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Abstract—An unstructured-PEEC method for modelling 

electromagnetic thin regions is proposed. Two coupled circuits 
representations are used for solving both electric and/or magnetic 
effects in thin regions discretized by a finite element surface mesh. 
Dynamic effects across the the thickness of the sheet are modeled 
by equivalent complex conductivity and reluctivity. Non simply 
connected regions are treated with fundamental branch 
independent loop matrices coming from the circuit representation. 
The formulation enables the computation of eddy current losses 
and can be coupled with external circuits, PEEC cables or coil 
thanks to the circuit representation. 
 

Index Terms—Volume Integral Formulation, Unstructured–
PEEC, Thin regions, Losses. 

I. INTRODUCTION 

HE electromagnetic modelling of both magnetic and con-
ductive sheets is an important engineering problem fre-

quently encountered in many applications such as the design of 
shielding devices or planar conductors. The analysis of eddy 
current distributions is a complex challenge because of the high 
ratio between the sheet main dimensions and its thickness e 
making the volume mesh of the active region very consuming 
in computing resources with e.g. the finite element method.  

Volume Integral Methods (VIM), based on the solving of 
Maxwell's equations by the volume integration of Green's func-
tions, are very attractive because the air region does not need to 
be meshed. However, the use of VIM does not prevent from 
meshing the thickness of the shell in order to catch the high 
eddy current spatial variation across it due to the skin effect. 

Many works have proposed to model the shell with an aver-
aged surface associated to an equivalent electromagnetic behav-
ior for the material. Some formulations, limited to high fre-
quency problems (case δ<<e), has been presented in [1]-[2]. 
However, these formulations are limited and do not take into 
account accurately the skin depth effect at lower frequencies. 
Very low frequency problems have already been solved but by 
assuming that the skin depth is high compared to the thickness 
(case δ>>e) like in [3]. In [4], the general case is addressed (case 
δ<e or δ ~ e). Equivalent material behavior laws have been pro-
posed in order to represent the field variation across the shell at 
every frequency. This approach has been used in the context of 
VIM but limited to the modelling of conductive but non-mag-
netic materials [5].  

Another challenge is the field-circuit coupling which in-
volves a fine mesh of the geometry for local effects while elec-
trical supply and loads are represented by lumped parameters. 
To use PEEC (Partial Element Equivalent Circuit) method is a 
good solution. It is a circuit-like integral method which has been 
applied to shells [6]. The method is very powerful because the 
circuit representation of the electromagnetic problem makes its 
coupling with an external electric circuit very easy. However, 

the standard PEEC approach is limited to structured meshes and 
the thickness of the shell has to be meshed in the general case. 
The PEEC method can be generalized on unstructured mesh as 
proposed in [7] so it can be applied to every kind of mesh ena-
bling the description of complex geometry. It is based on a vol-
ume integral approach based on 3D facet interpolations of the 
current density and of the magnetic flux density. The ap-
proaches can be seen as an unstructured-PEEC method enabling 
the modelling of both magnetic and conductive regions. 

This paper proposes an extension of this unstructured-PEEC 
method adapted to the modelling of both magnetic and conduc-
tive shells in the general case (case δ<e or δ ~ e). The equivalent 
circuit enables coupling with external circuits, PEEC cables or 
coil. Finally, the use of equivalent properties for modelling dy-
namic effects along the thickness of the shell ensures the valid-
ity of the model in a high range of frequencies and makes the 
losses computation possible. 

II.  FORMULATION 

A.  Volume Integral Method 

Let us consider a linear frequency-domain magnetic problem 
with magnetic regions ΩM, conductive region ΩJ, and source 
coils Ω0 (with an imposed current density J0). Based on the 
solution of Maxwell’s equations, electric field E and magnetic 
field H can be linked to the current densities J and J0, and to 
the magnetization M with integral expression over the 
conducting ΩJ (J≠0) and magnetic ΩM (M≠0) domains. In the 
frequency domain, by neglecting capacitive and propagation 
effects, and thanks to Lorentz gauge, we have: 

 

𝐄(P) = −jω𝐀(P) − 𝐠𝐫𝐚𝐝V(P) 

𝐇(P) = 𝐓(P) − 𝐠𝐫𝐚𝐝φ(P) 
(1)  
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(2) 

In these expressions r is the distance between observation 
point P and integration point in media. Volume integral 
equations are then obtained by matching expression of E and H 
with the constitutive relationships E(J) and H(M) inside the 
media. Different formulations can be achieved by discretizing 

T 
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the regions and by choosing adequate unknowns and 
interpolation basis functions. The use of 2-form Whitney face 
interpolation associated to both current density J and magnetic 
flux density B leads to the unstructured PEEC method [7]. 

