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This paper presents some analytical results related to the determination of the singular poses of the 3-RPS parallel manipulator at which it gains two degrees of freedom. The forward kinematic univariate (FKU) of the manipulator acquires a special structure at such a pose. All such poses have been identified in the closed-form, using a Stüdy-parameter representation of SE(3), for both the operation modes of the 3-RPS. These results are novel, to the best of the knowledge of the authors, and these have been verified using the traditional method, using the criterion of loss of rank of certain Jacobian matrices. The theoretical results have been illustrated with numerical examples.

Introduction

In this paper, the problem of gain-type singularities 1 is revisited, with the goal of determining the poses in which the manipulator gains two DoF (termed hereafter as the Σ 2 singularity, following the Thom-Boardman classification of singularities 2 [START_REF] Arnold | Singularities of Differentiable Maps[END_REF]). Such poses have been mentioned in [START_REF] Basu | Singularity analysis of platform-type multi-loop spatial mechanisms[END_REF], albeit without an exhaustive coverage. The authors are not aware of any further work in this regard, except for [START_REF] Srivatsan | Analysis of the degrees-offreedom of spatial parallel manipulators in regular and singular configurations[END_REF], wherein one such pose has been analysed in detail.

The analysis performed in this paper builds upon the ideas presented in [START_REF] Schadlbauer | The 3-RPS parallel manipulator from an algebraic viewpoint[END_REF] and [START_REF] Srivatsan | Analysis of constraint equations and their singularities[END_REF]: it adopts the Stüdy-parameter representation of SE(3), (see, e.g., [START_REF] Selig | Geometric Fundamentals Of Robotics[END_REF] for the fundamentals in this regard) and the resulting identification of the operational modes from the former, while identifying the singular poses using the concept of FKU from the latter. Also, it uses some improvisations in eliminating variables from systems of polynomial equations, where more formal methods, such as the computation of the Gröbner bases (see, e.g., [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]), or even the resultants appear to be computationally intractable at 0 Rohit Kalla, Sandipan Bandyopadhyay Department of Engineering Design, Indian Institute of Technology Madras, Chennai, Tamil Nadu, E-mail: rohitkalla9@gmail.com, sandipan@iitm.ac.in. Latifah Nurhami, Stephane Caro, Philippe Wenger Institut de Recherches en Communications et Cyberntique de Nantes (IRCCyN), France, E-mail: {Latifah.Nurahmi, Stephane.Caro, Philippe.Wenger} @irccyn.ec-nantes.fr. 1 Such a singularity occurs inside the workspace of the manipulator, at which the manipulator's endeffector gains one or more degree(s) of freedom (DoF) [START_REF] Bandyopadhyay | Analysis of configuration space singularities of closed-loop mechanisms and parallel manipulators[END_REF]. This is conceptually similar to the singularity of the second kind, and are associated with the loss of rank of certain Jacobian matrices [START_REF] Gosselin | Singularity analysis of closed-loop kinematic chains[END_REF]. 2 According to the Thom-Boardman classification of singularities of a differential map f , a point x belongs to the class Σ i if the kernel of Df (x), (i.e., the differential of f at x) is of dimension i. this point. Using these techniques, the FKU is derived for the operation modes x 0 = 0 and x 3 = 0 (see [START_REF] Schadlbauer | Interdisciplinary Applications of Kinematics[END_REF] for more details on the "modes"). The required form of the FKU for Σ 2 singularities is identified, and used to derive the conditions leading to such a singularity. Finally, after extensive symbolic computations, the condition for Σ 2 singularity is obtained in closed-form, in terms of the architecture, and input variables alone. These results have been verified by reverting back to the traditional Jacobianbased analysis -first order singularities require certain Jacobian matrices to lose rank by one, while for the Σ 2 case, the loss of rank is by two, (see, e.g., [START_REF] Bandyopadhyay | Analysis of configuration space singularities of closed-loop mechanisms and parallel manipulators[END_REF][START_REF] Srivatsan | Analysis of the degrees-offreedom of spatial parallel manipulators in regular and singular configurations[END_REF]). The concepts presented in this paper are fairly generic, and can be applied to similar analysis of any other manipulator.

The rest of the paper is organised as follows: the concept of Σ 1 , Σ 2 singularities are discussed in Section 2. Section 3 describes the geometry of the 3-RPS manipulator, based on which its FKU is derived in Section 4. Section 5 presents the theoretical results on the Σ 2 singularities of the 3-RPS manipulator, which are numerically exemplified in Section 6. Finally, Section 7 presents the conclusions of the paper.

