
HAL Id: hal-02338644
https://hal.science/hal-02338644v1

Submitted on 30 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bit-Level Approach to Side Channel Based
Disassembling

Valence Cristiani, Maxime Lecomte, Thomas Hiscock

To cite this version:
Valence Cristiani, Maxime Lecomte, Thomas Hiscock. A Bit-Level Approach to Side Channel Based
Disassembling. CARDIS 2019, Nov 2019, Prague, Czech Republic. �hal-02338644�

https://hal.science/hal-02338644v1
https://hal.archives-ouvertes.fr

A Bit-Level Approach to Side Channel Based
Disassembling

Valence Cristiani1, Maxime Lecomte1, and Thomas Hiscock1

Univ. Grenoble Alpes, CEA, LETI
MINATEC Campus, F-38054 Grenoble, France

firstname.name@cea.fr

Abstract. Side-Channel Based Disassembling (SCBD) is a powerful ap-
plication of side-channel analysis that allows recovering instructions ex-
ecuted by a processor from its physical leakages, such as the electromag-
netic field (EM) emitted by the chip. These attacks directly compromise
code confidentiality, but they can also reveal to an adversary many criti-
cal information on the system’s internals. In this work, we propose a new
approach for SCBD that directly focuses the bit encoding of an instruc-
tion using local EM leakage. We exploit a very precise bit-level leakage
model and derive from it new algorithms that aim at recovering the ac-
tual bit values. We also propose strategies to automate the complex tasks
of finding the best EM probe positions and combining them to improve
results. On a PIC16 target, our method succeed in recovering the bits
of an instruction with an average rate of 99,41% per bit. Compared to
the state of the art, our disassembler is easier to train, recovers more
information about instructions than just opcode and requires almost no
modifications to target other processor architectures. Thus, this kind of
disassemblers might become a threat to more complex processors, where
side-channel disassembling has not been proved to be feasible yet.

Keywords: Side-channel analysis· Reverse engineering· Hardware secu-
rity · Leakage analysis.

1 Introduction

Side-Channel Based Disassembling (SCBD) is the task of recovering instructions
executed by a device based on its physical signature, known as side-channel leak-
ages. For more than two decades many techniques and tools have been developed
to extract secrets from sources such as timing variations [7], power consump-
tion [6], electromagnetic field [15] (EM), acoustic noise [4] and many others.
While side-channel analysis research is primarily concerned with the security of
cryptographic primitives, there is also an active research on SCBD [3,10,13,18].
Indeed an accurate quantification of the instruction leakage is a very useful se-
curity indicator for many systems. Obviously, SCBD is a direct threat to code
intellectual property, which can be a requirement for manufacturers that put lots
of efforts into the development of an algorithm. The instruction stream can also

reveal sensible code regions such as block ciphers or function entries. Such in-
formation can be exploited by an attacker to drive more specific attacks such as
fault injections. Interestingly, SCBD can also be used as a non-intrusive malware
detection mechanism [11].

The SCBD task can be regarded as a supervised machine learning classifi-
cation problem, where a side-channel trace has to be associated to a sequence
of executed instructions. The natural approach is to divide the global trace into
instruction traces correctly labeled. These traces will then feed a learning al-
gorithm in order to build a classifier able to make accurate predictions on the
instructions that corresponds to an attack trace. However, training such a classi-
fier is difficult in practice, as many target-specific knowledge is required to create
a model. Furthermore, with complex processor architectures and deep pipelines,
the switching noise generated by other activities in the core becomes prepon-
derant. A proper randomization of all of these surrounding elements requires a
huge amount of data, as well as complex profiling code snippets. Thus, while the
opcode classification approach proved to work on small microcontrollers [13,18]
it is unlikely that it would scale to more complex processors.

