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Summary :
This tutorial paper provides an overview of the state of the art in teletraffic modelling, with regards to the
debate about the possible ’fractal” nature of the traffic on modern networks.

1 Introduction

In recent years numerous statistical studies on high quality traffic data have concluded that a major part of the traffic
that is likely to circulate on future B-ISDN networks exhibits long term correlations and a form of self similarity
over several time scales [Leland et al.94] [Duffield et al.] [Paxson et al.94] [Willinger et al.95b] [Willinger et al.95a].
As a result of these findings, most contributors reject traditional “Poisson-like” models of traffic such as the
Poisson process [Erlang09] [Erlangl7] or the Markov Modulated Poisson Process [Fischer et al.93]. This is an
important bend in teletraffic modelling because, at first glance, that means that traditional performance evaluation
1s not valuable; most authors think that traditional performance evaluation underestimate the ressources that are
necessary to provide Quality of Service because of the fractal’ nature of the modern traffic.

On the other hand, many classical indexes that are used to decide for the fractal’ nature of the traffic are not
valid if the traffic is not stationary. The hypothesis of second order (or “weak”) stationarity is essential to speak
of long range dependence. This remark is not cumbersome; some non stationaritites -e.g. shifting levels- are likely
to occur and they can be misinterpretated as a strong degree of long range dependence if they are not detected.
The question of deciding whether the traffic has some ’fractal’ nature or presents some non stationarities is in fact
very difficult.

What is more, any stochatic process can be approximated by a Markov model, provided that the number of
states of the Markov model is sufficiently high. In particular there exists some Markov models that approximate
the correlation structure of long range dependent processes on a number of timescales; and when the number of
states of the Markov model tends to infinity the process is asymptotically long range dependent. These Markov
models present some near complete decomposability. The advantages of modelling the traffic with a near completely
decomposable Markov model is twofold : (i) it is possible to propose some near completely decomposable Markov
models that are parcimonious, that is to say that it has very few parameters even if the number of states is infinite
(ii) the second reason is that it is possible to re-use well known traditional performance analysis to dimension and
manage the network under this modelling.

As one can see the question of the validity of "Poisson’ and of ’fractal’ like models of traffic 1s still a very open
question.



2 Long range dependence and self-similarity : a definition

2.1 Long range dependence

Denote by (X;); a second order stationary process; we denote by p(k) the correlations of (X;); and by S(A)
its power density spectrum.

Definition 1 (X;) is long range dependent if and only if the following (equivalent) conditions are satified :

1. the correlations p(k) decrease as a non summable power law when k tends to infinity :
p(k) "= O(k2H=2) 05 < H < 1.0.

2. or, equivalently, the power density spectrum S(A) diverges as an integrable power law near the origin :
S(A) A2 O T2H), 05 < H < 1.0.

The parameter H (0.5 < H < 1.0) is the Hurst parameter of the process.

2.2 Self-similarity

Denote now by (Y;): a continuous time process (¢ € R); the definition of self similarity is following :

Definition 2 (Y}); is self similar with self similarity parameter H if and only if c=*Y,, is equal in distribution to
Y:.

It is noteworthy that, unless H = 0, (Y;); is not stationary. For the purpose of modelling time series that look

stationary we will consider self similar processes with stationary increments; moreover we reduce our study to the
case H >0 1.

2.3 Stationary increments of a self similar process

Denote by X; = Y; — Y;_1 the increment process of the self similar process (Y;);. The variance of the increment
process 1s

var(Y; = Yy) = var(X(t — s)) = o[t — s|*#

and the correlations of X; are given by

plk) = corr( Xy, Xeqr) = %[(k’ + 1) 2k 4 (k- 1)?7]

Now if we let k tend to oo in this equation it comes that :

Lthe case H < 0 is pathological : if Y; were self similar with stationary increments and H < 0 then the Y; would not be measurable;
we do not consider this case



lim p(k) = H(2H — 1)k*" =2

k—oco

or equivalently

Sx (A) = O(AI"=*H)
and consequently (X;); is long range dependent if H is in the range 0.5 < H < 1.0.

Theorem 1 If Y; s self similar with self similarity parameter H in the range 0.5 < H < 1.0 then the increment
process Xy = Yy — Yi_q 1s a stationary long range dependent process with Hurst parameter H .

3 Fractional Brownian motion, fractional Gaussian noise and frac-
tional ARIMA models

The Brownian motion (H=0.5)

The standard Brownian motion is a continuous time stochastic process B(t) that verifies the following proper-
ties :

(1) the sample paths are continuous (ii) B(t) is Gaussian (iii) B(t) has indepent increments (iv) E(B(t)— B(s)) =
0 (v) var(B(t) — B(s)) = o[t — 5]

If B(t) verifies these properties then B(t) is a Brownian motion. It is easy to prove that the ’standard’ Brownian
motion B(t) is self similar with self similarity parameter I = 0.5.

