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A B S T R A C T

To discriminate samples from three varieties of Tunisian extra virgin olive oils, weighted and non-weighted
multiblock partial least squares – discriminant analysis (MB-PLS1-DA) models were compared to PLS1-DA
models using data obtained by gas chromatography (GC), or global composition through mid-infrared spectra
(MIR). Models performances were determined using percentages of sensitivity, specificity and total correct
classification. The choice of threshold level for the interpretation of PLS1-DA results was considered. PLS1-DA
models using GC data gave better results than those using MIR data. Even with the most conservative threshold,
PLS1-DA on GC data allowed very good predictions for Chemlali variety (99% correct classification), but had
more difficulty to discriminate Chetoui and Oueslati samples (95% and 84% correct classification respectively).
Non-weighted MB-PLS1-DA models benefiting from the synergy between the two sources of data were more
discriminative than simple PLS1-DA, yielding better prediction for Chetoui and Oueslati varieties (98% and 90%
correct classification respectively).

1. Introduction

Olive oil is known for displaying health-promoting effects that de-
pend, among other factors, on its cultivar. Therefore, olive oil authen-
tication has been a growing concern for consumers for many years. As a
result, food fraud is a major challenge for both regulatory agencies and
producers, as it can negatively impact consumer trust and cause im-
portant losses of revenue (Charlebois et al., 2016). High-value products
benefiting from quality or origin certifications are an especially at-
tractive target for fraudsters. This is the case of extra virgin olive oils
(EVOO) with a Protected Designation of Origin (PDO), which must
comply with defined specifications regarding their varietal and geo-
graphic origins. Studies aiming to determine the compliance of an
EVOO with a reference constituted by the characteristics of a cultivar or
the specifications of a PDO can be divided into two main categories. In
the first one, samples are treated in order to determine their composi-
tion in specific constituents such as triacylglycerols, fatty acids, sterols,
volatile compounds, etc (Tena, Wang, Aparicio-Ruiz, García-González,
& Aparicio, 2015). The second approach is based on spectroscopic
analyses requiring no sample treatment, namely 1H and 13C nuclear
magnetic resonance (NMR) (Dais & Hatzakis, 2013), near infrared
(NIR), mid infrared (MIR) and Raman spectroscopies (Nenadis &
Tsimidou 2017), or fluorescence spectroscopy (Guzmán, Baeten, Pierna,

& García-Mesa, 2015).
Furthermore, over the past few decades, the increasing amount of

data available from more and more sophisticated analytical techniques,
associated with the improvement of computational power allowing to
treat this information with multivariate statistical analyses, has spurred
the development of methods capable of simultaneously analysing sev-
eral blocks of data (Brereton et al., 2017). In the field of food chemistry,
data can be obtained from different techniques such as electronic sen-
sors, mass spectrometry, gas or liquid chromatography or vibrational
spectroscopy. Combining information from complementary analyses
can be a way to obtain more reliable classification and prediction re-
sults (Callao & Ruisánchez, 2018). In this regard, three types of data
fusion strategies are described in a recent review by Borràs et al.
(2015): low-level with simple concatenation of data, mid-level using
hierarchical models introduced by Wold et al. (1996) or multiblock
models developed by Wangen and Kowalski (1989), and high-level
combining results from separate models to provide a final prediction
using probability estimations.

Most of the articles applying chemometrics to olive oil authenticity
consider each analytical technique separately (Gómez-Caravaca,
Maggio, & Cerretani, 2016), but to this day few studies have applied
data fusion to the discrimination of EVOO origin and even fewer have
combined data from spectroscopic and chromatographic analyses
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together. Some articles have studied the simple concatenation of data
from two or more sources (de B Harrington, Kister, Artaud & Dupuy,
2009; Casale, Sinelli, Oliveri, Di Egidio, & Lanteri, 2010; Casale,
Casolino, Oliveri, & Forina, 2010; Dupuy, Galtier, Ollivier, Vanloot, &
Artaud, 2010; Casale et al., 2012; Haddi et al., 2013; Pizarro et al.,
2013; Dias, Rodrigues, Veloso, Pereira, & Peres, 2016; Kosma, Badeka,
Vatavali, Kontakos, & Kontominas, 2016; Bajoub et al., 2017). Hier-
archical models have also been developed based on data from NIR and
MIR (Dupuy et al., 2010), spectroscopy and mass spectrometry (Casale
et al., 2010), artificial nose, NIR and UV–visible (Forina et al., 2015) or
liquid chromatography with two detectors (Bajoub et al., 2017).

