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Detecting Controllers’ Actions in Past Mode S Data
by Autoencoder-Based Anomaly Detection

Xavier Olive, Jeremy Grignard, Thomas Dubot

ONERA/DTIS, Université de Toulouse
Toulouse, France

Abstract—The preparation and execution of training simula-
tions for Air Traffic Control (ATC) and pilots requires a sig-
nificant commitment of operational experts. Such a mobilisation
could be alleviated by a decision support tool trained to generate
a realistic environment based on historical data. Prior to studying
methods able to learn from a dataset of traffic patterns and ATC
orders observed in the past, we focus here on the constitution of
such a database from a history of trajectories: the difficulty lies in
the fact that past flown trajectories are properly regulated, that
observed situations may depend on a wide range of potentially
unknown factors and that ownership rules apply on parts of the
data. We present here a method to analyse flight trajectories,
detect unusual flight behaviours and infer ATC actions. When
an anomaly is detected, we place the trajectory in context, then
assess whether such anomaly could correspond to an ATC action.
The trajectory outlier detection method is based on autoencoder
Machine Learning models. It determines trajectory outliers and
quantifies a level of abnormality, therefore giving hints about the
nature of the detected situations.

Results obtained on three different scenarios, with Mode S
flight data collected over one year, show that this method is well
suited to efficiently detect anomalous situations, ranging from
classic air traffic controllers orders to more significant deviations.
Detecting such situations is not only a necessary milestone for
the generation of ATC orders in a realistic environment; this
methodology could also be useful in safety studies for anomaly
detection and estimation of probabilities of rare events; and in
complexity and performance analyses for detecting actions in
neighbouring sectors or estimating ATC workload.

Keywords—trajectory analysis; anomaly detection; ATC order
detection; autoencoder

I. INTRODUCTION

The preparation and execution of training simulations for
controllers and pilots relies on realistic environments which are
based on common trajectory patterns, involving ATC orders
typical of a context and traffic situations in a given area of
interest. In the context of pilot simulations, the generation of
relevant ATC communications consistent with traffic surround-
ing a simulated flight is a costly task requiring the involvement
of an operational expert, if not an air traffic controller certified
on this area. A decision support tool, able to generate realistic
traffic situations and associated ATC actions and to adapt
to the behaviour and actions of the pilot student could ease
the process. Similarly, a tool assisting air traffic controllers,
highlighting and suggesting required actions based on how
peers would react in a similar situation could be a significant
asset in ATC training.

Julie Saint-Lot
ENAC, Université de Toulouse
Toulouse, France

Current state of the art regarding optimisation methods
solving common ATC problems mainly focus on how to
efficiently deconflict traffic, preferring optimality at the ex-
pense of realism of the inherent actions in a given context.
Optimisation techniques have proven to be efficient at solving
a wide range of conflicts at a tactical or strategic level:
they are often illustrated with toy problem scenarios like the
round-about or the wall problems, proven to be scalable to
a large number of aircraft. Ensuring such methods are still
efficient in corner-case situations is a necessary validation step.
Nevertheless, it turns out to be difficult to relate to operational
situations. In a context where realistic simulations are key for a
safe and efficient training for pilot and controller students, such
techniques require to be fine-tuned with operational feedbacks
to guarantee that the generated orders resemble those an expert
would have given in a similar context.

On the other hand, Machine Learning (ML) methods prop-
erly trained to learn from a dataset of historical situations
seem appealing to generate realistic ATC orders. However,
they require building a catalog of past ATC actions. Such a
dataset is not easy to build from the observation of real traffic:
flight plans are optimised at a strategic level; regulations are
emitted upstream by ATC centers to avoid overload situations;
and above all, no loss of separation is supposed to be observed
as ATC process traffic based on surrounding aircraft, meteo-
rological events and usual practices.