3.1 The fractional Brownian motion

The fractional Brownian motion can be defined as a ’weighted average’ of the standard Brownian motion, or more
precisely, as a stochastic integral, the convergence of the integral being understood in the sense of the L?-norm
with respect to the Lebesgue measure on R :

Definition 3 Note wgy (t,u) the "weight’ function

wg(t,u) =0 t<u
wy (t,u) = (t—u)T-2 0<u<t
wi(t,u) = (¢ —w)?=% — (—u)=3

The fractional Browntan motion with self similarity parameter H 1s defined as the stochastic integral

Bp(t)=o¢ /wH(t,u)dB(u)
in which B(t) is the standard Brownian motion as defined above and normalized such that var(B(1)) = 1.

Theorem 2 The fractional Brownian motion By (t) is self similar with self similarity parameter H

But) ¢ B@)

—
=

d e
where @ represents the equality in distribution.



3.2 The fractional Gaussian noise

Definition 4 The fractional Gaussian noise is the increment process assoctated to the fractional Brownian motion

Xg(t)y= Bg(t)— Bg(t—1)

Theorem 3 The fractional Gaussian noise Xy (t) is long range dependent with Hurst parameter H :

px (k) " O®kH-?)
Sx(A) 20 o)

3.3 The fractional ARTMA models

ARMA processes
Denote by B the Backshift operator defined by (BX)(¢) = X(¢ — 1) and let p and ¢ be integers.

Definition 5 An ARMA(p,q) is the stationary solution to

q)(B)Xt = \IJ(B)Et
where € 15 a white noise and D(e) and 1(e) are polynomials of order p and q, ®(x) = 1 — SF_ ¢;af and
Wla) = 1+ D0, gl
ARIMA processes
Now let d be an integer and consider the polynomial (1 — B)? = ZZ:O CH(—=1)k B* where €% = % =

El(d—k)!
I'(d . 00 ,p—
—F(k+1gr-(l—d1—)k+1) with T'(z) = fo t*=Lexp(—t) dt.

Definition 6 If (X;); salisfies to the equation

®(B)(1 — B)*X, = U(B)¢,
then (Xi): is an ARIMA(p,d,q).
The operator (1 — B)? can be generalized to d non integer as follows :

i e [(d+1)
(1-5) _;F(k+1)r(d—k+1)

(_1)kBk

and the definition of the ARIMA(p,d,q) can be extended to non integer values of d.

Definition 7 Let (X;); be a stationary process such that

®(B)(1 — B)*X; = ¥(B)¢,
with d in the range —0.5 < d < 0.5 then (X;): is a fractional ARIMA (p,d,q) process.



The spectral density of the fractional ARIMA process is given by

o2 . \11(6”\ o2 \11(6”\)
SA) = =1 =7 ——= 1P = 2512~ (A2 — =)
(A) = 5[l = e Iq)(em)l 512~ (A/2)] Iq)(em)l

In this expression if A tends to 0 it comes that
2 2
A0 0¢ v og Y1) o 02y iom WD) :
Consequently (X;); is long range dependence if d is in the range 0 < d < 0.5.

Theorem 4 The fractional ARIMA(p,d,q) is long range dependent with Hurst parameter H = d + 0.5 if d is in
the range 0 < d < 1.0.

The case d = 0 corresponds to the ARMA(p,q) process. For d > 0.5 there is no stationary solution for the
equation ®(B)(1 — B)?X; = ¥(B)e; but the case d > 0.5 can reduce to the case —0.5 < d < 0.5 by taking
appropriate differences. For the purpose of modelling time series with long range dependence the case of interest
is the case 0 < d < 0.5.

3.4 Generation of an ARIMA (p,d,q)

Direct computation of the covariances of the ARIMA(p,d,q) is a difficult matter. Gradshteyn and Ryzhik have
established the exact expression of the covariances of the ARIMA(0,d,0) X7

(1-B)IX =¢

The covariances of the ARIMA(0,d,0) process are

_ o (=pFra-2d
W) = o gy i = k=)

The Durbin Levinson algorithm

The Durbin Levinson algorithm is a method for determining recursively the best linear predictors of increasing
order for a stationary process (X;); with known covariances.