To our knowledge, mid-level data fusion approaches using multi-
block models have not yet been applied to the discrimination of EVOO
varietal origin. Moreover, the combination of GC data giving specific
information on the major compounds with MIR data taking into ac-
count the global composition of oils, should provide complementary
information and is expected to be able to refine the EVOO origin dis-
crimination. This is the purpose of this work: multiblock partial least
squares – discriminant analysis models (MB-PLS1-DA) were developed
from GC and MIR datasets, with and without weighting the block
scores, in order to evaluate their performance against those of the PLS1-
DA models applied separately to each dataset. The study was conducted
using Tunisian monovarietal EVOO from three cultivars.

2. Materials and methods

2.1. Extra virgin olive oil samples

Sampling was carried out during the 2011–2012 and 2012–2013
harvest years. Three hundred and thirty-four monovarietal EVOO
samples from three Tunisian varieties were used for this study: Chemlali
(n= 187), Chetoui (n= 102) and Oueslati (n= 45). Tunisian EVOO
were obtained in laboratory by oleodoseur extraction system, from
handpicked olives and without storage time before the extraction
(Laroussi-Mezghani et al., 2015). The quality criteria for all samples

were comprised within the ranges established for the “Extra Virgin
Olive Oil” category by the trade standard of the International Olive
Council (2016).

2.2. Gas chromatography

The transmethylation of the EVOO triacylglycerols and subsequent
GC analyses using an Agilent Technology gas chromatograph 7890A
equipped with a split/split-less injector, a flame ionization detector and
a Supelcowax silica capillary column coated with polyethylene glycol
(60m×0.25mm i.d., 0.25 μm film thickness) were conducted fol-
lowing the method described by Laroussi-Mezghani et al. (2015).

2.3. Mid infrared spectroscopy

MIR spectra were recorded between 700 and 4000 cm−1 by the
accumulation of 64 scans per spectrum with a resolution of 4 cm−1 on a
Thermo Nicolet Avatar spectrometer equipped with an ATR accessory
(Goldengate, Specac), using the same protocol as Galtier et al. (2008).

2.4. Chemometrics

2.4.1. Pre-treatment
Prior to data analysis, the noisy and noninformational regions be-

tween 1880 and 2600 cm−1 and 3200–4000 cm−1 were removed from
the MIR spectra. In order to optimize the models, normalisation fol-
lowed by standard normal variate (SNV) pre-treatments were applied to
the spectra to correct the distortions caused by additive and multi-
plicative effects. The GC data were also normalised.

2.4.2. Data analysis
PLS1-DA models were applied to GC and MIR data separately. Each

sample is assigned a binary coding indicating its membership (value
equal to 1) or non-membership (value equal to 0) of each class, and a
different model is built to predict each class against all the others.