A first semi-supervised learning framework [1] combining
speech and radar data to predict controller commands has
been implemented using Automatic Speech Recognition. The
method considers communication with ATC and its impact on
relevant trajectories; research is still ongoing to improve the
accuracy of speech recognition models applied to ATC com-
munications [2]. We consider here a complementary approach,
based only on flight tracks, without a systematic transcription
of ATC communications.

ML methods are an excellent tool for detection and pre-
diction on datasets displaying the more variance in the more
limited scope. In order to get the most of such methods, we
focus here on routes between city pairs, i.e. trajectories flying
from city A to city B. We assume that most flights are executed
according to their flight plans, where interactions with ATC
would most likely be limited to standard clearances. By
comparing how aircraft fly this route all year long, we assume
that most ATC actions result in a deviation on the trajectory:



we therefore focus on deviations from the route drawn by most
flights to infer ATC actions and try to understand their causes.

Filed flight plans (DDR files), ADS-B (possibly aug-
mented with multilateration) trajectories, weather conditions
(METAR) and even radio recordings (www.liveatc.net) are
sources of information that can be used to assess the intent
behind each ATC order, whether it resembles more a classic
clearance, a deconfliction order placed to avoid a loss of
separation, or a reaction to more unusual events. Different
types of detected orders could support different types of
simulations, requiring classical ATC actions or more specific
actions related to more specific situations like thunderstorms,
rerouting, runway change at destination airfield.

We present in the following an autoencoder-based anomaly
detection method able to detect unusual trajectory patterns
and to quantify the degree of abnormality of each outlier.
Section II presents a literature review of the state of the art
of ML techniques applied to aircraft trajectories. Section III
focuses on the mathematics behind mentioned techniques.
Section IV describes the studied dataset, including one year of
traffic between three city pairs, mostly based on the OpenSky
Network [3] platform; then explains how to prepare and format
the data to train the autoencoder. In Section V, we attempt
to put some trajectories detected as unusual into context and
suggest plausible interpretations explaining why controllers
could have processed the traffic that way. Section VI puts the
results in perspective, showing how the method could be used
both for our primary goal and for estimating probabilities of
rare events in safety analyses.

II. RELATED WORK AND LITERATURE REVIEW

Research addressing ML techniques to tackle ATM prob-
lems is rather recent compared to their equivalent modelling
and optimization problems, often solved by mixed-integer
linear programming [4], constraint programming [5] or meta-
heuristics [6]. ML techniques have then been used to learn
ATC workload from past operations [7], to predict traffic
flows above California [8] or to predict diversions in freight
transportation [9].

ML brings a new perspective to ATM related problems:
unsupervised machine learning focuses on detecting and de-
scribing how aircraft behave [10], [11]; supervised machine
learning applies to labeled dataset and focuses on predict-
ing aircraft trajectories [8], [9], [12]. Reinforcement learning
addresses more traditional optimisation problems [13] where
the search space may be explored through interactions with a
simulator or based on a history of situations.

Unsupervised machine learning techniques have produced
convincing results in terms of trajectory clustering [14], [15],
with applications to flow prediction, anomaly detection and
safety analyses. In particular, Principal Component Analysis
has proved useful in its functional form to detect variational
patterns with applications to final approaches [10] and climb
profiles [11]. Multi-kernel anomaly detection (MKAD) [16]
is arguably the current state of the art in the field of flight
track anomaly detection, with convincing use cases on US

terminal maneuvering areas [17]. The method combines kernel
functions (a measure of similarity) on discrete and continuous
features in order to isolate a predefined percentage of anoma-
lous trajectories.

We present in this paper a similar approach based on
autoencoders, a particular kind of neural networks which
recently made a name in anomaly detection. They have already
been used to find breakpoints in time series [18] and to predict
realistic transitions in sector configurations [19]. Autoencoders
are comparable to compression methods. They are trained to
reconstruct, i.e. compress then decompress, data (trajectories)
passed in input. In practice, they learn to reconstruct most
trajectories in a training dataset and fail to reconstruct the more
atypical ones. Anomaly detection is based on the distance,
the reconstruction error, between real trajectories and their
reconstructed copies. The most notable difference with MKAD
lies in the fact that no assumption needs to be made on the pro-
portion of anomalies present in the dataset. Detected anomalies
may be related to peculiar ATC situations and investigating
them may also help refining safety models designed to assess
risks and estimate probabilities of rare events.