Denote by Xn+1 the best linear predictor of X, 41 given X1, Xo, -+, X,

Xn+1 = ¢n,1Xn + ¢n,2Xn—1 + -+ ¢n,nX1

and denote by v, the mean squared error of prediction

Up = E((Xn+1 - Xn+1)2)



Proposition 1 If X, is a stationary zero mean process with covariances (o) such that v(0) > 0 and limg_, oo y(k) =
0 then the coefficients ¢y, ; and the mean squared errors v, satisfy ¢11 = v(1)/7(0), vo = 7(0),

n—1 . _
bnn = [y(n) — 2,7:1 Pn—1,7(n — J)]vnil
j = 1a e, — 1 ¢n,j = ¢n—1,,7' - ¢n,n¢n—1,n—j
Un = v”—l(l - rzl,n)

Generation of the ARIMA (0,d,0)
The following algorithm produces a process that is distributed as the ARITMA(0,d,0) (X7 ):.

1. Tmitialization :
(a) n=1.
(b) Generate X7 ~ N(0,/7(0)).
(©) é1,0=7(1)/7(0), vo = ¥(0), v1 = vo(1 — ¢7 ;).

2. Recursion :
(a)
Xpy1 = Zj:l’n an,jX;;_I_l_j + \/Un€, where(ey), ~ WGN(0,1)
(b) Compute ¢p41.4 and v,41 as described in the Durbin Levinson algorithm.
(¢) n=n+1.

Generation of the ARIMA (p,d,q)
The ARIMA(p,d,q) (X:): can be obtained as the output of an ARMA(p,q) filter with input the ARIMA(0,d,0)

(X7)e

O(B)X; = U(B)X;
Xt = Zj:l,p ¢]Xt_] + Xt* + Zk:l,q 1/)16‘Xt*—k‘

4 Estimation of the Hurst parameter: heuristic approaches

4.1 The R/S statistic or pox diagram

Suppose that one wants to detect long memory in a series (X;):. Note ¥; the cumulated series Y; = 2221 X;. Note
R(t, k) the adjusted range

R{t k) = max [Yisi = ¥, = £ (Yo = Y] = min [Yies = ¥i = £ (Yeas = Vi)

and S(t, k) the sample variance of X;11, Xpq0, -+, Xeyk



St k)= [k=1 > (Xegi — Xip)?
i=1k

where Xt,k is the sample mean Xt,k = k! Zi:l & Xtqi. The R/S statistics or rescaled adjusted range is the
ratio

Q(t, k) = R(t, k)/S(t, k)

Theorem 5 Let X; be such that X? is ergodic and t=°%"
tends to oco. Then, as k — oo

s—1¢Xs converges weakly to Brownian motion as t

k—O.SQ (_d>) C
where { s a non degenerate random variable.

Theorem 6 Let X; be such that X? is ergodic and t=H 3"
as t tends to co. Then, as k — o

s—1 ¢ Xs converges weakly to fractional Brownian motion

EQY e
where { s a non degenerate random variable.

The R/S statistic should be evaluated for many k and one should plot log(R/.S) versus log k. For most common
short memory process the points should be scattered around a straight line with slope O.5. For long memory
processes the points should be scattered around a straight line with slope H in the range 0.5 < H < 1.0. The slope
of this straight line is an heuristic estimate of the Hurst parameter of the series.

4.2 The variance time plot

This method 1s based on the slowlier decrease of the sample mean of long range dependent processes.

Theorem 7 Let X; be a stationary process with long range dependence. Then

var(n_1 Z X;) nee O(nZH_Z)

i=1l,n
with H the Hurst parameter of the process.

Note (Xt(m))t the series obtained by taking sample means over non overlapping windows of size m

Xt(m) =m! Z Xt=1)ym+j

j=1m

and note s,, the sample variance of (X,Fm))t. One should calculate s, for many m and plot log(s,,) againts
log(m). If there is some long range dependence with Hurst parameter H then the plot should fit to a straight line
with slope 2H — 2 for big values of m (0.5 < H < 1.0). If not then it should fit to a straight line with slope —1.



4.3 The Index of Dispersion for Counts (IDC)

The Index of Dispersion for Counts is commonly used for capturing the variability of traffic over different time
scales. Note A; the number of arrivals during the interval of length t; the IDC 1is the variance of A; divided by the
expected value of A;

IDC(t) = %

Theorem 8 If A; is a self similar process with self similarity parameter H then

o

In practice one counts the number of arrivals over non overlapping windows of length ¢; the sample mean and

the sample variance of the counts A; are evaluated; this is done for many values of £. One plots log %A—)’l versus
t
logt. If the series of the counts is self similar with self similarity parameter H then the plot is approximately linear

for ¢ big with slope 2H — 1.