Fig. 1. Definition of the thresholds indicating the True, False or Uncertain attribution of predicted samples to the modelled variety (a: 0.5 threshold, b: 0.4–0.6
threshold, c: 0.3–0.7 threshold).
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During the calibration process, the PLS1-DA method is trained to
compute the “membership values” and a sample is then assigned to the
modelled class when its value is above a determined threshold (Granato
et al., 2018). However, due to the initial design of PLS for continuous
variables, the predicted values are not binary and thus several methods
have been proposed to select a threshold that discriminates the results
between the expected values 1 or 0: using an arbitrary value of 0.5,
determining the optimal threshold with receiver operating character-
istic curves, estimating a probability density function to handle un-
balanced groups sizes, or defining an interval to take into account the
uncertainty of PLS predictions (Lee, Liong, & Jemain, 2018). In this
study three thresholds were considered for the calculation of the per-
centage of correct classification, as presented in Fig. 1(a–c). First,
samples with a predicted value over 0.5 were considered positive (be-
longing to the modelled class) and those with a predicted value under
0.5 negative (outside of the modelled class). However, some samples
may have predicted values close to 0.5 or too different from the re-
ference values 0 and 1, indicating that they are not clearly recognised
by the model. Thus, in a second approach uncertainty zones were de-
fined to address this issue. Samples were considered positive if their
predicted value was between 0.6 and 1.4, negative if predicted between
−0.4 and 0.4, and uncertain if predicted between 0.4 and 0.6, under
−0.4 or over 1.4. Finally, following the same reasoning, more con-
servative uncertainty zones were tested with samples considered posi-
tive if predicted between 0.7 and 1.3, negative between −0.3 and 0.3,
and uncertain otherwise. A sample was considered as true positive, or
true negative, if its predicted value was consistent with its expected
value of 1, or 0. On the contrary, if the predicted value did not match
the expected value the sample was considered as false negative, or false
positive (or uncertain, if applicable). The total percentage of correct
classification, as well as sensitivity and specificity were calculated ac-
cording to Eqs. (1)–(3).

= + ×correct classification true positive true negative
number of predicted samples

% 100
(1)

= ×sensitivity true positive
expected positive

% 100
(2)

= ×specificity true negative
expected negative

% 100
(3)

MB-PLS1-DA was then applied with one predictor block X1 con-
sisting of the 15 variables of GC data and a second predictor block X2
comprising the 948 variables of MIR data, after their respective pre-
treatments and mean-centring. Autoscaling was not applied since it
could cause the information from the large MIR block to be pre-
ponderant over the small GC block (Westerhuis & Coenegracht, 1997).
However, two scaling strategies were tested: one with a weighting of
the block scores to take into account the number of variables in each
block as indicated in Eq. (7), and the other without any weighting. The
response matrix Y contained the 3 varietal origins of the 334 EVOO
samples, and three independent models were built to predict each
origin against the other two combined. The MB-PLS algorithm used is
the one developed by Westerhuis, Kourit & MacGregor (1998), detailed
in Eqs. (4)–(13).

= +X T P Ei i i
T

i (4)

= +Y T Q Fs
T (5)

With Xi the matrix of predictors for block i, Ti the block scores
matrix, Pi the block loadings matrix, Ei the residuals, Y the response
matrix, Ts the super-scores matrix, Q the response loadings matrix and F
the residuals.

The variable weights (wi) in Eq. (6) are calculated separately for
each block using the response scores (u) and then normalised.

=w X ui i
T (6)

The scores (ti) in Eq. (7) are also computed for each block Xi so that
the covariance between the response Y and the scores is maximized,
and scaled by the square root of the number of variables in the block
(mi).

=t X w
m

Y tto maximise
i

i
i i T

i
2

(7)

The block scores are then combined into a super-matrix (T) and a
PLS is performed between T and Y. The super-weights (ws) are nor-
malised before calculation of the super-scores (ts), response loadings
(q) and response scores (u), in Eqs. (8)–(11).

=w T us
T (8)

=t Tws s (9)

=q Y t
t t

T
s

s
T

s (10)

=u Yq
q qT (11)

Eqs. (6)–(11) are repeated until convergence of u. Then the block
loadings (pi) are calculated, and the Xi and Y matrices are deflated
using the super-scores as indicated in Eqs. (12)–(14). This process, from
Eqs. (6)–(14), is repeated for the next latent variable (LV) with the new
Xi and Y.

=pi X t
t t

i
T

s

s
T

s (12)

X X t pi i s i
T (13)

Y Y t qs
T (14)

For both PLS1-DA and MB-PLS1-DA models, considering the large
number of samples these were randomly and equally divided into a
calibration set and a prediction set (167 samples each). A first version
of the models was constructed with these sets, then a second version
was built after permuting the sets. For each version of the PLS1-DA and
MB-PLS1-DA models, a “leave one out” cross validation procedure was
used on the calibration set to find the optimal number of LV. It had to
be large enough to minimise the root mean square error of cross vali-
dation (RMSECV), but not too large in order to avoid over-fitting. Thus,
the optimal number was chosen as the highest number of LV (n)
meeting the criterion from Eq. (15).