B. Thin regions model 

In the case of thin regions, we consider that the evaluation 
outside of the media of A and T in equation (2) can be obtained 
by using the averaged tangential current and magnetisation Jm 
and Mm flowing in the thin regions: 
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(3) 

where e is still the thickness of thin regions, ΓM and ΓJ are the 
average surface regions of ΩM and ΩJ. Equivalent material 
behavior laws, which take into account dynamic effects across 
the thickness, can be used. Following [4], these equivalent 
properties link averaged surface electric and magnetic fields 
Esm, Hsm to averaged current and flux densities Jm, Bm:  
 

𝐄𝐬𝐦 =  
𝐉𝐦

Gσ
        𝐇𝐬𝐦 =  

𝐁𝐦

Gμ
     G =  

tanh ቀ(1 + j)
ୣ

ஔ
ቁ

(1 + j)
ୣ

ஔ

 (4) 

where σ is the conductivity, µ=µ0µr is the permeability and δ is 
the skin depth. Integral equations are then obtained by matching 
expressions of (1) on the external surfaces of the thin region 
with constitutive relationships (3). It leads to surface integral 
equations with Jm and Bm as unknowns. 

C. Use of 2D face element on 3D surface 

The region Γ is discretized by a surface finite element mesh 
(composed of triangles and/or quadrangles) on which Jm and 
Bm are interpolated with 2D first order face elements, i.e. 2D 2-
forms: 
 

                     

 𝐉𝐦  =
1

e
 𝐰𝐬𝐣

୨

Iୱ୨             𝐁𝐦 =
1

e
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where 𝐰𝐬𝐣 is the face function related to j-th face, Iୱ୨ and ϕୱ୨ are 
the current (in A) and magnetic flux (in Wb) flowing through 
the j-th face, respectively. Let us notice that, with a surface 
mesh, face elements are associated to the edges of the mesh. We 
have: 

div 𝐰𝐬𝐢 = ±
1

sୣ

                  𝐰𝐬𝐢. 𝐧𝐢 =  ±
1

l୧

 (5) 

where sୣ  is the area of the e-th element, and l୧  and 𝐧𝐢  are 
respectively the length and the normal of i-th face (geometric 
edge). The signs in (5) depend on the choice of the global 

orientation of the face. These relations ensure the continuity of 
Jm.n and Bm.n between adjacent elements. By using (5), 
considering scalar potentials V and  φ  and thanks to the 
divergence theorem, we have (Fig. 1): 

න 𝐰𝐢𝐬 . 𝐠𝐫𝐚𝐝 V =  ΔV୧
ె

  න 𝐰𝐢𝐬 . 𝐠𝐫𝐚𝐝 φ =  Δφ୧


 (6) 

          
Fig. 1. Primal and dual mesh (dotted lines). ΔV୧  and Δφ୧  are the difference 
between the two mean values of potentials V and φ in both adjacent elements 
connected to face i 

These properties will be useful to construct an equivalent circuit 
representation based on the dual mesh, as developed in the next 
section. 

D. Unstructured PEEC model for thin regions 

Applying a Galerkin projection with facet functions wi on 
equations (1), and by considering (3), (4) and (6), we get a 
circuit representation on the dual mesh: 
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The equivalent circuit (on the dual mesh) is composed of 

branches connecting two adjacent elements (i.e. face of the 
primal mesh), where elements are the nodes of the dual mesh. 
{ΔVs} and {Δφs} represent the differences of electric and 
magnetic potentials on the branches of the dual mesh. Rs and Y 
are sparse finite element matrices while Lୱ, Cୱ and Cୱ

ᇱ  are full 
interaction matrices. Let us notice that Rs can be physically seen 
as an equivalent resistance matrix, Y an equivalent reluctance 
matix, Lୱ  the inductance matrix, Cୱ and Cୱ

ᇱ  the interaction 
matrices coupling both conductive and magnetic effects. 