Contributions. In this work, we propose an alternative approach to SCBD
that overcome these issues. The core idea is to create a classifier directly on the
bits that encode the instructions. This approach requires almost no assumptions
on the target architecture, as in any processor, the bits of the instructions are
transferred from memory to the processor and then manipulated, which may
introduce leakages that can be exploited. Furthermore, the training is greatly
simplified: the profiling can be performed on random code snippets, and by
construction a bit-level approach allows having more training data available
per class. We also show how exploiting very local leakages and combining EM
measured at different positions greatly improves the accuracy.

Through this paper, we detail the construction of a bit-level SCBD (section 3)
and evaluate its performances on a PIC16F microcontroller (section 4 and 5).
We manage to get an average of 99.41% recognition rate per bit which leads to
an opcode recognition rate as efficient as current state of the art. However, our
disassembler recovers much more information encoded in the instructions (literal
values, register numbers, etc.). These results suggest that the bit-level approach
proposed is worth considering for SCBD on more complex cores.

2 Background

2.1 Structure of a side-channel disassembler

The high-level structure of a side-channel disassembler as a supervised machine
learning classification task is shown in Figure 1. During a profiling phase, the
attacker has access to a clone of the target device on which he can run arbitrary
programs. He then collects side-channel data, such as the EM field, during the
execution of several profiling code snippets in order to train a classifier. During

2

the attack phase, the classifier is applied on unknown traces to predict and
recover instructions. An attack trace usually contains many instructions, thus
a preliminary step is required to divide the trace of a program into individual
instruction traces. On small devices, instructions have a constant execution time,
hence a fixed-size windows is enough to extract instructions. But with complex
cores this operation may require a more advanced strategy.

Fig. 1: High level architecture of a side-channel disassembler

The goal of a classifier is to associate a class c ∈ C to a trace x (a realization
of a random variable X) of p samples. In an opcode-based classifier C is the set
of opcodes of the target architecture, for example C = {add, xor, load, . . . }. The
template attack (TA) of Chari et. al [1], used by most opcode-based classifiers [3,
13, 18] build an estimation of Pr(X | C = c) during the profiling phase which
is then used in the attack phase to compute Pr(C = c | X) thanks to Bayes’
theorem. Given an unknown instruction trace x, an attacker selects the class that
maximizes Pr(C = c |X = x). The TA models the per-class probability density
Pr(X | C = c) as a multivariate Gaussian distribution denoted N (µc,Σc),
where µc is the mean vector and Σc the covariance matrix of the distribution.
For each class c, the profiling phase infers the parameters µc, Σc from a set of
observations (xc) using classical statistical estimators. Due to its proximity with
the quadratic discriminant analysis (QDA) technique in the machine learning
field, we use the terms QDA and TA interchangeably.

However, not all samples in a trace contain relevant information. A common
practice is to apply feature extraction techniques to reduce the computational
cost of the attack. In a nutshell, these techniques transform a trace of p samples
into a trace of d samples (with d� p) while preserving –hopefully– most of the
information. Both the training and the attack phases are performed in this re-
duced feature space. The most common feature extraction techniques include the
Principal Component Analysis (PCA) and Linear Discriminant analysis (LDA).

2.2 Related work

Early side-channel based reverse engineering. The use of side-channel
analysis for software reverse engineering was first suggested by Quisquarter et.

3

al [16] in 2002, who described an instruction classifier based on a neural network.
Unfortunately, they did not provide experimental results. A leakage analysis on a
Java card by Vermoen et. al [19] proved that some instructions (Java bytecodes)
could be identified in a power trace, but they did not propose an instruction
recovery algorithm. In his master thesis, Goldback [5] constructed a very detailed
power leakage model of a 8-bit Microchip PIC16 microcontroller. He managed
to perform a template attack [1] to recover up to 75% of correct instructions on
a small set of 4 opcodes.

Concurrently, Novak et. al [12] and Clavier et. al [2] used side-channel anal-
ysis to perform reverse-engineering on encryption algorithms involving secret
permutation tables (A3/A8). While these attacks are often referred as ”Side
Channel Analysis for Reverse Engineering” (SCARE), they do not allow any
kind of instruction flow reconstruction.