>RMSECV n RMSECV n
RMSECV n
( ) ( 1)

( )
5%

(15)

The calibration model was then computed with the selected number
of LV. Finally, the prediction set was used to calculate the predicted
response according to this calibration model. In addition to the number
of LV, determination coefficients of calibration (R2) and prediction
(Q2), as well as root mean square errors of calibration (RMSEC) and
prediction (RMSEP) were calculated.

2.4.3. Software
Chemometrics pre-treatments were applied using The Unscrambler®

X (version 10.4, CAMO Software). The pre-treated matrices were then
imported to Matlab® (version 7.8 R2009a, MathWorks) for data ana-
lysis. MB-PLS1-DA routines, including a calibration with cross-valida-
tion step followed by a prediction step, were developed based on the
Multi-block Toolbox by van den Berg (2004).

3. Results and discussion

Tunisian EVOO from the three varieties Chemlali, Chetoui and
Oueslati were analysed by GC and MIR spectroscopy.
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3.1. Gas chromatography profiles

The GC profiles obtained after the transmethylation of triacylgly-
cerols, which represent around 98% of the total content of olive oils,
indicate the relative proportions of major compounds (fourteen fatty
acids and squalene). An example of chromatogram, with peaks identi-
fication from Ollivier, Artaud, Pinatel, Durbec, and Guérère (2003), is
shown in Fig. 2. Predominant peaks are due to oleic (18:1ω9), palmitic
(16:0) and linoleic (18:2ω6) acids, and two other fatty acids, namely
stearic (18:0) and z-vaccenic (18:1ω7) acids, are present in inter-
mediate amounts. Moreover, even other fatty acids present in lesser
amounts may play an important part in the discrimination of varietal
origin. The mean, maximum and minimum percentages of the fifteen
major compounds, as well as the sum of saturated fatty acids (SFA),
monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids
(PUFA) for each of the three VOO varieties are compiled in Table 1.

Most of the SFA percentages, namely margaric (17:0), stearic (18:0),
arachidic (20:0), behenic (22:0) and lignoceric (24:0) acids, do not
differ significantly between the three studied varieties. Margaroleic
(17:1ω8) acid and the only measured ω3, linolenic acid (18:3ω3), are
not discriminant either. Nevertheless, Chemlali samples are char-
acterised by a generally higher SFA content, mainly due to their high
levels of palmitic (16:0) acid. They contain more palmitoleic (16:1ω7)
and z-vaccenic (18:1ω7) acids, but less oleic (18:1ω9) and gondoic
(20:1ω9) acids than the other two varieties, resulting in an overall

lower MUFA content. The amount of squalene in Chemlali samples is
also lower. As for Chetoui samples, they have average values of total
SFA, MUFA and PUFA contents compared to the other two varieties, but
they are distinguished by their higher levels of hypogeic (16:1ω9) acid
and lower levels of palmitoleic (16:1ω7) acid. Finally, Oueslati samples
contain less PUFA because of their low levels of linoleic (18:2ω6) acid.

3.2. MIR spectra

MIR spectra contain information on the global composition of the
samples, including potential variations in the concentrations of tria-
cylglycerols but also of different families of minor compounds. Some of
these constituents, such as squalene, carotenoids, tocopherols, phytos-
terols and phenolic compounds, have beneficial nutritional properties.
An example of MIR spectrum is presented in Fig. 3, with bands attri-
bution according to Aparicio and Harwood (2013). The bands do not
result from a single molecule but rather from the vibration of chemical
bonds that are present in all the compounds of the sample so that the
interpretation is less straightforward than for GC peaks. Well defined
bands between 3100 and 1700 cm−1 are attributed to CeH, C]O and
C]C stretching vibrations, whereas some overlapping bands between
1500 and 700 cm−1 have been assigned to CeH, CeO and CeC bending
vibrations. Contrary to the noticeable differences in the fatty acid
profiles, variations in the global composition are not readily perceptible
since the VOO samples have, to the naked eye, similar MIR spectra. The
use of chemometrics pre-treatments and modelling is therefore neces-
sary to extract the relevant information from this data.