4.4 Periodogram based analysis

(X:): is long range dependent if and only if its spectral density f(\) has an integrable singularity in A = 0

FO) RO eA2H 05 < H < 1.0

or in the log-log scale

log f(A) *=° (1 — 2H) log A + log ¢

The basic idea of these methods is to use a Fast Fourier Transform algorithm to compute the periodogram

1< :
L)) = ;|2Xte”>‘|2
Ct=1

at the Fourier frequencies Znﬂ with j = 1,2,--- ,["T_l], and then to make a least square fit of log 7(A) versus
log A near the origin. It is important that the least square fit is made on frequencies A, 1, An 2, -, Ay x such that
Mg "N
. +
with A; — A;r # Omod(27).
In particular the fit should not be made on the first Fourier frequencies Znﬂ with 57 = 1,2,---,k since
limy, o0 222 = 0.

The slope 1 — 2H of the regression provides an estimate of the Hurst parameter H.



Theorem 9 Let (X;); be a stationary process with spectral density f(X); suppose there exists a positive continuous

Junction f*(\) such that
FO) == e

with 0.5 < H < 1.0. Also assume that (X;); has a one sided infinite moving average representation

Y, = Z g€
k=0
with (¢;); a white noise with finite variance and y_, a? < oo. Consider a finite number of frequencies Ay 1, An 2, , An i
such that
Mg "N
+
with A\j — X # Omod(27) for j # j'. Then
d
H(Ana), I(An2, - T(An k)] —>r(L—)>oo [FA)C, 5 F(A2)Cay oo F( AR )Gk
where (1,(a, -+, are k independent exponential random variables with mean 1.
It results from this Theorem that approximately when n is big
log(1(A;)) = (1 — 2H)log|A;| + logc + log
with (1, (s, -, (e approximately independent identically distributed exponential random variables with mean
1. Note
yi = log(I(};))
zj = log|Al
B = loge+E(log((;))
ej = log¢; —IE(log(¢;))
then

yi = (1 =2H)x; + B +e;

This is a least square fit with independent identically distributed errors with zero mean.

5 Non stationarities

5.1 Influence of non stationarities on the variance time estimate of the Hurst pa-

rameter

Suppose now that (X¢); is a short memory process and define



Yo=Xe+ fo with fo= ) [l

i=1,N

i (1)

with 1 =Ty < Ty < --- < Ty = n and with

Note p; = limp_y oo = 7?"1 . We suppose that Y; is a centered process so that

Zﬂz’fi =0

Note
m tm
‘X;t( )) %Zu:t 1m+1X
m tm
t = % u=(t—1) m+1 fu
ym = x(m | )

The sample variance of Y (™) can be decomposed into four terms

vdr(Yt(m)) = vdr(X(m)) + vdr(ft(m))
T/m T/m T/m g(m)
+ 7t 2o ™ - I t=1 Jt

When m tends to co 1t comes that

var(Xmy me 0(/m—1)
m T/m—+oc
T+m P <ft N ST S
T/m T/m—>+oo
T/m t /1 t ZfZNZ =0

T/m T/m—+co
ﬁ t:/1 Xt( " - 0

m m T/m—>oo

and consequently

var(YU) TN ff

which is a non null constant. The estimate produced by the variance time analysis is consequently very close

to 1 when Y; = X; + f¢; in this expression X; is a short memory process and f; is used for modelling a series of
shifts in the mean of the non stationary time series.

10



It is noteworthy that to establish H ~ 1 we have supposed that the series has are shifting levels at all the
timescales

But in practice we have checked that in the presence of shifting levels on only one timescale the variance time
estimate of the Hurst parameter is still severely positively biased, even if the shifts are very small with respect to
the variance of the stationary short memory process X;.

5.2 Influence of non stationarities on the periodogram based analysis
LIS Viexp(-AOP = R[5 X exp(—AOP + £ (5 frexp(—ix) [
+ 2R3 X exp(—jAt) Y fr exp(jAt))

Note e(t) = Mg+(t) the Heaviside function and s; = fiy1— fi. Then fi = > cicn sic(t—=T5) = O gcicn Si0T,) *
e(t). T T

o 1 _ exp(jA/2)
ety = 1—exp(—jA)  2jsin(A/2)

T oy €XP(IA/2)

dr.(t)xe(t) = exp(=iATH) g7 0
N 7 . exp(jA/2)
;Si(gﬂ(t) we(t) 2 ;5 eXP(—JATi)m

and consequently the periodogram of f; as a pole of order 2in A =0

A—0;T 00 1

% ‘Z fi exp(—j/\t)‘2

The series X; and f; are centered so that

ZR Xeexp(—A) Y frexp(A) 30

and consequently

2 A—=0 1
T

=[S0 veexp(-in 0(57) (1

Thus the estimate produced by least square fit of log(I(A)) versus log(A) is very close to one; in practice we
have checked that this result still holds for a shifting level process with shifts on one timescale only.