III. AUTOENCODER-BASED ANOMALY DETECTION
A. Machine Learning Techniques for Anomaly Detection

Machine Learning techniques presented in the literature
review address the unsupervised learning problem. This task
infers the hidden structure behind unlabeled data. Instead
of working on data with information known a priori about
the context, including hazardous situations, we focus on a
set of unlabeled trajectories, try to grasp their structure and
eventually find outlying elements.

Principal component analysis (PCA) explains the variance in
data by projecting trajectories on axes holding the more vari-
ance, determined by the eigenvalue of the covariance matrix of
the samples. Variance ratio diagrams plot how much each com-
ponent holds of the total variance. The user must then choose
an appropriate number of components that describes the data
best. Projecting the data on a limited number of components
may reveal some structure in the data, sometimes call for
some clustering analysis analysis in order to understand and
later detect particular behaviours and atypical elements falling
outside emerging structures. t-distributed Stochastic Neighbour
Embedding (t-SNE) is a similar dimension reduction and
visualisation technique addressing non-linear transformations
and which can improve the performance of classification
methods.

One-class support vector machines (SVM) are extensively
used for anomaly detection. SVM excel at learning decision
boundaries. One-class SVM are designed to learn to separate
nominal and anomalous data points based on a pairwise
kernel (similarity) matrix and identify statistically significant
anomalous examples. The kernel function defining the simi-
larity between samples is crucial to the performance of the
algorithm. A commonly chosen kernel is the radial basis
function (rbf) but other kernels like the cosine similarity may
yield better results depending on the case study. The rbf



calls for a hyperparameter ¢ that determines the width of
the Gaussian distribution over the vector space. In addition,
a hyperparameter v must be provided by the user which
corresponds to the maximum fraction of data assumed to be
anomalous. Eventually anomalous samples are ordered by their
distance to the separating hyperplane: a higher distance may
statistically correspond to a higher degree of anomaly. It may
happen that some outliers found by a one-class SVM are
consistent with those found by clustering techniques applied
on projections resulting from a PCA.

Multiple kernel methods are linear, non-linear or data-
dependent combinations of several kernels [20]. The simplest
and most common method is a weighted combination of ker-
nels. In unsupervised ML problems such as anomaly detection,
the resulting kernel is a convex combination of all kernels
which are computed over multiple features. Each kernel is
weighted based on the a priori knowledge of the expert on the
study case. Matthews [17] and Das [16] use multiple kernel
methods to detect potential safety anomalies in large databases
of flight tracks consisting of discrete and continuous data.

B. Autoencoders

Autoencoders enter the artificial neural networks category.
As the name suggests, they consist of two stages: encoding
and decoding. A single-layer autoencoder is a kind of neural
network consisting of only one hidden layer. Autoencoders
aim at finding a common feature basis from the input data.
They reduce dimensionality by setting the number of extracted
features less than the input. Autoencoder models are usually
trained by backpropagation in an unsupervised manner. The
underlying optimization problem aims at minimizing the error
of the reconstructed results from the original inputs.
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Figure 1.
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Autoencoder neural network architecture with one layer

The encoding function of an autoencoder (such as the one
depicted on Fig. 1) maps the input data s € R? to a hidden
representation y € R" = e(s) = g(w-s+b) where w € R/
and b € R? are respectively the weight matrix and the bias
vector and g(-) is a non linear activation function such as
the sigmoid or hyperbolic tangent functions. The decoding

function maps the hidden representation back to the original
input space according to §=d(y) = g(w' -y+1b'), g(-) being
most of the time the same activation function.

