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1Institut de physique théorique, Université Paris Saclay CEA, CNRS, 91191 Gif-sur-Yvette, France
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Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France
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We study perturbation theory for large-scale structure in the most general scalar-tensor theories
propagating a single scalar degree of freedom, which include Horndeski theories and beyond. We model the
parameter space using the effective field theory of dark energy. For Horndeski theories, the gravitational
field and fluid equations are invariant under a combination of time-dependent transformations of the
coordinates and fields. This symmetry allows one to construct a physical adiabatic mode which fixes the
perturbation-theory kernels in the squeezed limit and ensures that the well-known consistency relations for
large-scale structure, originally derived in general relativity, hold in modified gravity as well. For theories
beyond Horndeski, instead, one generally cannot construct such an adiabatic mode. Because of this, the
perturbation-theory kernels are modified in the squeezed limit and the consistency relations for large-scale
structure do not hold. We show, however, that the modification of the squeezed limit depends only on the
linear theory. We investigate the observational consequences of this violation by computing the matter
bispectrum. In the squeezed limit, the largest effect is expected when considering the cross-correlation
between different tracers. Moreover, the individual contributions to the 1-loop matter power spectrum do
not cancel in the infrared limit of the momentum integral, modifying the power spectrum on nonlinear
scales.

DOI: 10.1103/PhysRevD.101.123501

I. INTRODUCTION

Scalar-tensor theories are used as benchmarks to model
deviations from general relativity (GR) in the cosmological
context. To avoid instabilities, one usually focuses on the
class of theories that propagate a single scalar degree of
freedom (and thus they are free from unstable Ostrogradsky
modes [1]). Such a class contains Horndeski theories [2,3],
i.e. scalar-tensor theories with equations of motion that are
at most of second-order in the metric and the scalar field.
But this class can be extended further by considering
higher-order theories that are degenerate [4–6], also known
as degenerate higher-order scalar-tensor (DHOST) theories.
Theories beyond Horndeski such as Gleyzes-Langlois-
Piazza-Vernizzi (GLPV) theories [7] belong to this latter
class (see also [8] for examples of theories beyond
Horndeski).1

One of the main goals of current and forthcoming
cosmological surveys of large-scale structure (LSS) is to
constrain these theories. Beside modifying the linear
evolution of perturbations, deviations from GR can also
affect higher-order statistics of the cosmic fields and the
formation of structures in the nonlinear regime. Inves-
tigating this regime can be crucial to disentangling the
effects of different theories that are degenerate on linear
scales.
When studying higher-order statistics, it is useful to

establish robust relations between correlation functions.
The most compelling examples are the consistency rela-
tions for LSS in ΛCDM [23–25], which relate an n-point
function of the density contrast to an (nþ 1)-point function
in the limit in which one of the (nþ 1) momenta becomes
much smaller than the others (see [26] for an extension of

1Several astrophysical constraints have been recently derived, which put all these theories under pressure. In particular, their
parameter space is constrained [9–12] by the measurement of the gravitational wave speed [13]. The breaking of the Vainshtein
screening inside astrophysical sources for theories beyond Horndeski [14] allow to further bound the modified gravity parameters
[15–17] (see also [18] for a recent improvement of these bounds). Another bound can be established by suppressing the decay of
gravitational waves predicted by some of these theories [19,20]. The Vainshtein mechanism for the theories that evade these constraints
is discussed in [21,22].
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the consistency relations to multiple soft limits and redshift
space; see also [27,28] for an example of consistency
relations in the late-time Universe involving also the
velocity and [29] for a verification of the consistency
relations in N-body simulations). These relations hold
nonperturbatively in the short-scale physics because they
follow from symmetries of the fluid and gravitational
equations. In particular, they can be derived by erasing
the effect of a long mode on the short ones with a suitable
combination of coordinate and field transformations
[30,31] based on the equivalence principle [25]. This
means that the consistency relations do not hold when
the equivalence principle is violated [32].
A natural question to ask is whether these relations also

hold in modified gravity. Previous calculations of higher-
order correlators focused on the 3-point function. In
particular, it was found that in Horndeski theories the
monopole and the quadrupole of the perturbation theory
kernel F2ðk⃗1; k⃗2Þ2 get modified (see e.g. [33–37] for a study
of the F2 kernel and the bispectrum in modified gravity; for
nonlinear corrections to the bispectrum, see e.g. [38,39])
but the dipole remains the same as in ΛCDM. Indeed, in
ΛCDM the dipole is protected by the symmetry trans-
formations of the fluid and gravitational equations dictated
by the equivalence principle, the same symmetry trans-
formations at the origin of the consistency relations. This
suggests that the symmetry transformations valid for
ΛCDM can be extended to Horndeski theories and that
the consistency relations hold also there. On the other hand,
it was recently found that in GLPV theories the dipole of F2

gets modified [40], which suggests that the consistency
relations of ΛCDM do not hold for theories beyond
Horndeski.
In this paper we clarify these statements and show when

and why the consistency relations for LSS hold. In Sec. II
we study the gravitational equations and their symmetries.
To describe the scalar-tensor theories discussed above, we
adopt the effective field theory approach, which conven-
iently reduces the number of free time-dependent functions
of the parameter space. In Sec. III we extend this discussion
to the fluid equations and in Sec. IV we examine the
validity of the consistency relations, based on the symmetry
transformations of the equations established in the previous
sections. In Sec. V we compute the matter bispectrum and
the bispectrum involving a different tracer, i.e. the lensing
potential. Other observational consequences of our results
are discussed in Sec. VI while Sec. VII is devoted to the
conclusions. We report the coefficients of the equations
used in the text in Appendix A, and Appendix B contains

the definition of the Green’s function and some manipu-
lations useful in the text.
We direct readers primarily interested in the observa-

tional consequences of our work to Sec. II A for a
description of our model, and then to Sec. V and
Sec. VI for our main results.