3.3. Prediction of olive oil variety

The statistical parameters (number of LV, RMSEC, RMSEP, R2 and
Q2) and results (sensitivity, specificity and total correct classification
percentages) from the PLS1-DA prediction models developed for each
variety based on GC, MIR and Multiblock data with the first version of
the calibration and prediction sets are presented in Table 2. Statistical
parameters and results obtained with the second version of the cali-
bration and prediction sets can be found in the Supporting Information.

3.3.1. PLS1-DA on GC data
The GC model for the Chemlali variety performs very well, with a

RMSEP of 0.11 and Q2 of 0.97 for 3 LV and can perfectly discriminate
Chemlali samples from the others using the 0.5 thresholds. Regarding
the Chetoui variety, the GC models also give good results with a RMSEP
of 0.16 and Q2 of 0.94 for 6 LV, and 99% correct classification with the
0.5 threshold. The model for Oueslati samples is slightly less efficient,
yielding a RMSEP of 0.24 and Q2 of 0.74 for 5 LV, but still reaches a
correct classification rate of 99% with the 0.5 threshold.

However, when looking at the results obtained with the 0.4–0.6 and
0.3–0.7 threshold, a drop in the percentages of correctly classified

Fig. 2. Example of a chromatogram from VOO with identification of the peaks
1: palmitic acid (16:0), 2: hypogeic acid (16:1 ω9), 3: palmitoleic acid (16:1
ω7), 4: margaric acid (17:0), 5: margaroleic acid (17:1 ω8), 6: stearic acid
(18:0), 7: oleic acid (18:1 ω9), 8: z-vaccenic acid (18:1 ω7), 9: linoleic (18:2
ω6), 10: linolenic acid (18:3 ω3), 11: arachidic acid (20:0), 12: gondoic acid
(20:1 ω9), 13: behenic acid (22:0), 14: lignoceric acid (24:0) and 15: squalene.

Table 1
Mean, maximum and minimum proportions (%) of fatty acids and squalene for the three varieties (CM: Chemlali, CT: Chetoui, OU: Oueslati).

16:0 16:1ω9 16:1ω7 17:0 17:1ω8 18:0 18:1ω9 18:1ω7 18:2ω6 18:3ω3 20:0 20:1ω9 22:0 24:0 Squa SFA MUFA PUFA

CM Mean 17.40 0.06 2.20 0.04 0.07 2.44 57.61 3.11 15.28 0.67 0.44 0.20 0.12 0.07 0.28 20.52 62.38 15.95
Max 22.75 0.12 3.44 0.07 0.10 2.99 64.32 3.82 21.31 1.17 0.54 0.27 0.16 0.09 0.46 25.77 68.41 22.48
Min 13.13 0.02 1.57 0.03 0.05 1.99 47.59 2.47 10.75 0.51 0.36 0.14 0.10 0.05 0.11 15.80 53.10 11.47

CT Mean 11.37 0.13 0.30 0.05 0.05 2.82 66.46 1.31 15.28 0.69 0.48 0.39 0.13 0.05 0.49 14.90 69.77 15.97
Max 14.47 0.17 0.56 0.09 0.11 3.43 73.53 1.71 21.16 0.90 0.54 0.47 0.16 0.08 0.67 17.76 76.86 21.87
Min 8.71 0.10 0.17 0.04 0.03 2.34 59.39 0.90 10.14 0.54 0.42 0.31 0.10 0.03 0.37 12.35 62.94 10.92

OU Mean 11.50 0.09 0.62 0.04 0.05 2.36 70.79 1.79 10.59 0.63 0.44 0.35 0.14 0.07 0.53 14.55 73.92 11.22
Max 15.75 0.12 0.99 0.04 0.06 3.22 74.47 2.40 15.47 0.75 0.50 0.40 0.15 0.09 0.67 18.63 77.48 16.09
Min 9.61 0.07 0.43 0.03 0.04 1.88 64.41 1.31 7.97 0.50 0.39 0.28 0.12 0.05 0.36 13.25 67.67 8.72