11



5.3 An example

In practice the presence of some non stationarities in a series without long memory can mislead to the detection of
a high degree of long memory if the classical visual indexes are used. For example we consider a White Gaussian
Noise with mean 0 and variance 1

(X¢)e ~WGEN(0,1)

and (f;): models some shifting levels in a process Y; = X; + fi

ft = Zi:l,N fi]I[Tl—lyTz[(t)
Yi=Xe+ fi

We simulate a series (f:);: in which (i) the shifts are rare and (ii) the amplitude of the shifts is very small by
comparaison with the standard deviation o = 1 of the White Gaussian Noise A'(0,1). Thus the shifting levels can
not be detected at first glance in the series Y; = X; + f; and the series Y; looks stationary.

Figure 1 displays (i) the shifting levels and the fractiles of the A(0,1) distribution and (ii) a variance time
analysis of Y;; this analysis produces an estimate H ~ (.86 and yet the shifts in the mean of the process are very
rare and have a small amplitude with respect to the dispersion of the series without shifts.

5.4 Local stationarity

A possible framework for overcoming the question of non stationarities is the empirical notion of local stationarity.
A process is locally stationary if (i) it is not stationary, for example in the sense of the tests for stationarity, over
long time scales (ii) but the hypothesis of stationarity is reasonable on shorter time scales.

For example, in a parametric model, if the parameters vary slowly with time then the process is locally stationary.
If the model is Markov modulated (e.g. MMPP, MAP...) then it is possible to track the variations of the parameters.
The following algorithm has been extensively studied by Mevel [Mevel97]. Note 6 the set of parameters of the model
then

- - 0
Orp1 = 0; + ’7% logp(2eqr | @, 21, ;0) |€:€}

where v is a step. Suppose for example that (X;); is a Hidden Markov Chain that is to say that there exists
a Markov chain (A;); with state space 8 such that X; depends on A; only; then the probability density of the
random variable X; 1 given that {X; = z¢, Xy_1 = x¢_1,-- -} in the model with parameter 8 is

(e | @e, wemn, - 50) = Zp(l‘t+1 | Zey1 = i)aeq1(2;0)
1€ES
where a4 1(e;6) is the prediction filter

Olt+1(i;6) = ]P)(Xt+1 =1 | T, Tp—1, ,9)

12



0

0
T logp(aiq1 | @, xe-1, -+ ;0) = Farg1(e;0), %O‘Hl(‘; 0),x¢11)

The prediction filter and its gradient can be computed recursively in a lattice in a joint manner

aryi(e) = Glae(e;0), 24, 0)
%at+1(o;9) = H(at(o;ﬁ),gat(o;ﬁ),xt,ﬁ)

£

6 Near completely decomposable Markov models

6.1 Near complete decomposability in Markov chains

Broadly speaking, a system is near completely decomposable when its components can be grouped into subsystems,
in such a manner that the interactions between the subcomponents are much weaker than the interactions within
each of the subcomponents. This structure of dependence conducts to the following dynamics [Courtois77] :
(i) short term dynamics each of the subsystems moves towards equilibrium under the influence
of the strong interactions within the subsystem
(ii))  short term equilibrium an internal equilibrium is reached within each of the subsystems
(iii)  long term dynamics the complete system as a whole moves towards a global equilibrium under the
influence of the small interactions between subsystems
(iv) long term equilibrium  the global equilibrium is attained
Remark that the short term equilibrium that is attained within each of the subsystems (phase (ii)) is maintained
when the system, as a whole, moves towards a global equilibrium (phase (iii)). In many contexts the interactions
within a discrete system can be reprensented by a graph that is composed of nodes and of branches; a ’lenght’ is
assigned to each branch; this lenght corresponds to the ’degree’ of interactions between the two nodes.

This graphical representation can also represent the dependence structure of a discrete time Markov chain.
In this context the nodes represent the states of the Markov chain and the ’lenghts’ are the probabilities of
transition from one node to another. Denote by (V},), this Markov chain and denote by P its stochastic matrix :
P(i,§) = P(Vug1 = j | Yo = ).