II. GRAVITATIONAL SECTOR

A. Action and field equations

We start with the nonlinear action that describes DHOST
theories in the EFT of dark energy [17,22] (see [41] for a
study of linear perturbations in DHOST theories). The
covariant DHOST action, together with the map to the EFT
action, can be found in Appendix A 1. Using the ADM
metric decomposition with line element ds2 ¼ −N2dt2 þ
hijðdxi þ NidtÞðdxj þ NjdtÞ, and choosing the time as to
coincide with the uniform scalar-field hypersurfaces, this
reads

SEFT ¼
Z

d4x
ffiffiffi
h

p M2

2
½−ð1þ δNÞδK2 þ c2T

ð3ÞR

þH2αKδN2 þ 4HαBδKδN þ ð1þ αHÞð3ÞRδN
þ 4β1δKV þ β2V2 þ β3aiai þ αVδNδK2�; ð1Þ

where we have written only the operators with the
highest number of spatial derivatives, which are relevant
in the quasistatic limit. Here H ≡ _a=a (a dot denotes the
time derivative), δN ≡ N − 1, δKj

i ≡ Kj
i −Hδji is the

perturbation of the extrinsic curvature of the time hyper-
surfaces, δK its trace, and ð3ÞR is the 3D Ricci scalar of
these hypersurfaces. Moreover, δK2 ≡ δK2 − δKj

iδK
i
j, V ≡

ð _N − Ni∂iNÞ=N, and ai ≡ ∂iN=N. Forecasted limits on
these parameters with future large-scale structure observa-
tions give αi ≲Oð0.1Þ (see e.g. [42] for a recent review).3
For αH ¼ β1 ¼ β2 ¼ β3 ¼ 0 this action describes

Horndeski theories. In this case there are four free time-
dependent functions: αK, αB, c2T and αM ≡ d lnM2=d ln a
[45], where a is the scale factor of the homogenous FRW
background ds2 ¼ −dt2 þ a2ðtÞdx⃗2. DHOST theories are
described also by αH and β1, while the functions β2 and β3
are given in terms of β1 by the degeneracy conditions [41]
β2 ¼ −6β21, β3 ¼ −2β1½2ð1þ αHÞ þ β1c2T�, which we will
always impose.

2This is explicitly defined in Eq. (39); as explained below this
equation, the kernel F2 can be organized in terms of monopole,
dipole, and quadrupole terms, based on their dependence on
k⃗1 · k⃗2.

3The cutoff of these theories can be estimated by computing at
what energy perturbative unitarity is violated in the 2 → 2
scattering of π. For the above values of parameters, this gives
(see e.g. [43]) Λcutoff ∼ ð103 kmÞ−1. Note however that analytic-
ity arguments suggest a much lower energy, i.e. Λcutoff ∼
ð107 kmÞ−1 [44]. Anyway, these correspond to much smaller
scales than those considered in this paper, which are roughly near
kLSS ∼ ð1020 kmÞ−1.
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We also assume that matter is minimally coupled to the
gravitational metric gμν, and a universal coupling of all
species. For simplicity we will focus on nonrelativistic
matter with vanishing pressure.
To study cosmological perturbations we abandon the

unitary gauge by performing a space-time dependent shift
in the time t → tþ πðt; x⃗Þ, and work in the Newtonian
gauge, with metric

ds2 ¼ −ð1þ 2ΦÞdt2 þ a2ðtÞð1 − 2ΨÞdx⃗2: ð2Þ

Then, we expand the action Eq. (1) in terms of the metric
and scalar field perturbations π and keep only terms with
the highest number of derivatives per field, which are those
relevant in the quasi-static limit.
The gravitational equations are obtained by varying the

action with respect to Φ, Ψ and π. The detailed procedure
can be found in [22]. Because we are interested in the
bispectrum, we need the equations up to second order. In
terms of the matter overdensity δ≡ δρm=ρ̄m (here ρm is the
matter energy density, and ρ̄m is its mean cosmological
value), these are given by

a2ρ̄mδ
2M2

¼ C1∂2π −
c8
4
∂2 _π þ c6

2
∂2Φþ c4

4
∂2Ψ

þ 1

4

�
b2
a2

Q2½π; π� þ
c8
a2

∂ið∂jπ∂i∂jπÞ
�
; ð3Þ

0 ¼ C2∂2π −
c7
4
∂2 _π þ c4

4
∂2Φþ c5

2
∂2Ψ

þ 1

4

�
b3
a2

Q2½π; π� þ
c7
a2

∂ið∂jπ∂i∂jπÞ
�
; ð4Þ

and

0 ¼ C3∂2π þ C4∂2 _π þ c9
2
∂2π̈ þ c1

4
∂2Φþ c8

4
∂2 _Φ

þ c2
4
∂2Ψþ c7

4
∂2 _Ψþ 1

4a2
Q2½π; b1π þ 2b2Φþ 2b3Ψ�

−
1

4a2
∂i½∂iπ∂2ðc7Ψþ c8Φþ 2c9 _πÞ�

þHc9 − C4

2a2
∂2ð∂πÞ2 − c9

2a2
∂2ð∂iπ∂i _πÞ; ð5Þ

where we have defined

Q2½φa;φb�≡ εikmεjlm∂i∂jφa∂k∂lφb; ð6Þ

with

φa ≡ fΦ;Ψ; πg; ð7Þ

andC1;…; C4, c1;…; c9, and b1, b2, b3 are time-dependent
coefficients that depend on the parameters of the action,
reported in Appendix A 2.

B. Perturbative solutions

In this section we seek a perturbative solution to
Eqs. (3)–(5) in powers of δ. Thus, we will expand the
fields φa as

φa ¼ φð1Þ
a þ φð2Þ

a þ � � � ; ð8Þ

where each perturbative piece is proportional to the relevant

number of powers of δð1Þ, i.e. φðnÞ
a ∼ ½δð1Þ�n. Since we are

interested in the bispectrum in this work, we will solve up
to second order.

1. Linear solutions

As discussed in [22] (see also [21,40,46,47]), the linear
solutions have the following form

a−2∂2φð1Þ
a ¼ μφa

δð1Þ þ νφa
_δð1Þ þ σφa

δ̈ð1Þ; ð9Þ

and we have supplied the expressions for the time depen-
dent μφa

, νφa
, and σφa

functions in terms of the parameters
in the field equations in Appendix A 3. We note, however,
that

σπ ¼ 0: ð10Þ

Horndeski theories have σφa
¼ νφa

¼ 0, and ΛCDM has
μΦ ¼ μΨ ¼ ρ̄m=ð2M2

PlÞ, where MPl is the Planck mass.
In Sec. III A 1 we will derive the evolution equation for

δð1Þ in closed form. In the quasistatic approximation it is
scale independent in these theories. In particular, its
solution can be written in the form

δð1Þðx⃗; tÞ ¼ DþðtÞ
DþðtinÞ

δð1Þðx⃗; tinÞ; ð11Þ

where Dþ is the linear growth factor and tin is some early
time where we set the initial conditions. This means that we
can write time derivatives of δð1Þ as proportional to δð1Þ, i.e.
_δð1Þ ¼ Hfδð1Þ, where

f ≡ _Dþ
HDþ

; ð12Þ

is the linear growth function.
Once one has the linear solution Dþ from Sec. III A 1,

this allows us to write the linear solutions equation (9) as

a−2∂2φð1Þ
a ¼ Lφa

δð1Þ; ð13Þ

where

Lφa
¼ μφa

þHfνφa
þ ðH2f2 þH _f þ _HfÞσφa

: ð14Þ
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2. Second-order solutions