Side-channel based disassembly. The first real side-channel based disassem-
bler was described by Eisenbarth et. al [3] in 2010. They constructed an opcode
classifier using a template attack. Thanks to Hidden Markov Models they man-
aged to exploit prior knowledge on instruction distribution and improve the
accuracy of their disassembler by a few percents. On a PIC16 microncontroller
using power consumption, they managed to get a 70% recognition rate on test
data and 40% on real programs. Strobel et. al [18] also described an opcode-
based side-channel disassembler, working on EM. They concluded that EM con-
tains much more information than power consumption and managed to get 90%
recognition rate on real programs and 95% on test programs. Msgna et. al [10]
constructed an instruction classifier based on a k-Nearest Neighbors (k-NN) al-
gorithm. They reported a 100% instruction recognition on 35 instructions of an
ATMega163 microcontroller. However, this classifier was not evaluated on real
programs and [18] could not reproduce their results. Park et. al [13] constructed
a SCBD on a ATMega328P exploiting knowledge of the hardware used by each
instruction. They reported a 99.03% recognition rate thanks to advanced noise
reduction preprocessing techniques (based on discrete wavelet transforms) and
a hierarchical classification as suggested by McCann et. al [8, 9].

3 Construction of a bit-level side-channel disassembler

3.1 Challenges of bit-level instruction recovery

Processor instructions are usually encoded as a binary word (denoted I for the
rest of this paper) of 8 up to 128 bits which contains information such as the op-
code, registers and literal values used in the instructions. Our approach consists
in attacking bits of I independently, which requires to train a distinct classifier
for each bit of the instruction. Although this idea sounds pretty straightforward,
it comes with viability questions that we discuss hereafter.

Distinguishing bit level variations, which impact consumption in a very tiny
manner, requires a high signal to noise ratio. More than this, each bit should

4

have its own leakage characteristics, otherwise, distinguishing for example the 2-
digits binary words 01 and 10 would not be possible. As explained in section 3.4,
we suggest using EM with multiple probe positions to exploit local leakage and
thus, increase chances of detecting such leakage differences between bits.

Another problem is that we suggest to attack independently some bits whose
impact on the physical quantities measured are not independent. Small groups
of bits of I are sometimes only interpretable as a whole and not separately. To
address this issue, we propose to analyze only the part of the trace that corre-
sponds to the fetching of the instruction, totally ignoring the actual execution
of the instruction. While this may be interpreted as a loss of information, this
drastically reduces the dependencies between the bits on the power consump-
tion. In other words, we only analyze the update of the instruction register and
not its actual execution behavior.

3.2 Leakage model and classification

A leakage model for individual bits of the instructions has to be selected in order
to derive the set of classes C of the bit classifiers. The most common models are
the Hamming Weight and Hamming distance models which at the bit level,
respectively estimate the leakage as the bit value and as the bit toggle. A more
accurate model known as the ”signed Hamming distance” (SHD), introduced
in [14] states that with precise electromagnetic measurements, the direction of
the bit toggle can also be distinguished.

Based on these observations, we selected a leakage model with 3 possible
target events at a given time for each bit: the bit stayed constant, it switched from
0 to 1 or switched from 1 to 0. We denote T = {constant, 0→ 1, 1→ 0} the set of
these transitions. Following the formalism introduced in section 2.1, for each bit
of the instruction a classifier with C = T is created. It combines LDA for feature
extraction and QDA for the actual classification. The training phase can be done
on random instructions, with correctly labeled bit transitions, which greatly
simplifies the process. Then, for an observed sequence of N instructions, the
classifier is applied to all the instructions successively, and yields a finite sequence
of pair: T = (tn, pn)1≤n≤N of bit transition associated with its probability.