In order to take into account magnetic fluxes flowing out 
from magnetic regions, equations (7) must be completed. The 
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value of the magnetic potentials on each face element of ΓM can 
be obtained from equations (2). Considering a constant 
permeability for each magnetic region, we have divM=0 inside 
ΩM, and then, using the divergence theorem: 
 

ඵ 𝐌. 𝐠𝐫𝐚𝐝
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where ϕୣ୩ is the magnetic flux flowing out from both sides of 
face element k of the magnetic region.  

The averaged value of magnetic potentials on each element 
of ΓM can then be written as: 

 
{φୣ} =  Q {ϕୣ} 

with 
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{ϕୣ}  are the magnetic fluxes flowing out from both external 
faces elements of ΓM. By considering that the magnetic 
potential is null at infinity, the magnetic circuit is completed by 
adding branches which connect nodes (i.e. surface elements) of 
ΓM to the infinity (Fig. 2).  

 
Fig. 2. Example of electric (left) and magnetic (right) equivalent circuits for a 
plate meshed with quadrangles 

Then, the complete set of equations which leads to the 
equivalent circuit interpretation of the low frequency 
electromagnetic problem is given by : 

൝

ΔVୱ

Δφୱ 
Δφୣ

ൡ = ൝

Rୱ + jωLୱ jω Cୱ 0
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The solution can then be obtained using a circuit solver based 
on an independent loop search technique which provides a 
unique solution. In practice fundamental circuit equations to be 
solved are: 

[M୍]{∆Vୱ} = 0    

ൣMம൧{∆φ} = 0   with {∆φ} =  ൜
∆φୱ

∆φୣ
ൠ 

where [M୍]  and ൣMம൧  are the branch-fundamental 
independent loop matrices (also known as incidence matrices) 
of the electric and magnetic equivalent circuit representations, 
respectively. The unknowns of the system to be solved are the 
mesh currents IM and mesh flux density ϕ: 

{I} = [M୍
୲]{I}   with {I} =  {Iୱ} 

{ϕ} = ൣMம
୲ ൧{ϕ}   with {ϕ} =  ൜
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The final system to be solved is: 
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with 
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In the case of conducting regions only, the magnetic 

unknowns are not needed and the system to be solved becomes: 
 

[M୍][Z୍][M୍
୲]{I} = {U୍} 

 

E. Taking into account PEEC cable and circuit coupled coil 

In this section, we present the extension of the proposed 
formulation in order to consider PEEC cable elements and/or 
coils with circuit coupling (region Ωc). Each coil and PEEC 
cable element are characterized by a vector j0j such as 𝐉 = 𝐣𝟎𝐣I𝐜𝐣.  

The previous system of equations can then be easily adapted 
by considering the currents {Iୡ}  flowing in these regions. By 
adapting the system of equations (9), we get: 
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Finally, external circuit elements composed of passive 

components, current or voltage sources can complete the 
system (9), through electric nodal connections. 

F. Considerations on implementation 

In order to get a good accuracy, the integrations of Green’s 
kernels are computed by using the analytical integration 
techniques proposed in [8] for self or very close interactions. 
Moreover, an adaptive mesh integration is used to compute 
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cable PEEC interaction terms. Let us notice that non-simply 
connected electric domains are naturally treated thanks to the 
incidence matrix M୍ . In practice, the circuit solver uses a 
specific algorithm adapted from [9] with the advantage of 
favoring small loops. The circuit solver uses a GMRES 
algorithm combined with an LU decomposition-based 
preconditioner for sparse matrices R and Y. 