(Y)n is near completely decomposable when its state space {1,2,---,n} can be grouped into N subspaces
{17,21,---,n(I)r} of cardinal n(I) in such a way that the probabilities of transition between subspaces are very
small. This means that, up to a convenient reordering of the states {1,2,---,n}, the stochastic matrix P is in form

of P = P* + eC', where € i1s a small positive real number, the maximum degree of coupling between the subsystems
in P. P* is completely decomposable : it is block diagonal, and each block (I, I) is a stochastic matrix, the matrice
of the probabilities of transition in subsystem I; we suppose that each submatrix P} is irreducible. C' is a real
matrix such that C[1,1,1---,1]7 =[0,0,---,0]”, and that the elements in block (I, .J) are non positive if [ = J
and non negative if [ # J.

13



P* is the stochastic matrix of a reducible Markov chain, say (Y,"),. Denote by () the distribution of the
chain Y at time ¢ and 7*(¢) the distribution of the chain Y* at time t : 7(¢) = #(0) P! and 7*(t) = 7#*(0)(P*)". It
results from the two Simon and Ando theorems [Courtois77] that if ¢ is sufficiently small then on the short time
m(t) varies like 7*(¢). Indeed consider the idempotent expansion of P and P* :

P = Z(ll) + ZI:z,N /\(11)2(11) + ZI:LN Zi:z,n(j) /\(iI)Z(iI) (2)
P Yor=an ZT() + Xy N 2ima i A1) 27 (i)

1= M(11) > A*(21) > --- > A (ng) are the eigenvalues of the irreducible stochastic matrix P*(I). Denote by
u*(ir) a left line eigenvector and v*(iy) a right column eigenvector, corresponding to the eigenvalue A\*(iy); u* (i
and v*(iy) are “filled” with zeros at the ’good’ positions to be n-dimensional. Denote by Z*(if) = v*(iy)u*(is)
v* (ir),u*(if) >, where < v*(ir),u*(if) > denotes the scalar product of v*(i;) and u*(is) ; the family Z*(is
checks some properties of idempotency and orthogonality : Z*(if)Z*(j5) = 0if i £ jor I #J and Z* (i) 2™ (ir)
Z*(ir), so that the Z*(iy) are orthogonal projectors.

~—

ir

A

~—

The eigenvalues A(i;) and the projectors Z(iy) are defined in the corresponding way. The eigenvalues and
eigenvectors of a matrix being countinuous functions of its elements, there exists a one to one mapping between

the A(if) and the A* (i), and between the Z(i;) and the Z*(i).

It results from these properties of idempotency and of orthogonality that

Pt = 2+ Ypma v A () Z (L) + 30y D iman(ny A (1) Z (i) 3)
(Pt = ZI:LN (11)‘1'21 1NZZ 2n(I ( “(in)* Z*(ZI)

If ¢ is sufficiently small then A(17), T = 2, N are close to 1 and on the short term A'(1;) does not vary. The
dominant term in the right member of the two equations in 3 are the third term in the expression of P! and the
corresponding second term in the expression of (P*)!, so that «(¢) and 7 (¢) vary similarly (short term dynamics).
Once these terms have vanished the two systems attain a short term equilibrium. Then the second term in the
expression of P! is predominant : this is the long term dynamics. Once this term has vanished the system as a
whole attains its equilibrium : lim; 7(¢) = 7(0)Z(14).

This structure of dependence can be generalized to a hierarchical near completely decomposable structure :
each P*(i) can be a near completely decomposable stochastic matrix, very close to a block diagonal matrix with
blocks that are themselves near completely decomposable, and so on... This is a possible explanation, within the
Markov framework, of the ’burstiness’ that one observes in the real traffic over several time scales.

6.2 Approximation of long memory processes by near completely decomposable
Markov models

Consider now a near completely decomposable Markov chain (¥;); with stochastic matrix P, and consider (X;): a
stochastic function of (V) such that X; depends on Y; only : this defines a near completely decomposable Hidden
Markov Chain. It results from the idempotent expansion of P*¥ in Eq. 3, that the autocorrelation function of (X, ),
18
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where M = diag[F(X, | Y; = 1), ,E(X,; | Y = n)].

During the ’short term dynamics’ period, the first term in this expansion of rx (k) does not vary significantly and
rx (k) changes as u(11)M ZJ,\; 27:(12) MNe(if)Z(ir)Mwv(1y) < u(11),v(11) >~1. During the ’long term dynamics’ pe-
riod, the last term in the expansion of rx (k) has vanished and rx (k) varies like u(11) M ZJ,V:2 M1z ) Mu(1y) <
u(11),v(11) >71; the eigenvalues A(17),I = 2, N are close to 1 so that the correlations rx (k) of (X;); de-
crease very slowly on this medium time scale : this weighted sum of geometric sequences with rates close to
1 make 1t possible to approximate the power law decrease of the correlations of long range dependent pro-
cesses. On the very long time scales, asymptotically when k tends to infinity, the long term equilibrium has
been attained, and rx (k) decreases with a geometric rate A(25), as it is the case for irreducible Markov chains :
rx (k) ~u(1)MN (20 Z(21)Mv(11) < u(1y),v(1y) >~