3.3 From Signed Hamming distance to bit values

The sequence T still needs to be transformed into a sequence of bit values.
However, finding the optimal bit sequence is not straightforward, as each bit
prediction influences the predictions for other bits. We propose a simple algo-
rithm that perform this task. The sequence T generated by the classifier is given
as input to the FindBitsLeft function (shown in Algorithm 1) which maintains a
state bit (bs) and updates its value according to the transitions encountered. In
case of 0→ 1 or 1→ 0, the current state bit is set to the transition final value.
When no transition occurred, the current bit value is kept. The algorithm also
computes a confidence in the bit value returned (ps in Algorithm 1). This value
is overwritten on a bit toggle, but is decreased when a constant transition is

5

taken. Intuitively, we should be less confident in a constant transition as we take
the precedent value as output, which could also be wrong. We explored different
strategies to update ps in this case. Based on our experiments, an efficient one is
to multiply ps by the confidence of the actual transition. This confidence value
is useful for comparing different predictions for the same bit.

Algorithm 1: FindBitsLeft (see comments for FindBitsRight)

Input: T, a sequence of transitions with their probability
Output: B, a sequence of bit values with their confidence

B← empty sequence
bs ← 0
ps ← 0

for (t , p) ∈ T do /* In a right scan: iterate in reverse order */

if t ∈ {0→ 1, 1→ 0} then
ps ← p
bs ← final value of t /* And use the initial value of t instead */

else
ps ← ps × p

Append (ps, bs) to B

end
return B

Fig. 2: Example of the different bit recovery algorithms proposed

Indeed, a transition reveals information about both the initial value and the
final value. The FindBitsLeft procedure only uses the final value so far. Thus, a
possible improvement is to tweak this function and define FindBitsRight which
perform the same algorithm in reverse order to exploit the information on the
initial value. The right scan works the same way as the left scan but uses the ini-
tial value of the transition as the current bit value instead of the final value. The
improved algorithm, denoted FindBitsL+R, runs both versions of FindBits,
align the two output sequences so that the nth element of each sequence corre-
sponds to the same bit transition, and compare the two sequences selecting the
bit value with the highest confidence. An example of this algorithm is shown
in Figure 2. We notice that by construction FindBitsLeft and FindBitsRight
cannot give output until the first bit toggle encountered. From the previous al-
gorithms the success rate (SR) of our classifier is defined as the number of correct
bit predictions divided by the number of instructions.

6

3.4 Exploiting local information

Our classification uses EM field as input data rather than power consumption.
Indeed, EM field with a careful probe positioning allows capturing very local
effects such as single bit leakages. As we attack each bit of I independently, the
best positions are likely to be different between the bits.

Choosing the best positions. The ideal approach to select the best probe
position would be to exhaustively walk a grid of n×m positions above the cir-
cuit, run the attack on each position and select the one with the highest SR.
However, this strategy can quickly become too expensive in terms of computa-
tions. For example, even a small 20× 20 grid leads to 400 different positions. In
our case, the longest part of the attack is the feature extraction (LDA). In order
to speed up the cartography we perform the attack on a very reduced set of k
points of interest (PoI). It can be viewed as an additional feature extraction step
performed before the LDA during the cartography. This PoI extraction trans-
forms the input traces (xi) of p samples into k � p dimensional vectors (x′i).
We choose to keep the k samples x(t) that maximize the Mean Difference (MD):

MD(t) =
∑

c1,c2∈T ,
c1 6=c2

∣∣∣E[X(t) | C = c1]− E[X(t) | C = c2]
∣∣∣

Choosing the value of k can be done empirically observing the evolution of the
SR as k decreases, at some fixed positions. Although the SRs may be lower
with this additional step, we assume that this should not drastically change the
ranking of the positions. Once the best positions has been found, the actual
attack can be run with either a higher value of k or without the PoI extraction.