To find the second-order solutions, we first solve for φð2Þ
a

to second order in the potentials. Then, in the quadratic
terms we can use the linear solution of the field equations,
formally given by Eq. (13), to write the potentials in terms
of δð1Þ only. After doing this, the solutions for the potentials
have the form

a−2∂2φð2Þ
a ≡ μφa

δð2Þ þ νφa
_δð2Þ þ σφa

δ̈ð2Þ þ a−2∂2φð2Þ;NL
a ;

ð15Þ
where the last term on the right-hand side is quadratic in
δð1Þ and is given by

a−2∂2φð2Þ;NL
a ¼ υφa

α Xαs þ υφa
γ Xγ: ð16Þ

Here υφa
α and υφa

γ are time dependent functions given
explicitly in Appendix A 4, and

Xαs ≡ ðδð1ÞÞ2 þ
�∂i

∂2
δð1Þ

�
ð∂iδ

ð1ÞÞ;

Xγ ≡ ðδð1ÞÞ2 −
�∂i∂j

∂2
δð1Þ

�
2

; ð17Þ

are two types of nonlinear mixing terms that come from the
interactions present in the field equations, Eqs. (3)–(5).
Another combination, Xβ, can also appear but this is simply
a linear combination of the other two, Xβ ¼ Xαs − Xγ . Note
that υφa

α ¼ 0 in Horndeski theories.
In Fourier space, these interactions become the familiar

vertices in perturbation theory for LSS. Using the following
notation for the Fourier integrals,

Z
k⃗

k⃗1;…;k⃗n

¼
Z

d3k1
ð2πÞ3 …

d3kn
ð2πÞ3 ð2πÞ

3δD

�
k⃗ −

Xn
i¼1

k⃗i

�
; ð18Þ

where δD is the Dirac delta function, in Fourier space these
read

X̂αsðk⃗Þ ¼
Z

k⃗

k⃗1;k⃗2

αsðk⃗1; k⃗2Þδð1Þðk⃗1Þδð1Þðk⃗2Þ;

X̂βðk⃗Þ ¼
Z

k⃗

k⃗1;k⃗2

βðk⃗1; k⃗2Þδð1Þðk⃗1Þδð1Þðk⃗2Þ;

X̂γðk⃗Þ ¼
Z

k⃗

k⃗1;k⃗2

γðk⃗1; k⃗2Þδð1Þðk⃗1Þδð1Þðk⃗2Þ; ð19Þ

where

αsðk⃗1; k⃗2Þ≡ 1þ k̂1 · k̂2
2

�
k2
k1

þ k1
k2

�
; ð20Þ

βðk⃗1; k⃗2Þ≡ k̂1 · k̂2
2

�
k2
k1

þ k1
k2

�
þ ðk̂1 · k̂2Þ2; ð21Þ

are the usual (symmetrized) perturbation theory kernels
[48] and

γðk⃗1; k⃗2Þ≡ 1 − ðk̂1 · k̂2Þ2 ð22Þ

is a kernel appearing in modified gravity models (see
e.g. [49,50]).

C. Symmetries of the field equations
and infrared behavior

The gravitational field equations, Eqs. (3)–(5), are
invariant under the following coordinate change and shifts
of the fields:

x̃i ¼ xi þ ξiðtÞ; t̃ ¼ t;

φ̃aðx̃j; t̃Þ ¼ φaðxj; tÞ þ biφa
ðtÞx̃i;

δ̃ðx̃j; t̃Þ ¼ δðxj; tÞ: ð23Þ
Equivalently, they are invariant under the replacements

∂i → ∂i; ∂t → ∂t − _ξiðtÞ∂i;

φa → φa þ biφa
ðtÞxi; δ → δ: ð24Þ

For Horndeski theories (i.e., when αH ¼ β1 ¼ 0), this
symmetry holds for arbitrary time-dependent functions
ξiðtÞ, biΦðtÞ, biΨðtÞ, and biπðtÞ. This is easy to verify.
Indeed, in this case c6 ¼ c7 ¼ c8 ¼ c9 ¼ C4 ¼ 0 in these
equations so that time derivatives are absent and all fields
have at least two spatial derivatives.
For DHOST theories (i.e., when αH ≠ 0 or β1 ≠ 0),

however, the field equations are only invariant as long as

biπðtÞ ¼ −a2 _ξiðtÞ: ð25Þ

Indeed, in this case time derivatives and terms with one
spatial derivative on a field are present. By the trans-
formation Eq. (23) in the form of Eq. (24), a time derivative
of a field generates a quadratic term involving that field and
_ξi. This term can only be canceled by another quadratic
term involving ∂iπ if Eq. (25) holds.
We will now show that this symmetry of the equations

determines the leading infrared (IR) behavior, or squeezed
limit, of the last term of the second-order field solutions,
Eq. (15), i.e. φð2Þ;NL

a . This limit is obtained by making an
expansion in terms of q=k, where q is the wavenumber of a
long mode, and k is that of a short mode, i.e. q ≪ k. In this
limit, Xαs is enhanced with respect to the other mixing
terms, and Eq. (16) gives

a−2∂2φð2Þ;NL
a ≈ υφa

α
∂iδ

ð1Þ
L

∂2
∂iδ

ð1Þ þOððq=kÞ0Þ; ð26Þ

where, in Fourier space, the leading term on the right-hand
side starts at order ðq=kÞ−1. Here and in the following we
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will use the symbol ≈ to denote an equality that is valid at
leading order in the squeezed limit. As we will see below,
this limit determines the dipole term in the second-order
perturbation theory kernel F2.
One can imagine ξiðtÞ to have a weak k-dependence, i.e.

to be a long mode. In this case the transformation Eq. (23)
captures the leading dependence of that long mode. Indeed,
this symmetry, together with the condition in Eq. (25),
implies that time derivatives of a field must always come in
combination with specific nonlinear terms. In particular, in
Eq. (15) the specific nonlinear terms generated by trans-
forming _δð2Þ and δ̈ð2Þ under Eq. (24) must be canceled by

specific nonlinear terms contained in a−2∂2φð2Þ;NL
a . Using

that under Eq. (24)

_δð2Þ → _δð2Þ − a−1viπ;L∂iδ
ð1Þ;