The objective of the autoencoder model is to minimize the
error of the reconstructed result:

(w,b,w',b') = argmin £(s,d(e(s))) (D

where £(u,v) is a loss function decided according to the input
range, typically the square loss:

0u,v) = [Ju—v|? ©)
or the cross-entropy loss:

O(u,v) =Y ui-log(vi) + (1 —w) log(1—vi) ~ (3)

IV. APPLICATION TO TRAJECTORY ANOMALY DETECTION
A. The Trajectory Dataset

Mode S has become one of the most important technologies
in air traffic management as it supports the operation of
secondary surveillance radar (SSR), traffic alert and colli-
sion avoidance systems (TCAS), and Automatic Dependent
Surveillance-Broadcast (ADS-B). In practice, transponders in
aircraft are selectively interrogated by sensors (radars) to
provide situational awareness through the exchange of binary
encoded information.

To be able to selectively interrogate aircraft, transponders
aboard aircraft have been assigned a unique 24-bit identifier.
The assignment of addresses is done by the national authority
where the aircraft is registered. These identifiers are included
in all Mode S messages and identify each aircraft.

Aircraft reply to ground sensor requests with messages of
different types, called downlink formats (DF). We focus here
on DFs 17 and 18 which are not transmitted upon inter-
rogation. They contain all information needed to determine
the aircraft’s identity, location, and velocity. These squittered
information are called Automatic Dependent Surveillance—
Broadcast (ADS-B). Extended surveillance data from avionics
such as intent- and status information is provided via Comm-B
messages (DF 20, 21): such data could be of great help in
future work to detect ATC actions on the indicated airspeed
since ADS-B only contains ground speed.

The OpenSky Network [3] is a crowd-sourced sensor net-
work collecting air traffic data. The collected data used for
this study contains only ADS-B data of specific callsigns from
January to December 2017. We consider in the following three
study cases, associated to three different city-pairs.The data we
collected consists of one year worth of data on:

1) 28 different callsigns associated to flights from Paris
Orly (LFPO) to Toulouse Blagnac (LFBO) airports (3536
trajectories);

2) 8 different callsigns associated to flights from Paris
Charles-de-Gaulle (LFPG) to Frankfurt (EDDF) airports
(2105 trajectories);

3) and 4 different callsigns associated to flights from Am-
sterdam Schiphol (EHAM) to Madrid Barajas (LEMD)
airports (977 trajectories).
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Figure 2. Data preparation: each trajectory is filtered, cropped, resampled;
each feature is normalized before feeding the neural network.

top-right coordinates
(45°32' N, 2°45'E)

bottom-left coordinates

LFPO  LFBO (44°17'N, 0°57'E)
LFPG  EDDF (49°9'N, 5°40'E) (51°1'N, 7T°40'E)
EHAM  LEMD (41°18' N, 2°48' W) (44°N, 0°37'W)

TABLE I
DEFINITION OF BOUNDING BOXES FOR THE THREE CASE STUDIES

In the following, we will refer to these scenarios respectively
as the Toulouse, the Frankfurt and the Madrid scenarios.

B. Data preparation

aid (i.e. a set of geographical coordinates) of the standard
arrival (STAR) procedures (NARAK in Fig. 2).

The next step in the data preparation consists in resampling
the trajectories in the bounding box we selected. Since au-
toencoders have a fixed number of inputs (d in the example
of Fig. 1), we resample each subset of trajectory cropped to our
learning box so as to get only d equally distributed samples.
Fig. 2 plots a resampling with d = 15 for illustrations’ sake
but we chose a larger number of samples d = 150 for our
experiments. This choice is arbitrary and we found that other
values of d in the same order of magnitude have no significant
impact on the results.