III. RESULTS 

We first present an academic problem constituted of a 
magnetic and conductive thin sphere (diameter 1m, thickness 
1mm, µr = 1000, σ = 5·105S/m) placed in a field produced by a 
cylinder coil, fed by current or voltage source thanks to the coil 
circuit coupling. The results are compared with a reference 
solution obtained with an axi-symmetrical FEM using a mesh 
ensuring the accuracy of the solution at any frequency. Fig. 3 
compares eddy current losses obtained with both simulations. 
In the case of the unstructured-PEEC method, losses are 
computed by using the equivalent material properties [4]: 

Losses = e න Real


ቊ
𝐉𝐦𝐉𝐦

തതത

Gσ
− jω

𝐁𝐦𝐁𝐦
തതതത

Gμ
ቋ  dΓ (10) 

 

Fig. 3: Losses (W) in a thin sphere. Comparison between unstructured-PEEC 
VIM and FEM methods for various ratio e/𝛿. The two loss contributions coming 
from Bm and Jm solutions (10) are displayed. 

Results obtained are very satisfactory (difference lower than 
1% at any frequencies) if we consider the difficulty of 
accurately calculating eddy current losses.  

We also test the formulation on a more complex example 
dealing with the computation of eddy currents and magnetic 
flux density in a car body. The magnetic source field is 
produced by a set of cable fed by a voltage or current source. 
The surface mesh of the car contains about 18.000 triangles and 
a HCA matrix compression technique (Hybrid Cross 
Approximation) still associated to the GMRES linear solver has 
been used for the solving. 

Figure 4 shows the electric loops around holes whereas Fig.5 
shows current density and tangential magnetic field on the car 
body. 

IV. CONCLUSION  

The new formulation enables the modeling of thin 
conductive and/or magnetic regions in order to simulate 
efficiently various devices with only a surface mesh. The 

computational effort is considerably reduced in comparison 
with volume approaches. Equivalent material properties enable 
the computation of eddy currents losses with a good accuracy 
at any frequency. Let us notice that the approach is limited to 
harmonic problems, an interesting extension could be to 
consider transient ones. 

 
Fig. 4: Mesh of car body and loops found by the circuit solver to take into 
account multiply connected electric problems 

 

 

 

Fig. 5: Example of eddy currents (top) and magnetic flux density (bottom)  
on a car body 

REFERENCES 
[1] G. Miano and F. Villone, "A surface integral formulation of Maxwell equa-

tions for topologically complex conducting domains," IEEE Trans. Anten-
nas Propag, vol. 53, no 12, pp. 4001-4014, Dec. 2005. 

[2] Z. G. Qian and W. C. Chew, "Fast full-wave surface integral equation 
solver for multiscale structure modeling," IEEE Trans. Antennas Propag, 
vol. 57, no. 11, pp. 3594 – 3601, Nov. 2009. 

[3] H-S. Lopez et al., "Multilayer integral method for simulation of eddy cur-
rents in thin volumes of arbitrary geometry produced by MRI gradient 
coils," Magn. Reson. Med, vol. 71, no. 5, pp. 1912-1922, May 2014. 

[4] L. Krähenbühl and D. Muller, "Thin layers in electrical engineering-ex-
ample of shell models in analysing eddy-currents by boundary and finite 
element methods," IEEE Trans. Magn, vol. 29, no. 2, pp. 1450-1455, Mar. 
1993. 

[5] T. Le-Duc et al., "A new integral formulation for eddy current computation 
in thin conductive shells," IEEE Trans. Magn, vol. 48, no. 2, pp. 427-430, 
Feb. 2012. 

[6] D. Gope et al., "(S)PEEC: Time- and frequency- domain surface formula-
tion for modeling conductors and dielectrics in combined circuit electro-
magnetic simulations," IEEE Trans. Microw. Theory Tech, vol. 54, no. 6, 
pp. 2453-2464, Jun. 2006. 

[7] G. Meunier, O. Chadebec and J. M. Guichon, “A magnetic flux-electric 
current volume integral formulation based on facet elements for solving 
electromagnetic problems,” IEEE Trans. Magn, vol. 51, no. 3, Mar. 2015. 

[8] M. Fabbri, “Magnetic flux density and vector potential of uniform poly-
hedral sources,” IEEE Trans. Magn, vol. 44, no. 1, pp. 3236, Jan. 2008. 

[9] J. D. Horton, “A Polynomial-Time Algorithm to Find the Shortest Cycle 
Basis of a Graph,” SIAM Journal on Computing, Apr. 1987.  