δ̈ð2Þ → δ̈ð2Þ − a−1ð2viπ;L∂i
_δð1Þ þ _viπ;L∂iδ

ð1Þ −Hviπ;L∂iδ
ð1ÞÞ;
ð27Þ

up to second order in the fields, where viπ;L is the long
wavelength mode generated by the spatial derivative
of πL, i.e.,

viπ;L ≡ −a−1∂iπL; ð28Þ

we find,

a−2∂2φð2Þ;NL
a ≈ νφa

ða−1viπ;L∂iδ
ð1ÞÞ þ σφa

a−1ð2viπ;L∂i
_δð1Þ

þ _viπ;L∂iδ
ð1Þ −Hviπ;L∂iδ

ð1ÞÞ

¼ −ðνφa
Lπ þ σφa

ð3HfLπ þ _LπÞÞ
∂iδ

ð1Þ
L

∂2
∂iδ

ð1Þ:

ð29Þ

Here for the last equality we have used Eq. (13) to replace
viπ;L by its expression in terms of δL, valid in the linear
regime. Comparing this expression with Eq. (26), we see
that the symmetry Eq. (24) forces

υφa
α ¼ −νφa

Lπ − σφa
ð3HfLπ þ _LπÞ: ð30Þ

This expression is in agreement with the full calculation
presented in Appendix A.
The symmetry Eq. (23) allows us to easily determine

otherwise complicated coefficients in the nonlinear equa-
tions in terms of the coefficients in the linear equations. For
instance, we see immediately why Horndeski theories do
not generate terms proportional to Xαs : there are no time-
derivatives in the field equations and thus no terms
containing _δ and δ̈ in Eq. (15). In Sec. IV we will return
to this symmetry and discuss its consequences on the full
second-order solution for δ and the consistency relations.

III. FLUID EQUATIONS

The equations governing the matter sector in the non-
relativistic limit are the fluid equations

_δþ a−1∂iðð1þ δÞviÞ ¼ 0;

_vi þHvi þ a−1vj∂jvi þ a−1∂iΦ ¼ 0; ð31Þ

where vi is the matter velocity. In writing these equations
we have assumed that matter is minimally coupled to the
gravitational metric. Therefore, we work in the so-called
Jordan frame.
Combining these two equations, we have,

δ̈þ 2H_δ − a−2∂2Φ ¼ −a−2∂ið∂tðaδviÞ − vj∂jviÞ; ð32Þ

and so we see that we need ∂2Φ in terms of δ from Sec. II to
complete the system of equations.

A. Perturbative solutions

1. Linear solutions

Using Eq. (9) for ∂2Φð1Þ, the linear equation for δð1Þ is

δ̈ð1Þ þ ν̄Φ _δ
ð1Þ − μ̄Φδ

ð1Þ ¼ 0; ð33Þ

where for future convenience, we have defined

ν̄Φ ≡ 2H − νΦ
1 − σΦ

; μ̄Φ ≡ μΦ
1 − σΦ

: ð34Þ

The linear equation Eq. (33) has two solutions, one
growing, DþðtÞ, and one decaying, D−ðtÞ. We focus on
the growing mode solution, which will be used in the
quadratic terms of the second-order equation, so we write
the solution for δð1Þ as Eq. (11). Looking at Eq. (31), this
means that the linear solution for the velocity can be written

vð1Þi ¼ −a
∂i
_δð1Þ

∂2
¼ −aHf

∂iδ
ð1Þ

∂2
: ð35Þ

where f is the linear growth rate defined in Eq. (12).

2. Second-order solution

Since we are interested in the second-order solution δð2Þ

in this work, we can use the linear solutions δð1Þ and vð1Þi in
the quadratic terms in Eq. (32). Then, combining this with
the expression for ∂2Φð2Þ from Eq. (15), we have the
equation for the second-order field

δ̈ð2Þ þ ν̄Φ _δ
ð2Þ − μ̄Φδ

ð2Þ ¼ υδαXαs þ υδγXγ; ð36Þ

where
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υδα ¼
1

1 − σΦ
ð3f2H2 þH _f þ fð2H2 þ _HÞ þ υΦα Þ;

υδγ ¼ −
1

1 − σΦ
ðf2H2 − υΦγ Þ: ð37Þ

This means that the solution is

δð2ÞðtÞ ¼
Z

t

0

dt1Ḡðt; t1ÞðυδαXαs þ υδγXγÞt1 ð38Þ

where Ḡðt; t1Þ is the Green’s function, defined in Eq. (B3).
Here, and in the rest of the paper, the subscript t1 means that
all time arguments inside of the brackets which are not
explicitly shown are evaluated at t1.
In Fourier space, Eq. (38) is

δð2Þðk⃗; tÞ ¼
Z

k⃗

k⃗1;k⃗2

F2ðk⃗1; k⃗2; tÞδð1Þðk⃗1; tÞδð1Þðk⃗2; tÞ; ð39Þ

where

F2ðk⃗1; k⃗2; tÞ ¼ AαðtÞαsðk⃗1; k⃗2Þ þ AγðtÞγðk⃗1; k⃗2Þ; ð40Þ

and4

AαðtÞ ¼
Z

t

0

dt1Ḡðt; t1Þυδαðt1Þ
Dþðt1Þ2
DþðtÞ2

;

AγðtÞ ¼
Z

t

0

dt1Ḡðt; t1Þυδγðt1Þ
Dþðt1Þ2
DþðtÞ2

: ð43Þ

It is possible to further simplify the coefficient AαðtÞ, as
we show in Appendix B 2. The result is

AαðtÞ ¼ 1þ
Z

t

0

dt1Ḡðt; t1ÞK2ðt1Þ
Dþðt1Þ2
DþðtÞ2

; ð44Þ

where

K2 ¼
νΦLΔv þ σΦð3HfLΔv þ _LΔvÞ

1 − σΦ
; ð45Þ

and

LΔv ≡Hf − Lπ ð46Þ

is defined analogously to Eq. (35) for the relative velocity

Δvi ≡ vi − viπ: ð47Þ

(We will return to this coefficient in Sec. III B, in relation to
symmetries of the field and fluid equations.) For Horndeski
theories (which include the EdS (Einstein de Sitter)
approximation and ΛCDM) we have νΦ ¼ σΦ ¼ 0 and
thus AαðtÞ ¼ 1. In Sec. IVAwe will discuss how this value
is fixed by the consistency relations in Horndeski theories.
Only DHOST theories can change this coefficient. This was
shown in [40] restricting to GLPV theories.
The coefficient AγðtÞ has a complicated expression, in

general. It simplifies in the EdS approximation, where
AγðtÞ ¼ −2=7, but in ΛCDM and beyond it is in general
time dependent [48]. A study of this coefficient in
Horndeski theories can be found in [33–37].
We plot these functions for two different redshifts and

different values of the EFT parameters in Fig. 1. As
expected, K2 ¼ 0 and thus Aα ¼ 1 for Horndeski theories
(β1 ¼ 0) while Aγ is modified in both Horndeski and
DHOST theories.
Notice that we can organize the kernel in Eq. (40) as a

multipolar expansion in the angle μ≡ k̂1 · k̂2, i.e. in terms
of the monopole (proportional to μ0), dipole (proportional
to μ1) and quadrupole (proportional to μ2 − 1=3) contri-
butions. Explicitly, we have (suppressing the time argu-
ment)