16:0: palmitic acid, 16:1 ω9: hypogeic acid, 16:1 ω7: palmitoleic acid, 17:0: margaric acid, 17:1 ω8: margaroleic acid, 18:0: stearic acid, 18:1 ω9: oleic acid, 18:1 ω7:
z-vaccenic acid, 18:2 ω6: linoleic acid, 18:3 ω3: linolenic acid, 20:0: arachidic acid, 20:1 ω9: gondoic acid, 22:0: behenic acid, 24:0: lignoceric acid, Squa: squalene,
SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids
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samples indicates that some of them are actually in the uncertainty
zones. This can be especially observed for Oueslati samples, with a
dramatic decrease of sensitivity from 95% to 91% with the 0.4–0.6
threshold, and even to 55% with the 0.3–0.7 threshold, while the spe-
cificity is less impacted but goes from 100% to 93% and to 89% for each
threshold respectively. The models predicting other two cultivars ap-
pear to be more discriminative. Indeed, for Chetoui the sensitivity and
specificity are still of 98% and 97% with the 0.4–0.6 threshold, and
only drop to 94% and 95% respectively for the 0.3–0.7 threshold. The
Chemlali model is still very good with 100% sensitivity and 99% spe-
cificity with both thresholds, showing that most samples are predicted
close to their expected values. The poorer performance of the Oueslati
model may be due to the smaller number of samples from this cultivar,
which creates a strong imbalance between the positive and negative
classes in this model.

The permutation of calibration and prediction sets brings some
modifications to these results, especially for the Chetoui and Oueslati
models, which do not use the same number of LV. The calibration
quality parameters are slightly lower, but the prediction parameters are
improved. The Chetoui model gives slightly better results but with only
3 LV, instead of 6 LV for the previous version. The Oueslati model is
built with 6 LV, versus 5 LV in the first version, and also has overall

better results. Thus, there is some influence of the samples selected in
the calibration and prediction sets on the performance of the models.

3.3.2. PLS1-DA on MIR data
PLS1-DA on MIR data is less satisfactory than that using GC data,

especially for the Chemlali and Chetoui models which were very good
with GC data. Indeed, the model predicting the Chemlali variety has a
RMSEP of 0.26 and Q2 of 0.85 with 4 LV, while for Chetouiwith 7 LV the
RMSEP and Q2 are respectively of 0.26 and 0.84. The Oueslati model
also uses 7 LV but its quality parameters are better than that of the
model based on GC data, with a RMSEP of 0.21 and Q2 of 0.79.

Using the 0.5 threshold, the three varieties are still quite well pre-
dicted, with total correct classification rates of 93% for Chemlali, 94%
for Chetoui and 99% for Oueslati.

The 0.4–0.6 and 0.3–0.7 thresholds identify even more uncertain
samples with MIR than with GC data. The sensitivity drops to 82% with
the former and to 36% with the latter for Oueslati samples, while the
specificity is less impacted and only decreases to 98% and to 89%.
When using MIR data as opposed to GC data, the model predicting the
Chemlali origin is more impacted by the change of threshold than the
Chetoui model. The sensitivity and specificity of the Chemlali model
decrease to 91% and 89% respectively with the 0.4–0.6 threshold, then

Fig. 3. Example of a MIR spectrum from VOO with
identification of the bands 1: ]CeH cis stretching,
2: CeH stretching, 3: C]O stretching, 4: C]C cis
stretching, 5: CeH bending, 6: CeO and CeC
bending, 7: CeH bending (long chains).

Table 2
Statistical parameters and results (sensitivity, specificity and correct classification rates) of the PLS1-DA models using the first version of the calibration and
prediction sets of either GC, MIR, weighted multiblock or non-weighted multiblock data to discriminate the three EVOO varieties (CM: Chemlali, CT: Chetoui, OU:
Oueslati).