Algorithm 2: FindPos

Input: M, a list of EM measurements at different positions in a set G
Output: P ⊂ G, a subset of positions to be combined

/* The SR(P,M) function concatenates EM data at positions P, runs

the attack, computes and returns the SR */

P ← {}
for step← 0 to stepmax do

best← arg maxpos∈G\P SR(P ∪ {pos},M)

if |SR(P,M)− SR(P ∪ {best},M)| < ε then return P
P ← P ∪ best

end
return P

Combining different positions. In a previous work, Strobel et. al. [18] com-
bined EM traces acquired from different positions by concatenating them be-
fore the features extraction. However, finding the best combination of positions

7

(which maximise the SR for instance) is hard in practice due to an exponential-
size search space. We propose a simple greedy algorithm (see algorithm 2) that
searches a good subset of positions to attack one bit. In a nutshell, the algorithm
builds iteratively a set P of best positions. At each iteration, the algorithm at-
tempts to add each one of the remaining positions to P. The one that improves
the most the SR is added to P. The algorithm may exit earlier if the success
rate does not improve enough (this threshold is defined by ε).

4 Leakage analysis of the PIC16F

4.1 Overview of the PIC16F

Our experiments are conducted on a PIC16F15376 Microchip microcontroller
from the MPLAB Xpress evaluation board. Besides being ubiquitous in em-
bedded systems, this family of PIC microcontrollers is a common reference in
the SCBD literature [3, 5, 18] and allows a fair comparison of our results. The
PIC16F15376 has around 50 instructions which are encoded on 14 bits. A typi-
cal instruction contains from 3 to 6 bits that are used to match the instruction
(the opcode in some sense). The remaining bits encode the arguments of the
instruction such as a control bits, source/destination registers or literal values.

Architecture. A simplified internal architecture of the PIC16F is depicted
on Figure 3. Excluding jumps, all instructions require 4 clock cycles to complete.
During the execution of an instruction, the next one is prefetched from FLASH
memory, thus this processor has a 2-stage pipeline: prefetch and execution. The
instruction bit leakages are most likely to be caused by this prefetching and the
instruction register activity. Jump instructions require 4 additional clock cycles
to be executed but can be regarded as the actual instruction followed by a nop.
This dummy instruction is actually only used to refill the pipeline after the jump
and our disassembler always detect it as a nop.

Fig. 3: Architecture of the PIC16F

Side-channel behavior. A taste of EM and power side-channel traces obtained
during the execution of 3 instructions are shown in Figure 4. Both were acquired

8

using the measurement setup described in section 4.2. We stress that in all of the
experiments, the PIC16 is clocked at 20 Mhz, except for Figure 4 where the clock
was reduced to 1MHz to distinguish power peaks (at 20Mhz, the power curve
is flat). The 4 execution cycles are clearly visible on the traces. As expected,
the EM behavior is much more local: some peaks have different amplitudes and
small temporal shifts based on the probe position.

Fig. 4: Power and EM field measured during the execution of 3 instructions.

4.2 Our experimental setup

Our experimental setup is presented in Figure 5. We acquire the near field elec-
tromagnetic emanations of the PIC16F through an EM Langer probe, an ICR
HH 100 27 with a bandwidth of 6 GHz. The probe is placed over the IC pack-
age without any depackaging, at less than 500µm from the package thanks to
a high precision motorized XYZ table. The probe is connected through a low-
noise amplifier to a digital oscilloscope (DSO) from Rohde & Schwarz (RTO
2024) which has a bandwidth of 2 GHz and a sample rate set to 10 GS/s. The
PIC is clocked by an external reference set at 20 MHz. A GPIO of the PIC is
used to synchronize the oscilloscope acquisition with the computation.

Fig. 5: Experimental setup

With these settings, the 4 clock cycles of an instruction last for 200 ns and
represents 2000 samples of the oscilloscope. A typical trace may span over several
milliseconds and is made of thousands of instructions. To avoid synchronization
issues, the clock of the PIC is generated by a signal generator (FI5350GA) which
is also connected to the reference clock of the DSO. This setup ensures that the
PIC and the DSO stay synchronized and that no post processing is required to
divide a trace into individual instructions.