F2ðk⃗1; k⃗2Þ ¼ Aα þ
2

3
Aγ þ Aα

μ

2

�
k2
k1

þ k1
k2

�

− Aγðμ2 − 1=3Þ: ð48Þ

As expected, the solution Eq. (38) respects the con-
servation of mass and momentum, since5

Z
d3xδð2Þðx⃗; tÞ ¼ 0 and

Z
d3xxiδð2Þðx⃗; tÞ ¼ 0: ð50Þ

4With the second-order solution for δ in Eq. (39), we can
straightforwardly compute the second-order solution for the
velocity divergence θ≡ a−1∂ivi, using the continuity equation
Eq. (31) and the linear solution for vi Eq. (35). In Fourier space,
this becomes

θð2Þðk⃗; tÞ ¼
Z

k⃗

k⃗1;k⃗2

G2ðk⃗1; k⃗2; tÞδð1Þðk⃗1; tÞδð1Þðk⃗2; tÞ; ð41Þ

where (again suppressing time arguments)

G2ðk⃗1; k⃗2Þ ¼ −ð _Aα þ 2HfAα −HfÞαsðk⃗1; k⃗2Þ
− ð _Aγ þ 2HfAγÞγðk⃗1; k⃗2Þ: ð42Þ

For the implications of mass and momentum conservation for the
velocity field, see [51].

5As discussed in [53], this means that in Fourier space,

δð2Þðk⃗Þ ∝ k2 ð49Þ
for k → 0, which one can explicitly verify for the solution
Eq. (38). This contributes to the power spectrum with a term
∝ k4, which is why one includes the so-called stochastic con-
tribution in the EFT of LSS [54].
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In fact, mass and momentum conservation is the reason that
the nonlinear corrections in Eq. (38) appear in the specific
combinations Eq. (17).

B. Symmetries of the fluid equations
and infrared behavior

To find the leading terms in the IR limit, one could of
course start with the explicit solution Eq. (38) and take the
IR limit. However, we are going to show that the leading IR
behavior is related to the symmetries of the gravitational
field equations, discussed in Sec. II C, and the symmetries
of the fluid equations, which we discuss next.
The fluid equations Eq. (31) are invariant under the

following coordinate change and shifts of the fields:

x̃i ¼ xi þ niðtÞ; t̃ ¼ t;

φ̃aðx̃j; tÞ ¼ φaðxj; tÞ þ hiφa
ðtÞx̃i;

δ̃ðx̃j; tÞ ¼ δðxj; tÞ;
ṽiðx̃j; tÞ ¼ viðxj; tÞ þ a _niðtÞ; ð51Þ

for generic niðtÞ and hiΨ;πðtÞ, as long as

hiΦðtÞ ¼ −a2ðn̈iðtÞ þ 2H _niðtÞÞ: ð52Þ

These symmetries have been discussed to derive the
consistency relations of LSS, in e.g. [23–25,55,56], where
they apply to both the fluid and gravitational field equa-
tions. Here, we have introduced different notation from the

transformation equation (23) to facilitate our discussion of
the adiabatic mode construction in Sec. IV.
Equivalently, the fluid equations are invariant under the

replacements

∂i → ∂i; ∂t → ∂t − _niðtÞ∂i;

φa → φa þ hiφa
ðtÞxi; δ → δ; vi → vi þ a _niðtÞ: ð53Þ

One can explicitly check that the leading IR terms on the
right-hand side of Eq. (32) are generated by this
transformation.
In the gravitational equations, the transformation of π,

Eq. (25), is related to the coordinate change (while the
transformations of the other fields are arbitrary). In the fluid
equations, the transformations of vi andΦ are related to the
coordinate transformation (while the transformations of the
other fields are arbitrary). These transformations can be
combined by taking ξiðtÞ ¼ niðtÞ, biΦ;ΨðtÞ ¼ hiΦ;ΨðtÞ, and
biπðtÞ ¼ −a2 _niðtÞ to give an overall Galilean invariance. In
this case, by Eqs. (23), (28), and (53), the transformations
of vi and viπ are the same, so both velocities can only be
simultaneously eliminated if there is no relative velocity on
large scales. As we will see later, this means that a physical
adiabatic mode cannot be constructed.
Now, we show how these symmetries determine the

leading IR behavior of δð2Þ. We start with the equations for
the fluid and the gravitational sector separately. Taking the
IR limit of Eq. (32) [or equivalently using the trans-
formations Eq. (53)], we have
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FIG. 1. Functions Aα and Aγ , see Eq. (43), for two values of redshift, z ¼ 0 and z ¼ 0.56 as a function of the EFT of dark energy
parameters αB and β1. Specifically, we plot their fractional difference from their ΛCDM values (Aα ¼ 1 and Aγ ¼ −0.284 for z ¼ 0 and
Aα ¼ 1 and Aγ ¼ −0.285 for z ¼ 0.56). The background evolution has been chosen to be the one of ΛCDM, i.e. the Hubble rate is given

by HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−3Ωm;0 þ 1 − Ωm;0

q
, the matter evolution is given by ΩmðaÞ ¼ Ωm;0=ðΩm;0 þ a3ð1 − Ωm;0ÞÞ, and we have taken

Ωm;0 ¼ 0.281 as the current value of the fractional matter density. (In the numerical calculation, the Hubble rate always appears in the
combination H=H0 so that the plots are independent of the value of H0.) We parametrize the time dependence of the EFT parameters as
αBðaÞ ¼ ᾱBð1 − ΩmðaÞÞ and β1ðaÞ ¼ β̄1ð1 − ΩmðaÞÞ, where ᾱB and β̄1 are constants (see e.g. [45]). The other EFT parameters are
chosen such that the model leaves the gravitational wave speed, amplitude, and decay unaffected (see e.g. [22] for a discussion), i.e.
αT ¼ αM ¼ 0 and αH ¼ −2β1. Moreover, we only plot values of ᾱB and β̄1 for which αc2s > 0, as required by the absence of ghost and
gradient instability (see e.g. [52]). On the right-hand panel, the case ᾱB < −1 has αc2s > 0, but since Aγ becomes very large in this case,
we do not plot the corresponding range. Notice that Aα ¼ 1 in Horndeski theories, i.e. for β1 ¼ 0, as expected.
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δ̈ð2Þ þ 2H _δð2Þ − a−2∂2Φð2Þ