In a similar manner, the variance time plot index for self similarity is misleading when the process is near
completely decomposable. If the size of the averaging window is bigger than the time required to establish the long
term equilibrium, the variance of the averaged process m™(X_1)m41 + -+ Xem) is O(m™1), as it would be the
case 1if the X; were independent realizations of a random variable : indeed an equilibrium is attained within each
of the non overlapping windows, and the variability between windows of the mean value in the window is the same
as if the windows were independent. But for 'intermediate’ sizes m of the averaging window, the global equilibrium
has not been attained within each of the window, and the variance of the averaged process decreases more slowly

than O(m™1).

6.3 A near completely Markov model with 3 parameters

S.Robert [Robert et al.96, Robert et al.97] has proposed a model that has a number of advantages :

(i) it is parcimonious; indeed this model has only three parameters a, b and n.

(ii) it is a Markov model so that standard queuing analysis (e.g. matrix geometric analysis) can be used to
evaluate performances.

(iii) asymptotically when n tends to co the model is “pseudo” long range dependent that is to say that

> ken P(k) = +00
limy 0 S(A) = 40
var(X) "2 O(m=P) with 0< <1

where p(k) = corr(X:, X;qx), S()) is the power density of (X;); and var(X (™ is the variance of the process
Xt(m) =m D u=(t—1) X

m+1,tm “u-
The model proposed by S.Robert is following; set n a positive non null integer, and @ and b two reals such that
0<b<aanda>1.

1-1/a—---—1/a""! 1/a 1/a® 1/a™~1
b/a 1—b/a 0 0
A= (b/a)? 0 1—(b/a)? - 0
(b/a)r—1 0 0 1—(b/a)"~!

Denote by (:): a Markov chain with stochastic matrix A and consider the ON/OFF process (X); characterized
by



0 otherwise

&:{11fn:1

S.Robert states that asymptotically when n tends to co the ON/OFF is “pseudo” long range dependent in the
sense defined above.

6.4 The near completely decomposable SEHMM

We have analyszed carefully a trace gathered at the Lawrence Berkeley Laboratory’s wide-area Internet gateway
(LBL-PKT3, [Paxson et al.94]). Paxson and Floyd found out a high degree of self-similarity in LBL-PKT3 and
conclude their seminal paper of 1994 ([Paxson et al.94], pp.12-13) by these words :

Modeling TCP traffic using Poisson or other models that do not accurately reflect the long-range
dependence in actual traffic will result in simulations and analyses that significantly underestimate
performance measures such as average packet delay or maximum queue size.(...) In summary: we
should abandon Poisson-based modeling of wide-area traffic.

We have proposed a model for modelling the series of the interarrival times. The results of our analysis confirm
the intuitions of S.Robert. We have found that a 5 states Markov model, that we call the Shifted Exponential
Hidden Markov Model, fits the measured traffic extremely well.

Note (Y3); a Markov chain with stochastic matrix A and note (X;); the doubly stochastic process such that X;
depends on Y; only and given Y; = 7, X; is exponential with offset #; and with mean 8; + 1/,

X V=% s 402 Z~€(1)
Prx, ve=i] (%) = Xillp>g, exp(—=A;i (2 — 6;))

The parameters that fit LBL-PKT3 is following :
Number of states: n=5)

Offsets:

6, = 3.60 10~* 6, =3.60 107* 03=8.010""* 6,=3.6010"* 65 =3.60 10~*
Intensities of the exponentials:

Ay = 6000 Ao = 6000 Az = 78 A4 = 6000 As =3

Stochastic matrix of the modulating Markov chain :
0.95 0.007 0.007 0.006 0.03
0.008 0.04 0.95 0.001 0.001
A= 0008 095 0.04 0.001 0.001
0.025 0.025 0.025 0.025 0.9
0.008 0.001 0.001 0.95 0.04
A is the stochastic matrix of a near completely decomposable Markov chain. We have checked the the model
that we propose passes a number of tests, among which :
(i) the marginal distribution of the interarrival times
(ii) the correlations up to lag & = 100
(iii) visually the power density spectrum of the near completely decomposable Markov model displays the same
law frequency component as the smoothed periodogram of the LBL-PKT3 series
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(iv) the variance time analysis produces approximately the same Hurst estimate in the case (a) of LBL-PKT3
and (b) of a series simulated according to the model proposed, provided that the estimation of H is performed on
the range of m for which logvar(X (™) versus logm is approximately linear

(v) and the probability of loss when the series is queud into a queue with finite capacity is correctly approwimated
by the model proposed, and this is the best validation of the model proposed!