Features are chosen among all data provided in the ADS-

B specifications: latitude, longitude, GPS and barometric al-
titude, track angle, ground speed, vertical speed. Different
airspeeds (CAS, TAS, TAS, etc.) are sent by aircraft upon
request on DF 20 and 21 but for the sake of clarity, we
chose to keep these features out of our dataset for future
work beyond the scope of this paper. Controller’s actions are
most often expressed in terms of altitude (“climb to flight
level 3107), track angle (“turn left heading 2107, “route direct
NARAK”), and speed (“reduce speed to 160 kts”); since speeds
are expressed in IAS and not in ground speed, we focused on
track angles and altitude profiles.

Data normalization, also known as feature scaling, is widely
used in machine learning in order to deal with variations in a
wide range of shorter or larger intervals by standardizing the
features. Lee [18] shows that feature scaling allow gradient
descent algorithms to converge much faster than without it.
Various methods can be used to rescale the range of features:

o min-max normalization rescales features in [0, 1]:
x — min(x)
max(x) — min(x)

“4)

f:

has been used for the results presented in the following.

Trajectories are mathematical objects used to describe the
evolution of a moving object. They are described by a state
vector with parameters (x(¢),y(z),---) that evolve in time. In
practice, this state vector is only known at some sampled
times. For clarity concerns, we name trajectory a sequence
of recordings associated to an aircraft. We describe in this
section the full chain of data pretreatments applied to each
trajectory candidate in our dataset.

Trajectories from the OpenSky Network are unequally
sampled and subject to errors happening in different steps
of the acquisition chain: errors before the emission of data
(imprecision in the positioning, quantification artifacts) and
errors in the receiving and decoding of the data by feeders.
A cascade of basic median filters is first applied to filter out
irrelevant values from each individual trajectory.

For each scenario, the second step consists in defining a
bounding box containing the set of trajectories. We chose
to consider roughly drawn bounding boxes including most
trajectories (definitions in Tab. I) before they enter the terminal
maneuvering area (TMA, the greyed area in Fig. 2). We also
chose to include in the bounding boxes the first navigational

o standardization rescales features so that each feature has
a zero mean and unit variance:

x— p(x)

o(x)

X= &)
C. Learning protocol

For the sake of clarity, we focus here on an analysis on
normalized track angles. The input dimension, i.e. the number
of neurons on both input and output layers of our autoencoder,
has been set to d = 150. The embedding dimension, i.e. the
number of neurons on the hidden layer has been set to a
lower value of 64. All neurons are defined with a sigmoid
activation function. The loss function used is the mean squared
error as defined in (2), which compares vectors with their
reconstructions, i.e. their images through the autoencoder. The
learning rate is set to 1072 and the training stops when the
loss stops improving by more than 10~ between two epochs.
Fig. 3 plots the loss evolution on the Toulouse scenario.

As a result of our training process, we get a reconstruc-
tion error, i.e. a measure of the difference between a given
trajectory and its autoencoded representation. Fig. 4 plots
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Figure 3. Evolution of the loss during the training process; example of the
Toulouse scenario.
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Figure 4. Distribution of reconstruction errors on the Toulouse scenario. The
bottom distribution replicates the top distribution on a semi-log y-axis.

the distribution of these reconstruction errors. The model is
trained to minimize the sum of all reconstruction errors, so
the distribution is centered around zero.

The same distribution is plotted on a logarithmic y-axis to
emphasize the few specific trajectories with higher reconstruc-
tion errors: we study in the following section the contextual
situations associated to such specific trajectories pointed on
the distribution. We focused first on trajectories with the
highest reconstruction errors, then on a few situations with
lower reconstruction errors, closer to the tail of the bell-shape
distribution.

V. ANALYSIS OF ANOMALOUS TRAJECTORIES

The training phases on the three different scenarios yields
reconstruction errors distributed as a half bell-shaped distribu-
tion centered on zero; few trajectories are ranked with higher
values. (Fig. 4, 5 and 6) We focus our attention on trajectories
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Figure 5. Distribution of reconstruction errors on the Frankfurt scenario.