≈ −a−1ð2viL∂i
_δð1Þ þ _viL∂iδ

ð1Þ þHviL∂iδ
ð1ÞÞ: ð54Þ

The leading IR nonlinear terms which must be present in
the nonlinear extension of Eq. (9) can be obtained using
Eq. (27), giving

a−2∂2Φð2Þ≈μΦδ
ð2ÞþνΦ _δ

ð2ÞþσΦδ̈
ð2ÞþνΦa−1viπ;L∂iδ

ð1Þ

þσΦa−1ð2viπ;L∂i
_δð1Þþ _viπ;L∂iδ

ð1Þ−Hviπ;L∂iδ
ð1ÞÞ:
ð55Þ

Now, we combine Eq. (54) and Eq. (55), divide by
1 − σΦ, and simplify the expression further to write

δ̈ð2Þ þ ν̄Φ _δ
ð2Þ − μ̄Φδ

ð2Þ

≈ 2
∂i
_δ

∂2
∂i
_δþ ∂iδ̈

∂2
∂iδþ ν̄Φ

∂i
_δ

∂2
∂iδ

−
σΦa−1

1 − σΦ
ð2Δvi∂i

_δþ Δ _vi∂iδ −HΔvi∂iδÞ

−
νΦa−1

1 − σΦ
Δvi∂iδ; ð56Þ

where it is understood that all of the fields on the right-hand
side are the linear fields.
Now, to solve for δð2Þ in the squeezed limit, we apply the

Green’s function. Explicit details are given in Appendix B 2.
We obtain,

δð2ÞðtÞ ≈ ∂iδ
ð1ÞðtÞ
∂2

∂iδ
ð1ÞðtÞ

þ
Z

t

0

dt1Ḡðt; t1ÞK2ðt1Þ
∂iδ

ð1Þðt1Þ
∂2

∂iδ
ð1Þðt1Þ;

ð57Þ

where K2ðtÞ was defined in Eq. (45). Upon Fourier trans-
forming the above, and comparing it with the squeezed limit
of the full solution for δð2Þ in Eq. (39), we can verify that this
result agrees with that of Eq. (44) in the squeezed limit.
Let us make a few comments about the solution Eq. (57).

Firstly, this shows again that the dipole term is in general
modified in GLPV theories [40], and that this happens also
for the more general DHOST theories. Secondly, the
construction in this section allows us to see explicitly
how the change in the dipole is determined by the
coefficients of the linear solutions, i.e. νΦ and σΦ.
Finally, we also see explicitly that the change in the dipole
is proportional to the relative velocity Δvi, or equivalently
LΔv. We will comment more on this last point in Sec. IV.

IV. SYMMETRIES AND CONSISTENCY
RELATIONS

In the previous sections we have discussed two different
coordinate and field transformations: Eq. (23) and Eq. (51).
The scalar field equations, Eqs. (3)–(5), are invariant under
the former and the fluid equations, Eq. (31), are invariant
under the latter.
We will now discuss the consequences of these trans-

formations on the correlation functions of the density
contrast, distinguishing between two cases: Horndeski
theories, where the large-scale velocity can be removed
by a coordinate transformation, and DHOST theories,
where there are two large-scale velocities which, because
of Eq. (25), cannot both be simultaneously eliminated.

A. Horndeski theories

For Horndeski theories (which include ΛCDM) we
can set

ξiðtÞ ¼ niðtÞ; biφa
ðtÞ ¼ hiφa

ðtÞ ð58Þ

in Eq. (23), so that the full field and fluid equations are
invariant under the same transformations, Eq. (51). We can
then use the invariance of the equations under these
transformations to derive the so-called consistency rela-
tions for LSS valid in ΛCDM [23–25,56].6
A way to derive these relations is by using the adiabatic

mode construction [57], that we extend here to Horndeski
theories. Starting from some solution to the gravitational
and fluid equations, Eqs. (3)–(5) and (31), the trans-
formation Eq. (51) generates a new solution for any
niðtÞ, hiΨðtÞ, and hiπðtÞ. In this way, we can derive the
effect of a long wavelength mode on a short one, at least
locally, and determine the statistical properties of the
density field in the squeezed limit.
However, in order to ensure that the long mode is the

small momentum limit of a real physical solution, we need
to verify that it satisfies the equations of motion that vanish
in the small momentum limit, i.e. that have enough spatial
derivatives to make the transformation Eq. (51) trivially a
symmetry.
First of all, to have a physical solution with a particular

long wavelength velocity viL, we choose _niL ¼ a−1viL (we
have included the subscript L on niL to stress that we are
giving ni a very weak spatial dependence). Then, using the
linear continuity equation, we see that

δL ¼ −∂iniL; ð59Þ

6The proof of the consistency relations relies on Gaussian
initial conditions, so that there is no correlation between long and
short modes in the initial state. We shall assume this throughout
this paper.
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and plugging this into the Euler equation, we have

−∂iðn̈iL þ 2H _niL − μΦniLÞ ¼ 0: ð60Þ

Of course, if niL only depends on time, this equation is
trivially satisfied. However, in order to have a physical
solution, we demand that the equation is satisfied after
removing the spatial derivative, i.e. that

n̈iL þ 2H _niL − μΦniL ¼ 0: ð61Þ

Now, we move to the modified Poisson equations, which
in Horndeski theories take the form a−2∂2φa ¼ μφa

δ.
Again, these equations are trivially satisfied for purely
time dependent ni, and hiφa

, but we demand that they are
satisfied with one derivative stripped off, i.e.

a−2hiφa;L
¼ −μφa

niL: ð62Þ

Because it is possible to choose the time dependence such
that Eq. (61) and Eq. (62) are satisfied (these equations are
equivalent to the linear equations of motion), this means
that we can successfully generate a physical adiabatic mode
which can be used to derive the consistency relations.
The same logic also explains why the dipole term is not

changed in Horndeski theories. At least locally, one can use
the transformations (51) to boost to the rest frame of the
matter and remove the long-wavelength matter velocity viL,
by xi → xi þ niL, where viL ¼ a _niL. In Fourier space, the
effect of this boost on a short mode is

δðk⃗Þ → δðk⃗Þe−ik⃗·n⃗L ≃ δðk⃗Þ þ
Z

k⃗

k⃗1;k⃗2

k⃗1 · k⃗2
k21

δðk⃗1Þδðk⃗2Þ; ð63Þ

where we have expanded the exponential to first order and
used the continuity equation in the form Eq. (59). This
matches the Fourier transform of the squeezed limit
expression Eq. (57) in the case of Horndeski, i.e.
for K2ðtÞ ¼ 0.