9

4.3 Study of single bit leakages

This section presents three experimental results which confirm that there exists
probe positions where 1) single bit leakages actually occur, 2) each bit influences
the EM field independently from other bits and 3) the SHD leakage model sug-
gested in section 3.2 is appropriate. These experiments are seen as pre-attack
analysis to validate the requirements for a bit-level disassembler to be successful.
For concision and simplicity, only the behavior of the 8 lower bits of I (14-bit
PIC instructions) are analyzed. These specific bits encode literal values and can
be set to an arbitrary value still creating a valid instruction if the remaining 6
upper bits of I are set to an opcode that uses a literal value. As an example,
we will use movlw k (which is encoded as 110000‖kbase 2) that loads the literal
value k into the processor accumulator register.

Leakage differences between bits. To demonstrate that single bit leakages
are distinguishable, we perform Welch’s t-test [17] between traces of movlw 0

and movlw 2j , with 0 ≤ j ≤ 7. This test evaluates whether there are significant
differences on traces when a single bit of the instruction changes. In the profiling
code, a nop (encoded with fourteen 0s) is placed before each movlw instruction,
so that the test works for any leakage model. The t-test is performed on all 400
probe positions of a square (2mm× 2mm) grid (20× 20) centered over the chip.
Many probe positions with a successful t-tests (that goes over a threshold of 4.5)
were found, which means that the SNR in our setup is good enough to detect
single bit variations. Figure 6a and 6b show respectively positions where a t-test
for j = 0 and for j = 4 are very different from the others. Intuitively, these two
positions may bring useful information to determine respectively the value of bit
0 and bit 4 of I. Figure 6c shows a position where all t-tests are distinct from
each other. The same experiment was performed with other literal instructions
such as addlw or xor and gave similar results.

(a) Good position to
distinguish bit 0

(b) Good position to
distinguish bit 4

(c) Position where t-tests
of all bits are distinct

Fig. 6: Single bit T-Tests results at different positions

Leakage independence of bits. The second experiment aims at verifying
that each bit of I contributes independently to the EM field. We use the no-
tation L(movlw k) to denote the measured EM field during the prefetching of
the instruction movlw k (as in the previous experiment, a nop is prepended to

10

each instruction). In our setup, L(·) returns a 2000-dimensional vector, as the
prefetching last for one instruction. To model the leakage strictly caused by an
8 bits literal value we define the leakage function Lliteral simply by:

Lliteral(k) = L(movlw k)− L(movlw 0)

If the leakage of bits are independent, one would expect that the leakages of
individual bits can be summed to obtain the leakage of a given word, formally
for any subset J of {0, 1, 2, 3, 4, 5, 6, 7}, one should have:

∑
j∈J
Lliteral(2

j) = Lliteral

∑
j∈J

2j

We verified this equation empirically for some of the probe positions found in the
previous experiments. Figure 7 shows an example where J = {0, 1, 2, 3, 4, 5, 6, 7}.
All the small amplitude curves represent the leakage function Lliteral(2

j) for
0 ≤ j ≤ 7. The dark and light blue lines represent respectively the sum of all the
individual leakages and the leakage of 255 which is equal to

∑7
j=0 2j . These two

lines clearly seem to match. One could argue that this experiment is not enough
to really show that each bit contributes independently to the global leakage.
However, it still increases our confidence in the feasibility of the attack.

Fig. 7: Leakage independence

Leakage model. All experiments presented so far analyzed the fetching of
instructions preceded by a nop, so that the results are agnostic to the leakage
model. To confirm that the signed Hamming distance is an appropriate model, we
choose some of the probe positions with high t-test associated to one particular
bit of I. Then, we analyzed the leakages in terms of transitions of this bit (all the
other bits being constant). Figure 8 shows the EM traces for multiple transitions
of the bit 0. This clearly illustrates that the three classes from the SHD model
create a good partitioning of traces.

