail subset) which corresponds
to roughly 200 RCPs and 2.4k pixels. This allows to compare
the rail extraction methods when no other salient, distract-
ing features are present in the images, as would be the case
for example if a mask obtained from open-source maps was
applied as a preprocessing step.

In Fig. 3] we show rail detection results obtained by all
methods along the corresponding tile. First, it appears that
all approaches are quite successful at detecting rails: all
retrieve the railways in the upper part of the images while
having more-or-less false positives in the neighbor station or
city buildings. At second sight, differences appear. As pre-
dictable, the user-initialized correlation matching (Fig. [B}b)
yields no false alarms, and most rails are found by the user.
Mainly, errors occur when the step-by-step tracking of the
rail fails. Conditional morphological and orientation filters
(Fig. Blc) obtain good railway outlines (i.e. pair of rails)

Table 1. Railway detection accuracies for methods of Sec.[3]
computed on the whole test set (21 images) and on a subset
with mostly railways (3 images).

Method All test Rail subset
(14k samples)  (2.4k samples)
User corr. matching 79.67 76.87%
Conditional filter 75.40% 71.62%
Touzi filter 76.66% 92.74%
Segmentation network 50.38% 89.00%

thanks to the strong a priori about orientation or parallelism
that is introduced in the approach. A few false alarms occur
in city environments, and the false negatives are mostly due
to the parallelism a priori: some rail may be discarded if no
companion rail appears due to image default or vegetation.
Touzi filters (Fig. [3}d) use only orientation a priori and fol-
low a step-by-step process for vectorization of rail detection.
The get extremely good results, and do not miss much rails.
However, this also the approach which leads to the most nu-
merous false alarms, typically on buildings and road edges
which have the same orientation as the a priori. Finally, the
fully-convolutional segmentation network (Fig. [Bfe) is the
most brute-force approach. Indeed, no a priori is given apart
from the training data, and no post-processing is performed to
obtain continuous rail lines (vectorization process). However
it performs remarkably well: most railways are retrieved as
seen in the detection maps, and false alarms are structurally
different from those of conditional or Touzi filters (no line
effect) so they are easier to spot. The main problem is the
dashed line effect which occurs if looking closer and appears
when a rail is rusty (e.g. for secondary tracks) or occluded
by wires or vegetations. Overall, it appears that adaptability
(to adaptation or local appearance) is a feature to care about
when designing a railway detection algorithm.

Table [T] summarizes the accuracy measures. Consider-
ing all 21 test images with city surroundings, the filtering
approaches obtain good results with accuracies around 75%
or 80%. However conditional or Touzi filters do not require
user supervision at test which is an advantage for large scale
deployment. The segmentation network gets mixed results
since only half of the control points are detected due to the
lack of constrained continuity in the detection. If we focus on
the rail subset however, Touzi filtering and the segmentation
network reach around 90% accuracy. This hints that a pri-
ori constraints as simple as an infrastructure ground coverage
mask are a promising way to improve the performances.

5. CONCLUSION

In this paper we have presented 4 filter-based approaches for
rail detection. They differ by the nature of the filters, which
can even be learned from a dataset in the case of a fully-
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Fig. 3. Railway detection results (in blue) with methods of Sec.[3} (a) Original image; (b) User correlation matching; (c)

conditional filter; (d) Touzi filter; () Segmentation network.

convolutional neural network, and by the amount of a priori
which is introduced, including user supervision, geographi-
cal and thematic constraints, or no a priori. All approaches
lead to more-or-less satisfying results depending on the use
case and the available resources. If aiming at the most auto-
mated approach, user supervision is not required since 3 other
methods got equivalent or better results, and orientation and
parallelism are not necessary, since they can be learned from
the data. However the infrastructure coverage and vectoriza-
tion by means of a step-by-step line building procedure help
predict better detection maps.

Thus, by taking the best of each approach, this benchmark
shows it is possible to design an automated, even more effi-
cient process for rail detection. A promising path consists in
mixing simple a priori constraints into the fully-convolutional
segmentation networks.
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