B. DHOST theories

If the relative velocity Δvi ≠ 0, the adiabatic mode
construction discussed above does not apply. This is
because one cannot remove both large-scale velocities with
a single transformation of the form Eq. (51). Therefore, we
expect the consistency relations to be generically violated.
To see that Δvi cannot be removed by a coordinate

transformation, imagine imposing Eq. (58) and doing the
transformation Eq. (51) to try to generate a physical
adiabatic mode. In order to try to enforce that the scalar
field equations are also invariant under Eq. (51), we would
need to take hiπ;L ¼ −a2 _niL. Then, the linear equation for
∂2π eq. (9) would demand

_niL ¼ μπniL þ νπ _niL ð64Þ

whereas the linear equation for δ demands

ð1 − σΦÞn̈iL þ ð2H − νΦÞ _niL − μΦniL ¼ 0: ð65Þ
For generic time-dependent coefficients, it is not possible to
simultaneously solve Eq. (64) and Eq. (65), unless, for
example, Eq. (64) becomes trivial by having Hf ¼ μπþ
Hfνπ, which is simply the condition that LΔv ¼ 0, i.e. that
the relative velocity in Eq. (47) vanishes.
The origin of this effect, absent in Horndeski theories,

lies on the kinetic coupling between matter and the scalar
field, also called kinetic matter mixing. As discussed in
[58], in theories beyond Horndeski matter is kinetically
mixed with the scalar field. The effect of a time dependent
boost generates a long-wavelength mode of π affecting this
mixing. Since the velocity of π, viπ and that of the fluid vi

are generally different, one cannot simultaneously remove
the kinetic matter mixing and the convective motion of the
fluid by a single boost.
Because the consistency relation can be violated, we find

that the dipole term Eq. (57) can also be changed from the
standard, single-velocity case, which generalizes the analy-
sis of [40] which restricted to GLPV theories. Although the
consistency relations are violated, the symmetries (23) and
(51) allow us to universally determine the dipole Eq. (57) in
terms of the coefficients of the linear equations νΦ and σΦ,
as shown in Sec. III B. The deviation is proportional to the
relative velocity LΔv, as expected.
Although we only have a single dynamical fluid here, the

current situation is similar to the case of multiple fluids, like
dark matter and baryons, which have a nonzero relative
velocity [59,60].

V. BISPECTRA

Here we explore the observational consequences of what
was discussed in the previous sections on the tree-level
bispectra of the cosmic fields. Our main results rely on
Eq. (44), that Aα ≠ 1 in general in DHOST theories. This
changes the k1=k → 0 limit of the second order field
Eq. (39), which in turn changes the squeezed limit of
the bispectrum, as we show next, from its universal value in
ΛCDM, Horndeski, and other theories that satisfy the
consistency relations. We start correlating the same field,
i.e. the density contrast.

A. Autocorrelation

We can use the perturbative calculations of Sec. III to
compute the equal-time bispectrum of δ, Bðk1; k2; k3Þ,
defined by

hδðk⃗1Þδðk⃗2Þδðk⃗3Þi ¼ ð2πÞ3δDðk⃗1 þ k⃗2 þ k⃗3ÞBðk1; k2; k3Þ:
ð66Þ
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Expanding δ ¼ δð1Þ þ δð2Þ þ � � �, using the explicit solution
for δð2Þ in Eq. (39) and assuming Gaussian initial con-
ditions, we have, at tree level,

Bðk1; k2; k3Þ ¼ 2F2ðk⃗1; k⃗2ÞP11ðk1ÞP11ðk2Þ þ ð2 perms:Þ;
ð67Þ

where P11ðkÞ is the linear power spectrum of δ, defined by

hδð1Þðk⃗Þδð1Þðk⃗0Þi ¼ ð2πÞ3δDðk⃗þ k⃗0ÞP11ðkÞ: ð68Þ

In Fig. 2, we plot the relative difference between the
amplitude of the reduced bispectrum, defined as

Qðk1; k2; k3Þ≡ Bðk1; k2; k3Þ
P11ðk1ÞP11ðk2Þ þ ð2 perms:Þ ; ð69Þ

and the one of the reduced bispectrum in ΛCDM.
Following [61], we plot this as a function of the shape
of the triangle formed by ðk⃗1; k⃗2; k⃗3Þ with the condition
k1 ≤ k2 ≤ k3, for two values of k3, i.e. k3 ¼ 0.01 hMpc−1

and k3 ¼ 0.05 hMpc−1. To show the effect of DHOST
theories, in the upper panels we plot this difference in the
case where Aα is modified by 10% from its ΛCDM value
while Aγ is unmodified. For comparison with more general
modifications one can have in both Horndeski and DHOST
theories, in the lower panels we consider the case where Aγ

is modified by 10% from its ΛCDM value while Aα ¼ 1.

Changing either Aα or Aγ modifies the reduced bispec-
trum for equilateral triangles (upper-right corner of each
plot). However, as first noticed in [40] a change in Aγ does
not produce any modifications for folded triangles k1 þ
k2 ¼ k3 [i.e. along the diagonal going from (0,1) to
(0.5,0.5)]. Therefore, modifications of the bispectrum for
folded triangles are unique signatures of DHOST theories.
There are no enhanced modifications in the squeezed

limit (upper-left corner of each plot). Indeed, the leading
contribution to the bispectrum vanishes in this limit for all
cases. This can be seen by defining q⃗≡ −k⃗1, k⃗≡ k⃗2 − q⃗=2
and expanding Eq. (66), assuming q ≪ k. The term of the
bispectrum proportional to F2ðk⃗2; k⃗3Þ can be neglected and
the bispectrum gives, up to corrections of order
Oððq=kÞ0Þ,7

lim
q→0

Bðq; k2; k3Þ
P11ðqÞP11ðkÞ

≈ −2Aα

�
1

2

q⃗ · k⃗
q2

−
1

2

q⃗ · k⃗
q2

�
¼ 0: ð70Þ

Therefore, there is no k=q enhancement in the squeezed
limit q → 0. This would seem to suggest that the consis-
tency relations are satisfied [23–25,56]. However, the
vanishing of the right-hand side of Eq. (70) is not a
consequence of the consistency relations but simply of
the symmetry of the bispectrum under exchange of the two
arguments k2 and k3 (and translation invariance, i.e. that

FIG. 2. Shape of the difference of the reduced bispectrum and the one in ΛCDM, Qðk1; k2; k3Þ −QΛCDMðk1; k2; k3Þ, for two 10%
modifications away from ΛCDM at z ¼ 0 (which has ðAα; AγÞ ¼ ð1;−0.284Þ, see Fig. 1), i.e. for ðAα; AγÞ ¼ ð1.1;−0.284Þ (upper
panels) and ðAα; AγÞ ¼ ð1;−0.256Þ (lower panels). Only modifying Aα produces a signal for folded triangles (i.e. along the diagonal
going from (0,1) to (0.5,0.5)). As expected, the bispectrum is not enhanced in the squeezed limit (upper-left corner of each plot).