The bottom distribution replicates the top distribution on a semi-log y-axis.
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Figure 6. Distribution of reconstruction errors on the Madrid scenario. The
bottom distribution replicates the top distribution on a semi-log y-axis.

associated to a higher reconstruction error value since they
should be representative of the most unusual trajectories.
The analysis of the context was made after analysing traffic
around anomalous detected trajectories. ADS-B may be an in-
complete source of data for a thorough analysis of the situation
since some aircraft are still not properly equipped. In that case,
flight plans and trajectories inferred by multilateration give a
hint but situations analysed in this paper have been selected so
as to be representative of the wide panel of detected situations
and to be explainable with ADS-B tracks openly accessible.
A perfect analysis would have also involved confirmation of



AFR4TFW, Jul 19 (0.0876)
EZY24EH, Aug 27 (0.0857)
AFR51ZU, Jun 28 (0.0362)

Figure 7. Situations with high reconstruction errors on the Toulouse scenario

our hypotheses with radio recordings; unfortunately, none were
available for the chosen scenarios.

In general, we found that very high reconstruction errors
are associated to less common situations; explanations are
more to be found in the METAR history or regulation history.
Conversely, reconstruction errors closer to the tail of the
bell-shaped distribution, are more prone to yielding nominal
situations which may be explained by ATC orders issued for

a deconfliction or sequencing purpose.

A. Highest values of reconstruction errors relate to less com-
mon situations

1) Traffic interruption: Flight AFR51ZU on June 28th
(Fig. 7) yields a high (although not the topmost) reconstruction
score and its peculiar route on final approach called the
authors’ attention. This day was marked with a lot of delays
because of weather. METAR on that day is particularly
explicit: thunderstorm (TS), presence of cumulonimbus (CB)
and a gusting wind forecast (20G35KT).

LFBO 2816002 AUTO 20006KT 180V240 9999 TS
FEW033/// SCT047/// BKNO6O/// ///CB 20/14
01004 TEMPO 28020G35KT 2000 TSRA=

Za ladepeche.fr,

emeuralent prudents.

En raison d'une alerte & la foudre & moins de 5 km, le trafic de l'aéroport de Toulouse-Blagnac a
€1¢ totalement interrompu, vers 18 h 30, durant un peu mains d'une heure. «Les avions en approche
ont tourné en altitude au-dessus de la région. lls n'ont pas été déroutés», a précise la direction de
laéroport.

Nane la Tarn.ef.Garanna e namniare nnf ract de namhraiy annale nanr dee inandatinne 4

Figure 8. Archives of local news: traffic was interrupted in Toulouse airport

around 18:30 local time. No aircraft were diverted during the interruption.
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Figure 9. Weather impact on STAR procedures on the Toulouse scenario.
The orange background shows the location of cumulonimbus at 21:09 UTC.

Local news (Fig. 8) reported that traffic was interrupted on
that day when AFR51ZU was in approach. This interruption
may explain the two loops during final approach.

2) Weather impact on STAR procedures: Traffic around
Toulouse airport on July 19th was also impacted by cumu-
lonimbus located on the STAR procedure, around the NARAK
beacon. All aircraft (including AFR47FW, see Fig. 9) coming
from the North-East were deviated to the West prior to entering
the TMA, so as to be sequenced on the usual STAR procedures
applicable to aircraft coming from the North-West.

The background on Fig. 9 has been produced with data
from the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) collected by the Meteosat Second Generation series
of satellites. Thermal IR data has been used to estimate the
location of cumulonimbus, with red areas indicating the most
severe convection.

3) QFU change: QFU refers to the magnetic heading
of the runway in use. ATC may change the QFU at any
time depending on the weather conditions. On August 27th,
EZY24EH took a very peculiar route (Fig. 7) as other aircraft
were landing from the south on QFU32. After the last flight
has landed (16:51), a first aircraft landed at 17:08 on QFU14
and EZY24EH was on hold before landing 3 minutes later.