CM (Cal: 93, Pred: 94) CT (Cal: 51, Pred: 51) OU (Cal: 23, Pred: 22)

GC MIR MB weight MB no weight GC MIR MB weight MB no weight GC MIR MB weight MB no weight

LV 3 4 3 4 6 7 6 7 5 7 5 7
RMSEC 0.10 0.21 0.09 0.09 0.12 0.21 0.12 0.11 0.18 0.19 0.17 0.16
RMSEP 0.11 0.26 0.11 0.11 0.16 0.26 0.15 0.13 0.24 0.21 0.23 0.20
R2 0.98 0.91 0.98 0.98 0.97 0.89 0.97 0.97 0.86 0.84 0.87 0.89
Q2 0.97 0.85 0.97 0.97 0.94 0.84 0.95 0.96 0.74 0.79 0.77 0.82

Threshold: 0.5 %Sens 100 94 100 100 100 90 100 100 95 95 95 100
%Spec 100 92 100 100 99 96 99 100 100 100 100 100
%CC 100 93 100 100 99 94 99 100 99 99 99 100

Threshold: 0.4–0.6 %Sens 100 91 100 100 98 86 98 100 91 82 91 86
%Spec 99 89 99 99 97 93 97 100 93 98 94 94
%CC 99 90 99 99 98 91 98 100 93 96 94 93

Threshold: 0.3–0.7 %Sens 100 78 100 98 94 80 94 98 55 36 64 77
%Spec 99 84 99 99 95 83 97 97 89 89 89 92
%CC 99 80 99 98 95 82 96 98 84 82 86 90

LV: number of latent variables, RMSEC: root mean square error of calibration, RMSEP: root mean square error of prediction, R2: determination coefficient of
calibration, Q2: determination coefficient of prediction, %Sens: sensitivity rate, %Spec: specificity rate, %CC: correct classification rate.
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to 78% and 84% with the 0.3–0.7 threshold. For the Chetoui model the
sensitivity and specificity decrease first to 86% and 93% respectively,
and then to 80% and 83%. These results indicate that GC data is more
discriminative than MIR, since samples are more clearly predicted as
belonging or not to the modelled variety with the former data.
However, MIR data still contains valuable information that could be
used in case GC-based models do not yield good results, as evidenced by
the performance of the MIR-based Oueslati model.

The permutation of calibration and prediction sets also leads to
variations in the performance of the models. As for the GC-based
models, the permutation worsens the quality parameters for the cali-
bration but improves them for the prediction. I this case, the prediction
results are better for the Oueslati and Chemlali models, but not for the
Chetoui model.

3.3.3. Multiblock PLS1-DA
When applying the MB-PLS1-DA models with the scores weighting,

the results are similar to those obtained with GC data for all three
varieties with the different thresholds. The models are built with the
same number of LV (3 for Chemlali, 6 for Chetoui and 8 for Oueslati) and
have the same value of quality parameters. The only noticeable dif-
ference is an improvement in the Q2 for the Oueslati model, from 0.74
with GC to 0.77 with MB-PLS. Moreover, the sensitivity with the
0.3–0.7 threshold is improved and goes from 55% with GC alone and
36% with MIR alone to 64% with the multiblock model. Thus, the use of
MB-PLS could reduce the influence of the imbalanced number of sam-
ples. The Chemlali and Chetouimodels, for which the GC data alone gave
better results, are not negatively influenced by the addition of the MIR
data and the Oueslati model, for which the MIR data alone gave slightly
better results, beneficiates from the combination of the two sources of
information.

The permutation of calibration and prediction sets slightly changes
the results of the individual models, but for the multiblock models with
weighting of the scores the results remain close to those of the GC
models. These results suggest that the GC data, containing information
on the major compounds of olive oil, has a stronger influence than the
MIR data, representing all the major and minor compounds, on the

weighted multiblock models. This can be highlighted by a study of the
contribution of each block to the final model, as presented in
Fig. 4(a–c). Indeed, GC data is predominant on all the LVs for each
variety and is the main contributor to the first LV. MIR data brings some
contribution to the following LV, which indicates a possible synergy
between the two sources of information. However, the scaling realized
by the MB-PLS algorithm to compensate for the much larger number of
variables in the MIR block (948 variables for MIR versus 15 variables
for GC) strongly reduces the influence of MIR data on the models. Block
weights for the Chemlali variety are not affected by the permutation of
calibration and prediction sets. However, for the Chetoui variety the
second version of the model only uses three LV which mostly contain
information from the GC block. On the contrary, for the Oueslati variety
MIR data has more influence on the second version of the model.