11

(a) 0→ 1 (b) 0→ 0 or 1→ 1 (c) 1→ 0

Fig. 8: EM traces grouped according to the transition of bit 0

5 Evaluation

This section presents the results of our bit-level SCBD. The training and evalua-
tion phases use two different sets made of 2000 random valid instructions. Each
acquisition is averaged 1000 times to improve the SNR. The results were also
confirmed on simple programs written in C. The disassembler first applies a PoI
extraction of k = 50 points that maximize the MD, then applies a LDA to the
results and keeps 2 components. Then, the fourteen QDA-based classifiers, one
for each bit of I, are applied to recover the 1999 bit transitions among the 3
transition classes T introduced in section 3.2. Finally, the algorithms described
in section 3.3 are applied to recover the 1999 corresponding bit values.

5.1 Mono-spatial attack

The attack was first conducted for each bit on each of the 20 × 20 grid (400
positions) that was used for our leakage analysis. The SR of the attack (using
the FindBitsL+R algorithm) on all the grid and for each bit is shown in Figure 9
(a Gaussian interpolation has been applied to the raw data). Surprisingly, each
bit has its own spatial signature: the ”hot areas”, where the attack has a better
success rate, strongly depend on the bit. The best success rates obtained for
each bit are given in table 1. The FindBitsL+R algorithm slightly improves the
accuracy of the attack. While most bits are recovered with a high accuracy, a
few (bits 8, 9, 10, 11), hardly get above 80%. These results can be improved by
combining measurements from multiple positions.

Fig. 9: Cartography of the SR of the bit-level classifiers

12

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13

FindBitsLeft 100 94.1 99.2 83.1 97.0 90.7 93.5 97.4 71.8 78.6 75.9 72.8 88.7 92.0

FindBitsL+R 100 94.8 99.5 85.7 98.2 93.1 94.6 97.9 74.5 80.6 78.7 74.2 90.9 93.5

Table 1: Success rate at the best probe position for each bit

5.2 Multi-spatial attack

We evaluate the multi-position attack described in section 3.4 by collecting and
combining data from up to 14 positions using algorithm 2. Figure 10 shows how
adding more positions affects the SR of each bit. Note that for a given bit, we
stop collecting new positions when the SR improvement is too low. These results
show that the low SR of some bits in the mono-spatial case (bits 8 to 11) can be
brought up to 97 % and more with several additional positions. Once the best
position combination has been found it is still possible to increase the number of
sample kept by the PoI extraction: table 2 shows the SR of a multi-spatial attack
where the number of PoI is higher (k = 400). All the SR are above 98.4 %, we
achieved a 100 % SR for 6 bits. The average of the 14 SR is 99.41% which leads
to 95% of the instructions being recovered without any faults. The acquisition
time for this attack is about one hour, the training of all the classifiers takes
approximately 30 minutes and the actual attack is instantaneous.

Fig. 10: Evolution of the success rate by adding new positions

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Success rate 100 100 100 100 99.8 100 100 98.5 98.6 98.9 99.3 98.4 99.6 98.7

Used positions 1 4 1 4 6 4 3 2 13 14 7 14 11 8

Table 2: Success rate for a multi-spatial attack

5.3 Template portability

In a realistic context, the training phase would be performed on a clone of the
target. This introduces the risk of overfitting on the clone device characteristics.
Our first attempt to port the attack was no exception to the rule: applying our
classifier to a different target completely failed. However, the SR cartography for
two different targets shown in figure 9 reveal clear similarities, which suggests

13

that the attacks behave almost the same on the two targets. More precisely the
SR cartography is almost the same but shifted by a constant vector of norm
around 300µm. We successfully conducted an attack between the two target
with roughly the same SR as in the mono-target case simply by shifting all the
probe position at the acquisition time on the second circuit. In a real attack
scenario, we argue that the shift vector could be brute-forced (until a high SR is
reached) by attacking a known sequence of instructions such as the boot code.