Analysis of the gain-type singularities based on the FKU

Forward kinematic analysis of a spatial parallel manipulator typically involves the following stages: (a) parametrisation of the pose of the moving platform in terms of some chosen variables; (b) construction of the loop-closure constraint equations, relating these unknown variables to the known input variables; and (c) determination of evaluation of the system of equations. The choice of the unknown variables to represent the motion of the moving platform can be the passive joint variables, as in [START_REF] Srivatsan | Analysis of constraint equations and their singularities[END_REF], or taskspace parameters, such as the Stüdy parameters, as in [START_REF] Schadlbauer | The 3-RPS parallel manipulator from an algebraic viewpoint[END_REF]. The constraint equations are then formulated based on the geometric conditions that the motion of the moving platform must satisfy. Finally, following appropriate mathematical procedures, the set of kinematic equations are reduced to a single univariate equation, termed as the FKU.

The FKU contains all the information about the manipulator's kinematics, and can be used to study its singularities, as described below.

Σ 1 singularities

The necessary and sufficient condition for Σ 1 singularity is that the FKU is of the form:

f (x) : (x -α) 2m (x -β) 2n . . . h(x) = 0, m, n ∈ Z + , α, β ∈ R. (1) 
Consider, e.g., x = α. When m = 1, the implication is clear: a pair of forward kinematic branches meet at x = α, and hence the necessity and sufficiency of the condition is obvious from the statement of the inverse function theorem, which dictates that f (α) = 0 as well.

Noting that the function f has all the architecture parameters, and input variables in it, the kinematic conditions for Σ 1 singularity can be written as f (x, γ) = 0, f (x, γ) = 0 (with a slight abuse of notation), where γ represents the vector of known variables. Eliminating the sole remaining unknown, x, between these equations, one obtains the condition for Σ 1 singularity purely in terms of the architecture parameters and the input variables [START_REF] Srivatsan | Analysis of constraint equations and their singularities[END_REF].

Σ 2 singularities

The necessary condition for Σ 2 singularity, i.e., singularities corresponding to the gain of two DoF requires that two or more distinct pairs of forward kinematic branches meet in a pairwise manner at, say, x = α. This requires that in Eq. ( 1), at least one of the indices m, n,

• • • > 1.
It is interesting to note, however, that when m > 1, say, m = 2, the point x = α does not necessarily lie on a Σ 2 singularity. In general, the form of Eq. ( 1) is only necessary for Σ m singularity, and not sufficient, when m > 1. The same is true for the other points, x = β etc. This is so since the implicit function theorem does not generalise in the manner one might have expected -i.e., if m > 1, though m pairs of solutions meet at a point, the derivative does not necessarily develop a kernel of dimension m. While there are many examples of manipulators where this generalisation holds good (the 3-RPS being one of them) there are counter examples where that is not the case [START_REF] Husty | On singularities of planar 3-RPR parallel manipulators[END_REF]. This leads to the conclusion that the sufficiency conditions for the Σ 2 singularities cannot be derived based on the analysis of the FKU alone in the case of a general manipulator, and that it requires additional information, either on the structure of the FKU, or the actual kernel dimension of Df (x) computed otherwise. However, the following strategy can be used to identify all the Σ 2 singularities in any manipulator:

• Identify all the potential cases of Σ 2 singularities, using the necessary condition,

• Check all the real solutions to isolate the cases satisfying kernel(Df (x)) = 2.

Application of the above theory to the 3-RPS manipulator is detailed in Section 5.

Kinematic formulation of the 3-RPS manipulator

This section describes the geometry of the 3-RPS manipulator, and also derives the kinematics constraints the manipulator is subjected to.