In order to take better advantage of the complementary information
brought by the MIR data, MB-PLS1-DA models without any scores
weighting have been performed to give more importance to this addi-
tional source. Indeed, the number of selected LV for these multiblock
models are the same as for the MIR-based models for each cultivar.
However, the results are improved compared to the previous models,
especially for the Oueslati and Chetoui cultivars. For the Chemlali model,
the results are close to that of the already effective GC-based model,
with only a slightly lower sensitivity of 98% (versus 100%) for the
0.3–0.7 threshold. The prediction quality parameters are improved for
the Chetoui model, with a RMSEP of 0.13 and Q2 of 0.96. Moreover, the
MB-PLS model without weighting gives perfect predictions with both
the 0.5 and the 0.-0.6 thresholds for this cultivar. Using the 0.3–0.7
threshold, the sensitivity and specificity are also better than with GC or
MIR data alone, reaching a total correct classification of 98% versus
95% for the GC-based model. The quality parameters are also improved
with the MB-PLS model predicting the Oueslati cultivar, reaching a
RMSEP of 0.20 and Q2 of 0.82. This model also results in a perfect
prediction with the 0.5 threshold. The sensitivity and specificity ob-
served with the 0.4–0.6 threshold are intermediate between those of the
GC-based and MIR-based models. Nevertheless, with the 0.3–0.7
threshold the sensitivity and specificity are much better with this MB-
PLS model, reaching respectively 77% and 92%. Again, the multiblock

Fig. 4. Weights of the GC (blue) and MIR
(yellow) blocks for each latent variable of
the MB-PLS models with the first version of
the calibration and prediction sets, with
weighted block scores (a: Chemlali, b:
Chetoui, c: Oueslati) and non-weighted block
scores (d: Chemlali, e: Chetoui, f: Oueslati).
(For interpretation of the references to
colour in this figure legend, the reader is
referred to the web version of this article.)
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approach seems able to correct the issue caused by the imbalanced
number of samples in the classes. After the permutation of the cali-
bration and prediction sets the improvement brought by the non-
weighted MB-PLS1-DA models is somewhat lost since the results appear
to be in-between those obtained with GC and MIR data alone.

The contributions of the blocks without weighting presented in
Fig. 4(d–f) show that, despite its much larger number of variables, the
MIR block does not overshadow the GC block. On the contrary, there
seems to be a good balance between the two sources of information. GC
data is still predominant on the first LV for each model, but MIR data
has a more important influence on the latter components. A similar
pattern can be observed after the permutation of the calibration and
prediction sets, but with less influence of the GC data on the latter LVs,
which might contribute to the poorer results. Finally, the study of block
weights confirms that although variations in the contents of the major
compounds of olive oils measured by GC can discriminate most of the
samples from the three studied varieties, complementary information
about the global composition of the samples detected in their MIR
spectra can play a part in the improvement of the prediction models.
Thus, the MB-PLS1-DA models without any weighting of the scores can
be useful for samples whose origin is difficult to certify from their MIR
spectrum or their fatty acid profile only.

4. Conclusion

This study shows that PLS1-DA models using GC data alone give
very good results for the discrimination of olive oil origin, especially for
the Chemlali variety. Using MIR data alone is less efficient, even though
it reaches more than 80% of correct classification with the most con-
servative threshold. Moreover, combining specific information on the
major compounds from GC with global information on all major and
minor compounds from MIR data can improve the prediction results for
the varieties that were not well discriminated with GC data only. In this
regard, scaling the block scores to take into account their number of
variables strongly reduces the influence of the MIR data. Thus, the re-
sults from the weighted MB-PLS1-DA models are close to those of the
GC-based models. On the contrary, using non-weighted MB-PLS1-DA
models allows for a synergy between the two sources of information
and results in better quality parameters and higher sensitivity, specifi-
city and total correct classification percentages for the Chetoui and
Oueslati varieties. These results should nevertheless be considered with
caution since the permutation of calibration and prediction sets in-
dicated that the performance of the different models depend on the
samples used to develop and test these models. From a food control
perspective, MIR analysis is cheaper and faster than GC and could be
used as a first screening device. In a second phase, multiblock models
combining MIR and GC data can strongly improve the discrimination
for the samples that were in the uncertainty zones with the first model.
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