Fig. 11: Leakage cartography for two different devices (same scale as Figure 9)

6 Conclusion and further work

In this work, we described a new kind of side-channel disassembler that uses
bit-level classifiers to recover instructions from non-invasive EM measurements.
This approach requires a very precise experimental setup to discriminate small
bits variations in traces, especially on very a low-power device like a PIC16F
microcontroller. Fortunately, the algorithms proposed in this paper can fully
automate the recovering process. Furthermore, we observed that the disassembler
is portable between different chips of the same family, which makes this kind of
attacks truly realistic. A bit-level instruction disassembler is a huge gain in terms
of genericity. The training process is greatly simplified compared to an opcode
classifier because it can be performed on random binaries instead of carefully
crafted assembly snippets. We demonstrated that such a disassembler achieve
good recognition rate, with an average success rate of 99.41% on a bit level and
95% on the full 14-bits instruction. This result may be improved by exploiting
prior knowledge on the program such as instruction transition probability, invalid
opcode, etc. . .

It seems that our approach can be extended to recover other valuable informa-
tion from processors such as runtime register values. Moreover, this work opens
interesting perspectives regarding the side-channel disassembling on pipelined
processors, which remains an open problem. Future work will aim at validating
our approach on more complex processors.

Acknowledgments

The authors would like to thanks the reviewers for their helpful comments.
This work was funded thanks to the French national program ”Programme
d’Investissement d’Avenir IRT Nanoelec” ANR-10-AIRT-05.

14

References

1. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: International Workshop on
Cryptographic Hardware and Embedded Systems (2002)

2. Clavier, C.: Side channel analysis for reverse engineering (SCARE), an improved
attack against a secret A3/A8 GSM algorithm (2004)

3. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. In: Transactions on computational science (2010)

4. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: Annual Cryptology Conference (2014)

5. Goldack, M., Paar, I.C.: Side-channel based reverse engineering for microcon-
trollers. Master’s thesis, Ruhr-Universität Bochum, Germany (2008)

6. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual International
Cryptology Conference (1999)

7. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Annual International Cryptology Conference (1996)

8. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side chan-
nel aware software engineering: ’grey box’ modelling for instruction leakages. In:
USENIX Security Symposium (2017)

9. McCann, D., Whitnall, C., Oswald, E.: ELMO: Emulating leaks for the ARM
Cortex-M0 without access to a side channel lab. IACR Cryptology ePrint Archive
(2016)

10. Msgna, M., Markantonakis, K., Mayes, K.: Precise instruction-level side channel
profiling of embedded processors. In: International Conference on Information Se-
curity Practice and Experience (2014)

11. Msgna, M., Markantonakis, K., Naccache, D., Mayes, K.: Verifying software in-
tegrity in embedded systems: A side channel approach. In: International Workshop
on Constructive Side-Channel Analysis and Secure Design (2014)

12. Novak, R.: Side-channel based reverse engineering of secret algorithms. In: Pro-
ceedings of the Electrotechnical and Computer Science Conference (2003)

13. Park, J., Xu, X., Jin, Y., Forte, D., Tehranipoor, M.: Power-based side-channel
instruction-level disassembler. In: Design Automation Conference (2018)

14. Peeters, E., Standaert, F.X., Quisquater, J.J.: Power and electromagnetic analysis:
Improved model, consequences and comparisons. The VLSI journal (2007)

15. Quisquater, J.J., Samyde, D.: Electromagnetic analysis: Measures and counter-
measures for smart cards. In: International Conference on Research in Smart Cards
(2001)

16. Quisquater, J.J., Samyde, D.: Automatic code recognition for smart cards using
a kohonen neural network. In: Proceedings of the Smart Card Research and Ad-
vanced Application Conference (2002)

17. Schneider, T., Moradi, A.: Leakage assessment methodology. In: International
Workshop on Cryptographic Hardware and Embedded Systems (2015)

18. Strobel, D., Bache, F., Oswald, D., Schellenberg, F., Paar, C.: SCANDALee: a
side-channel-based disassembler using local electromagnetic emanations. In: Pro-
ceedings of the Design, Automation & Test in Europe Conference & Exhibition
(2015)

19. Vermoen, D., Witteman, M., Gaydadjiev, G.N.: Reverse engineering java card ap-
plets using power analysis. In: International Workshop on Information Security
Theory and Practices (2007)

15

	A Bit-Level Approach to Side Channel Based Disassembling