Geometry of the 3-RPS manipulator

The 3-RPS parallel manipulator consists of a fixed base and a moving platform, both in the shape of equilateral triangles with circumradius 'b' and 'a', respectively. Without any loss of generality, the base radius, b, is considered to be unity. The triangular platforms are connected by three identical RPS legs, (see Fig. 1), wherein the rotational joints are attached to the base and their axes are tangent to the base circumcircle. The spherical joints are attached to the moving platform. The leg lengths can be varied by actuating the prismatic joints, thereby permitting the control of the three DoF motion of the moving-platform. The homogeneous coordi- 

0 b 1 = {b, 0, 0, 1} , 0 b 2 = -b 2 , √ 3b 2 , 0, 1 , 0 b 3 = -b 2 , - √ 3b 
2 , 0, 1 . The coordinates of the vertices of the top platform are first found with reference to the moving frame {1}, and then transformed to the frame {0} using the homogeneous transformation matrix 0 1 T obtained in terms of the Stüdy parameters (see, e.g., [START_REF] Schadlbauer | The 3-RPS parallel manipulator from an algebraic viewpoint[END_REF]),

x = {x 0 , x 1 , x 2 , x 3 , y 0 , y 1 , y 2 , y 3 }, i.e., 0 p i = 0 b i + 0 1 T 1 p i , i = 1, 2, 3.

Constraint equations

The 3-RPS manipulator has three active (i.e., input/known) variables, l 1 , l 2 , and l 3 , representing the prismatic actuators in the legs, and eight passive (i.e., output/unknown) variables, x i , y i , i = 0, . . . , 3, in the form of the Stüdy parameters. To obtain the eight unknown variables in terms of the known entities, eight independent equations are formulated as detailed below.

Planarity constraints: The vertex p 1 is constrained to move in the X 0 Z 0 plane, as shown in Fig. 1, i.e., the Y 0 coordinate of the vector ( 0 p 1 -0 b 1 ) must be zero:

( 0 p 1 -0 b 1 ) • e Y0 = 0
, where e Y0 = {0, 1, 0, 0} .

Similarly, the vertices p 2 and p 3 are constrained to move in their respective planes:

T Z0 -2π 3 ( 0 p 2 -0 b 2 ) • e Y0 = 0, (3) 
T Z0 -4π 3 ( 0 p 3 -0 b 3 ) • e Y0 = 0, (4) 
where the homogeneous transformation matrix T Z0 (θ) corresponds to a CCW rotation about Z 0 by θ. Eqs. (2-4), after some manipulations, give rise to three planarity constraints, identical to those presented in [START_REF] Schadlbauer | The 3-RPS parallel manipulator from an algebraic viewpoint[END_REF]:

f A1 : ax 2 1 -ax 2 2 -2x 1 y 0 + 2x 0 y 1 -2x 3 y 2 + 2x 2 y 3 = 0, (5) 
f A2 : ax 1 x 2 -2ax 0 x 3 + x 2 y 0 -x 3 y 1 -x 0 y 2 + x 1 y 3 = 0, (6) 
f A3 : x 0 x 3 = 0. ( 7 
)
Leg length constraints: The respective distances between 0 p i and 0 b i yield three constraint equations, as shown below:

( 0 p i -0 b i ) • ( 0 p i -0 b i ) = l 2 i , i = 1, 2, 3. (8) 
The constraints due to the legs 1, 2, and 3 are formulated as f A4 = 0, f A5 = 0, and f A6 = 0, respectively. The expressions are too big to be included here.

St üdy quadric:

In order to represent a rigid motion, the Stüdy parameters must lie on the Stüdy quadric:

f A7 : x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3 = 0. (9) 
Normalisation constraint: This constraint ensures that the first four of the Stüdy paramters form a unit quaternion:

f A8 : x 2 0 + x 2 1 + x 2 2 + x 2 3 -1 = 0. (10) 
The set of eight constraint equations constitutes the constraint ideal

I A = f A1 , f A2 , f A3 , f A4 , f A5 , f A6 , f A7 , f A8
. Following [START_REF] Schadlbauer | The 3-RPS parallel manipulator from an algebraic viewpoint[END_REF], primary decomposition of the polynomial ideal composed of the planarity constraints and Stüdy quadric alone, i.e., f A1 , f A2 , f A3 , f A7 , is performed, to identify the operation modes of the 3-RPS, characterised by x 0 = 0 and x 3 = 0, respectively.

Derivation of the FKU

In order to obtain the FKU, the passive variables are eliminated by adapting a sequential procedure for each operation mode, as described in the following.