4) Avoiding regulations: Many regulations were in place
between Paris and Frankfurt (Reims and Langen ACC) in early
evening on June 2nd, 2017, because of cumulonimbus in the
area. In particular, DLH2F was impacted by a 15 minute delay
before departure because of a regulation filed by Frankfurt
arrivals. Figure 11 plots the last filed flight plan (Filed Tactical
Flight Model, FTFM) and the Current Tactical Flight Model
(CTFM), refined version of the FTFM based on live positions
for DLH2F. Such a pattern suggests that DLH2F adapted its

route to avoid further regulations in the area.
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Figure 10. Solutions with high reconstruction errors on the Frankfurt scenario
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Figure 11. Last filed flight plan and trajectory of DLH2F on June 2nd, 2017,

on the Frankfurt scenario

B. High-but-not-highest values of reconstruction errors yield
more conventional ATC situations

In contrast, we found more classical and conventional ATC
situations close to the right-hand side of the bell-shape of the
reconstruction error distributions.

1) Arrival sequencing: On Figure 12, AFR27GH has a
higher reconstruction error, probably because its trajectory
is pushed quite to the East of the NARAK beacon, a less
usual pattern for trajectories on the LFPO—LFBO route. As we
investigate closer into the situation, it appears that AFR27GH
was flying behind EZY81GE (from Lille, to the North) before
being instructed to turn left. As EZY743L arrived from Lyon
(to the North-East), AFR27GH was sequenced behind with an
appropriate ATC order. RYR3YM arrives next and is sequenced
behind AFR27GH in a similar manner.

2) Deconfliction: On Figure 12, DLH4J flies into Frankfurt
area. The density of traffic converging on this IAF at this time
of the day would probably not explain this shift in trajectory.
The explanation could come from TAP571 which took off a
bit earlier from runway 18. Without a turn left order to DLH47,
her climb path could have crossed DLH4J’s trajectory, probably
causing a loss of separation.

2017-07-16 19:47 UTC 2017-07-16 19:57 UTC

. RYR3YM
| AFR27GH
! EZY81GE
o~ EZY743L
[naraK] & + RYR3YM
| AFR27GH
. EZY743L
J EZY81GE

(Feo) b reo) b

Figure 12. Aircraft are sequenced for landing before entering Toulouse TMA;
AFR27GH is vectored behind EZY81GE and EZY743L.
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Figure 13. Deconfliction between DLH4J scheduled for landing and TAP571
taking off from Frankfurt airport, runway 18.

Similarly, Figure 14 plots a deconfliction between AFR61UJ
landing in Toulouse and 1SS3932 bound for New York. The
ATC order enabled AFR61UJ to descend through the level of
1SS3932 without conflict.

3) Delaying: On Figure 15 both KLM13T and IBK3ME
come to Madrid, resp. from Amsterdam and Oslo. In this
situation, KLM13T comes before and flies two levels be-
low IBK3ME. About 15 minutes before entering the TMA,
KLM13T is delayed by a maneuver to the left so that IBK3ME
can overtake her.
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Figure 14. Deconflicting turn right actions on AFR61UJ, landing in Toulouse,
and 1553932, en route on FL300.
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Figure 15. In the Madrid scenario, IBK3ME flies above and behind KLM13T
but enters Madrid TMA before her.

VI. CONCLUSIONS

This paper presented an anomaly detection technique well
suited for identifying uncommon situations and ATC orders
in Mode S data. We believe that this method is well suited to
build a dataset of real situations with suggestions of plausible
resolution actions. Studying uncommon or late ATC actions
could also be a way to estimate ATC workload or to refine
safety models and probability estimations associated with
incident-prone situations. Future works could consider more
evolved structures of networks, then include flow identification
and outlier detection techniques inside a control sector so as
to prescind from the limitation of the city pair paradigm.
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