We refer the reader to our research paper in these proceedings for more information [Vaton00].

7 Aggregation models

Some authors propose a temptative “physical” justification of long memory. They prove that the superposition
of a high number of independent short memory processes can in some cases be a long memory process. In the
framework of telecommunication networks the statistical multiplexing could produce some long memory effects in
the multiplexed traffic. There is nevertheless some limitation to this temptative explanation : asymptotically when
the number of superposed sources tends to infinity the limit process is Gaussian and; but in practice the gaussianity
1s hardly verified on the real traffic.

Superposition of AR(1)

Granger and Joyeux [Granger et al.80] consider the independent superposition of some autoregressive AR(1)
processes with poles a;. Denote by X} the AR(1) with power density

2
9
2

SiA) = |l—ae?| (5)

and consider spatial averaging of K independent AR(1)

The power density of X; is

2
K783 Sy = K70 3 [l-ae™™ [ 5L

i=1,K i=1,K

This agreggation can be generalized to a continuum of processes X!. We now suppose that a; takes a continuum
of values; the pole A of the AR(1) is a random variable with cumulative distribution function

Then the spatial averaged process has power density

2
S(A) = /|1—ae_”‘ 2;—ﬂ_dFA(a)
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Granger and Joyeux prove that is Fa(e) is a Beta distribution with suitable parameters then S(A) has an
integrable pole at zero and thus the process obtained by aggragation has long memory even if it results from the
superposition of AR(1) processes.

Superposition of ON/OFF sources

We now consider the superposition of some independent ON/OFF sources. The source can be in two states :
(i) in the ON state one packet is emitted
(ii) in the OFF state there is no emission of packet
The distribution of the duration of the ON periods is geometric with mean 1/(1 — ;)
(1—a)of™", k=12,

and the distribution of the duration of the OFF periods is geometric with mean 1/(1 — 5;)

(1_62)6f_1a k:1a2a

The succession of the states of the source (ON or OFF) is a Markov chain with stochastic matrix

. o 1l —«
A_<1—ﬁ 8 )

Geerts and Blondia [Geerts et al.98] consider a countable superposition of such ON/OFF sources

Xe =Y X{
i=1

The correlations of X; are not absolutely summable

Z lcorr(X:, Xeqr)| = o0
keD

if and only if

Zi - e
— 332

ieN (1—75:)

Blondia et al. propose different series a; and f3; that check this relation. Figure 2 displays the ON/OFF before
aggregation and Figure 3 displays the power density of the aggregation of n =1, n =3, n = 5 and n = 10 ON/OFF

SOUrces.
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8 Conclusion

In recent years traditional Markov modelling has been strongly questioned; indeed classical indexes display a strong
degree of long memory in the traffic gathered on real networks. But Markov modelling still makes sense :

(i) Near completely decomposable Markov models approximate the strong correlations of long memory processes,
at least on the first time scales. In practice this approximation on a finite number of time scales is enough because the
queues with finite capacity in the network are likely to break up correlations on the very long time scales. What
1s more it 1s possible to develop Markov models that are completely decomposable with only a few parameters
(paricmonious models), and these models are long range dependent in the sense that the correlations are not
summable.

(ii) Tt is possible to overcome the problem of long memory if one considers that the source is locally stationary.
An adaptive allocation of the ressources (bandwith...) that is based on a very simple Markov model -e.g. ON/OFF
with geometric distributions for the ON and OFF periods- with parameters that are changing slowly along the
time gives in practice good results [Vaton98][Vaton00], in the sense that one is able to control adaptatively the
Quality of Service.

The main advantages of these approaches is that it is possible to re-use traditional performance analysis and
that there are well known technical solutions for the estimation of the parameters of Markov models, in particular in
a non stationary context. The combination of adaptive estimation of the parameters of the source and of adaptive
allocation of ressources gives good results. The numerical complexity of the algorithms is low provided that the
model proposed is simple (e.g. ON/OFF with geometric ON and OFF durations) so that very long sequences can
be processed in real time.
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Figure 1: Variance time analysis:

jumps in the mean.

21

influence of deterministic



1
#
3
5 0.5
o
(0)]
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1 | [ I |
©
3
5 0.5F
o
(0)]
0 | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1 I T I {I. T I I T
©
3
5 0.5F .
(@)
(0)]
O | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1 T T T I {I. T I I T
o
1))
©05F -
S
(@)
w
O | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t

Figure 2: Sources ON/OFF before spatial aggregation.
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Figure 3: Power density of the spatial aggregation of ON/OFF sources.
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