4.1 Operation mode corresponding to x 0 = 0, x 3 = 0

In this mode, the elimination of the unknowns are done in the following steps: 1. Consider the ideal, I A . Upon substituting x 0 = 0, the ideal I A reduces to the ideal

J A = f A1 , f A2 , f A3 , f A4 , f A5 , f A6 , f A7 .
The polynomial equations f A1 = 0, f A2 = 0 and f A6 = 0 can be solved linearly for y 1 , y 2 and y 3 . Back-substitution of the expressions of y 1 , y 2 , and

y 3 into J A results in a new ideal J B = f B1 , f B2 , f B3 , f B4 wherein, f B1 = f A3 , f B2 = f A4 , f B3 = f A5 and f B4 = f A7 .
2. The polynomials f B1 and f B2 are both quadratic in y 0 . Therefore, the remainder obtained by dividing f B1 by f B2 , while treating them as polynomials in y 0 , can be solved linearly for y 0 as shown in Eq. [START_REF] Husty | On singularities of planar 3-RPR parallel manipulators[END_REF].

y 0 = a(a + 2) 3x 2 1 + 2 √ 3x 2 x 1 -3x 2 2 + l 2 1 -l 2 2 4a 3x 1 - √ 3x 2 , a = 0. (11) 
In the following analysis, it is considered that the denominator in Eq. ( 11), i.e., (3x 1 -√ 3x 2 ) is not zero, as it has been verified that vanishing of this factor finally leads only to a Σ 1 singularity4 . The denominator term a, being the circumradius of top platform, cannot be zero for a physically meaningful manipulator. Back-substituting y 0 into the ideal J B , a new ideal

J C = f C1 , f C2 , f C3 is formed, wherein, f C1 = f B2 , f C2 = f B3 , and f C3 = f B4 .
3. The polynomials f C1 and f C2 are of degree 8 in x 3 . The remainder obtained by dividing f C1 by f C2 with respect to x 3 , can be decomposed into 4 factors, given as:

f C1a : 2 √ 3x 2 x 2 1 -9a(a + 2) + l 2 1 + x 2 2 3a(a + 2) -l 2 1 -l 2 1 x 2 3 + l 2 2 3x 1 + √ 3x 2 -l 2 3 3x 1 - √ 3x 2 , ( 12 
)
f C 1b : √ 3(x 2 - √ 3x 1 ), f C1c : x 2 3 , f C 1d : 4a 2 . ( 13 
)
It is already stated that f C1c and f C 1d cannot be zero, and vanishing of the factor f C 1b leads to Σ 1 singularity. Therefore, only the factor f C1a will be considered for further analysis, using the new ideal

J D = f D1 , f D2 , f D3 , where f D1 = f C1a , f D2 = f C2 , and f D3 = f C3 . 4.
The polynomials f D1 and f D2 are of degrees 2 and 8 in x 3 , respectively. Upon dividing f D2 by f D1 with respect to x 3 , the remainder obtained can be decomposed into 5 factors. These factors are denoted by f D2a , . . . , f D2e . The factor f D2a is of degree 4 in both x 1 and x 2 . The expression of f D2a is large 5 , and hence is not reproduced here. The other factors are much smaller:

f D 2b : 3 x 2 - √ 3x 1 2 , f D2c : 3x 2 1 -x 2 2 2 , f D 2d : x 2 2 , f D2e : 12a 4 . (14) 
As before, vanishing of the factors f D 2b , f D2c , and f D 2d lead to Σ 1 singularities, and a cannot be zero. Therefore, only f D2a is considered as the member of the new ideal

J E = f E1 , f E2 , f E3 , where f E1 = f D2a , f E2 = f D1 , f E3 = f D3 . 5.
Both the polynomials f E2 and f E3 are of degree 2 in x 3 . On dividing f E2 by f E3 with respect to x 3 , the remainder f E2a is of degree 2 in x 1 and degree 3 in x 2 . The remainder is reproduced as:

f E2a : -2 √ 3x 2 3a(a + 2) 3x 2 1 -x 2 2 + l 2 1 + l 2 2 3x 1 + √ 3x 2 + l 2 3 √ 3x 2 -3x 1 .
On dividing the polynomials f E1 by f E2a with respect to x 1 , the remainder obtained is a univariate polynomial in x 2 , which decomposes into eight factors, denoted by f E1a , . . . , f E 1h . The factor f E1a is large and of degree 8 in x 2 , while f E 1h is the integer 432. The other factors are:

f E 1b : x 4 2 , f E1c : (l 1 + l 3 ) 2 , f E 1d : (l 1 -l 3 ) 2 , (15) 
f E1e : (l 1 + l 2 ) 2 , f E 1f : (l 1 -l 2 ) 2 , f E1g : (a + 2) 4 . (16) 
Vanishing of the factors f E 1b , . . . , f E1g lead to Σ 1 singularities. Therefore, f E1a alone is analysed further. The polynomial f E1a is quartic in x 2 2 , is the desired FKU. It is cast in the following form:

F KU : c 0 x 4 + c 1 x 3 + c 2 x 2 + c 3 x + c 4 , where x = x 2 2 . (17) 
The coefficients c i have been obtained in closed-form. However, owing to the constraint on space, only c 4 is quoted below:

c 4 = -(r 2 -r 3 ) 4 (9a 4 + 72a 3 -6a 2 (r 2 + r 3 -30) -24a(r 2 + r 3 -6) + (r 2 -r 3 ) 2 -24(r 2 + r 3 )),
where

r i = l 2 i , i = 1, 2, 3.
4.2 Operation mode corresponding to x 3 = 0, x 0 = 0

The derivation of the FKU follows the similar structure in this case, which is omitted here for the want of space. The final result is also similar:

F KU : d 0 x 4 + d 1 x 3 + d 2 x 2 + d 3 x + d 4 , where x = x 2 1 , and (18) 
d 4 = -(r 2 -r 3 ) 4 (9a 4 -72a 3 -6a 2 (r 2 + r 3 -30) + 24a(r 2 + r 3 -6) + (r 2 -r 3 ) 2 -24(r 2 + r 3 )).
The other coefficients are too large to be presented here.

Σ 2 singularities of the 3-RPS manipulator

The kinematic conditions for Σ 2 singularities in the 3-RPS manipulator are derived in the following.

Structure of the FKU for Σ 2 singularities

The original FKU, as in Eq. (17) or Eq. ( 18), is converted into its monic form,

x 4 + t 1 x 3 + t 2 x 2 + t 3 x + t 4 = 0, wherein t i = c i /c 0 , or d i /d 0 , i = 1, . . . , 4. (19) 
It is assumed above that c 0 = 0, d 0 = 0. In the most general case of Σ 1 singularity, Eq. ( 19) reduces to the form (see Eq. ( 1)):

(x -α) 2 (x -β) 2 = 0, x = x 2 2 , or x = x 2 1 . (20) 
Comparing the equal powers of x between Eq. ( 19) and Eq. ( 20) one gets four equations in α, β. After eliminating α, β from these, the condition for Σ 1 singularities reduce to:

(4t 2 -t 2 1 ) 2 -64t 4 = 0, (21) 
t 2 3 -t 2 1 t 4 = 0. ( 22 
)
The Σ 2 singularities occur only when more than one pair of forward kinematic branches meet at a point. It is obvious from Eq. (20) that the (necessary) condition for the same is simply: α = β. Under this condition, Eq. (20) reduces to the form (x -α) 4 = 0. In the following, the poses satisfying the condition α = β are identified analytically.
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Identification of the Σ 2 singularities

For both the operation modes, i.e., x 0 = 0 and x 3 = 0, Eq. ( 21) is of degree 12 in r 1 , degree 8 in both r 2 and r 3 . Eq. ( 22) is of degree 6 in r 1 , and degree 8 in both r 2 and r 3 . In either case, the task is to eliminate one of the variables, r i , to obtain a single equation in the other two, defining the Σ 2 singularity manifold. However, it becomes too complex to perform this last elimination step symbolically. Hence, for the mode x 0 = 0 the value a = 3 is adopted from [START_REF] Schadlbauer | The 3-RPS parallel manipulator from an algebraic viewpoint[END_REF]) and for the mode x 3 = 0 the value a = 1/2 is adopted from [START_REF] Srivatsan | Analysis of the degrees-offreedom of spatial parallel manipulators in regular and singular configurations[END_REF] for the following calculations. In x 0 = 0 mode, elimination of r 1 from Eq. ( 21) and Eq. ( 22) leads to an equation of degree 120 in r 2 and r 3 each, which decomposes into 9 factors, namely, f i , i = 1, . . . , 9. Only the factors f 7 = 0 and f 8 = 0 yields same structure as in Eq. ( 20) and lead to Σ 2 and Σ 1 singularities, respectively 6 . The factor f 7 is shown below:

f 7 : r 4 2 + 2r 3 r 3 2 -306r 3 2 + 3r 2 3 r 2 2 -576r 3 r 2 2 + 33777r 2 2 (23) + 2r 3 3 r 2 -576r 2 3 r 2 + 51678r 3 r 2 -1586304r 2 + r 4 3 -306r 3 3 + 33777r 2 3 -1586304r 3 + 26873856.
A similar set of results is obtained for the case x 3 = 0, x 0 = 0. Numerical examples of both the cases are given in Section 6 representing singular poses with a gain of two DoF.

Numerical results

In this section, numerical examples for both the operation modes are presented to demonstrate the validity of the theoretical results derived above. Case 1: Mode x 0 = 0 For the design parameter a = 3, a combination of real values7 of r 2 and r 3 satisfying Eq. ( 23) are: r 2 = 71.9999 and r 3 = 9, while a corresponding real solution of Eq. ( 22) is r 1 = 71.9999. For these numbers, Eq. (17) becomes:

362.7970x 4 -507.9158x 3 + 266.6558x 2 -62.2196x + 5.4442 = 0 ⇒(x -0.3499) 4 = 0, where x = x 2 2 .

Therefore Σ 2 singularities occur at two distinct points, x 2 = ± √ 0.3499. The corresponding singular poses are shown in Fig. 2. For the pose given by x 2 = -0.5916, (see Fig. 2(a)) the corresponding Stüdy parameters are: x = {0, -0.3415, -0.5916, -0.7302, -1.7078, -2.2135, 1.2780, 8.0540×10 -8 }. At this pose, the singular values of J ηφ are {9071.9999, 0, 0}, and the singular values of J ηX (see Appendix A for the definitions of J ηφ and J ηX ) are: {21735.7201, 1070.1392, 147.8653, 19.8730, 5.3520, 0.3835, 0, 0}. In this case too, it is verified that there are two vanishing singular values of the constraint Jacobian matrices.

Figure 1 :

 1 Figure 1: The 3-RPS parallel manipulator

  (a) Pose A: x 2 = -0.5916 (b) Pose B: x 2 = 0.5916

Figure 2 :

 2 Figure 2: Σ 2 singular poses for x 0 = 0
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These coordinates are obtained by a bijective transformation from the three dimensional affine space R 3 to the projective space P 3 . In other words, these coordinates are obtained by mapping {x, y, z} to {x, y, z, w}, with the projective coordinate w = 0 set to unity, without any loss of generality.

Conditions leading to only Σ 1 singularities are discarded, as the paper focusses on Σ 2 singularities.

The size of the expression f D 2a is 134.928 KB. Here, all the symbolic computations have been performed using the commercial computer algebra software, Mathematica and "size" refers to the amount of computer memory needed to store an expression in Mathematica's internal format.

The singularities can be classified based on the values of α and β, i.e., if they are real and distinct then the manipulator undergoes Σ 1 singularities, and when they are real and equal, the manipulator undergoes Σ 2 singularities.

The numbers quoted in this section are accurate only up to the fourth digit after the decimal point. However, in actual computations, 100 digits were retained. Also, any number less than 10 -10 (in the absolute sense) is reported as zero.

ConclusionsAn analytical study of the gain-type singularities of the 3-RPS manipulator has been presented, with special focus on the indentification of the set of poses where the manipulator gains two DoF. Such a singularity is termed as the Σ 2 singularities, and these form a subset of the Σ 1 singularties, which result in the gain of a single DoF. The analytical results obtained from the study of the FKU have been verified numerically, using the standard Jacobian-based approach.

Appendix A Definition of the constraint Jacobian matrices

At a gain-type singularity, certain constraint Jacobian matrices lose rank. In this work, two such matrices have been used to validate the results obtained by the proposed new conditions based on the properties of the FKU. One such Jacobian matrix is derived from the constraint equations in the joint space [START_REF] Srivatsan | Analysis of constraint equations and their singularities[END_REF]: η(θ, φ) = 0, where θ represents the active variables, and φ the passive joint variables. The required Jacobian matrix arising out of this equation is derived in [START_REF] Srivatsan | Analysis of constraint equations and their singularities[END_REF] as: J ηφ = ∂η ∂φ . Similarly, writing the constraint equations in the task-space as: f (θ, X) = 0, one can derive the relevant Jacobian matrix in this case as: J ηX = ∂f ∂X . The latter Jacobian is the same as the one used in [START_REF] Schadlbauer | The 3-RPS parallel manipulator from an algebraic viewpoint[END_REF], and the system of equations f (θ, X) = 0 define the same ideal as I A in Section 3.