7We are assuming that the long mode is longer than the BAO
scale of the baryon acoustic peak [62].
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k⃗1 þ k⃗2 þ k⃗3 ¼ 0). Therefore, the violation of the consis-
tency relation has no effect on the bispectrum computed
from the auto-correlation. In order to see some effect in the
3-point function, we must correlate different tracers [32], as
we do in Sec. V B.

B. Cross-correlation with the lensing potential

To see an enhanced effect in the squeezed limit, we need
to consider correlations with different tracers, so that the
bispectrum is no longer symmetric under the exchange of
k⃗2 and k⃗3. Following [32], we can estimate the constraining
power of a galaxy survey on this effect by considering the
tree-level bispectrum involving the density contrast of two
classes of objects A and B (e.g. galaxies with different
masses). Defining

hδðk⃗1ÞδAðk⃗2ÞδBðk⃗3Þi ¼ ð2πÞ3δDðk⃗1 þ k⃗2 þ k⃗3Þ
× BABðk1; k2; k3Þ; ð71Þ

one expects a violation of the consistency relation of the
type

lim
q→0

BABðq; k2; k3Þ
P11ðqÞPAB

11 ðkÞ
≈ ϵ

q⃗ · k⃗
q2

; ð72Þ

where PAB
11 ðkÞ is the linear cross-power spectrum between

the two species and ϵ is a parameter that is nonvanishing
only in theories beyond Horndeski. (This estimate holds
also in redshift-space [26].) For a (Euclid-like) survey with
effective volume of Veff ≃ 20 ðGpc=hÞ3, one expects a limit
ϵ≲ 10−3 [32].
As a simplifying, calculable example, we consider the 3-

point correlation function hδðk⃗1Þδðk⃗2Þδlensðk⃗3Þi, where δlens
is the “lensing density,” defined as

δlens ≡ ð3ΩmH2Þ−1a−2∂2ðΦþΨÞ; ð73Þ

where Ωm ≡ ρ̄m=ð3H2M2Þ. Here ðΦþΨÞ=2 is the so-
called lensing potential, which enters measurements of
weak lensing convergence and shear (see for instance [63]).
It is not directly an observable, but lensing observables are
built from projecting this quantity along the line of sight
with some window function.
We want to compute the tree-level matter-matter-lensing

bispectrum, defined by

hδðk⃗1Þδðk⃗2Þδlensðk⃗3Þi ¼ ð2πÞ3δDðk⃗1 þ k⃗2 þ k⃗3Þ
× Bmmlðk1; k2; k3Þ: ð74Þ

As usual, we expand δlens into first- and second-order parts.
From Eq. (eq. (13)) we have

δð1Þlensðk⃗Þ ¼ Llensδ
ð1Þðk⃗Þ; ð75Þ

where

Llens ≡ ð3ΩmH2Þ−1ðLΦ þ LΨÞ: ð76Þ

Next, we need δlens at second order. Plugging δð2Þ and

a−2∂2φð2Þ;NL
a , using Eq. (39) and Eq. (16), into the second-

order Poisson equation Eq. (15), and using this equation in
Eq. (73) above, we obtain

δð2Þlensðk⃗Þ ¼
Z

k⃗

k⃗1;k⃗2

Flens
2 ðk⃗1; k⃗2Þδð1Þðk⃗1Þδð1Þðk⃗2Þ; ð77Þ

where

Flens
2 ðk⃗1; k⃗2Þ ¼ Alens

α αsðk⃗1; k⃗2Þ þ Alens
γ γðk⃗1; k⃗2Þ; ð78Þ

with

Alens
α ¼ ð3ΩmH2Þ−1

�
υΦαs þ υΨαs þ ðμΦ þ μΨÞAα

þ ðνΦ þ νΨÞ∂tðAαD2þÞ þ ðσΦ þ σΨÞ∂2
t ðAαD2þÞ

D2þ

�
;

ð79Þ

and an analogous expression for Alens
γ .

Using the expressions above, the matter-matter-lensing
bispectrum reads

Bmmlðk1; k2; k3Þ ¼ 2P11ðk1ÞP11ðk2ÞFlens
2 ðk⃗1; k⃗2Þ

þ 2LlensP11ðk1ÞP11ðk3ÞF2ðk⃗1; k⃗3Þ
þ 2LlensP11ðk2ÞP11ðk3ÞF2ðk⃗2; k⃗3Þ:

ð80Þ

In Fig. 3 we plot the relative difference between the
amplitude of the reduced cross-correlation bispectrum,

Qmmlðk1; k2; k3Þ≡ Bmmlðk1; k2; k3Þ
P11ðk1ÞP11ðk2Þ þ ð2 perms:Þ ; ð81Þ

and the one of the reduced cross-correlation bispectrum in
ΛCDM as a function of the shape, for k3 ¼ 0.01 hMpc−1

and k3 ¼ 0.05 hMpc−1. For simplicity, we set Llens ¼ 1
and Aα and Aγ to their ΛCDM values, and focus on the
effect of modifications of Alens

α and Alens
γ . To show the effect

of DHOST theories, in the upper panels we plot this
difference in the case where Alens

α is modified by 10%
from its ΛCDM value while Alens

γ is unmodified. In the
lower panels we consider the case where Alens

γ is
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(negatively) modified by 10% from its ΛCDM value while
Alens
α ¼ 1, as predicted by Horndeski theories.
As in the case of the auto-correlation bispectrum, only by

changing Alens
α can one affect the bispectrum for folded

triangles. Moreover, contrarily to the autocorrelation case,
changing Alens

α also generates an enhanced signal in the
squeezed limit. In particular, in this limit with q⃗ ¼ −k⃗1 and
k⃗ ¼ k⃗2 − q⃗=2, one has, up to corrections of order
Oððq=kÞ0Þ,

lim
q→0

Bmmlðq; k2; k3Þ
P11ðqÞP11ðkÞ

≈ ðLlensAα − Alens
α Þ q⃗ · k⃗

q2
: ð82Þ

The k=q enhancement on the right-hand side shows that the
consistency relation does not hold in beyond Horndeski
theories, similarly to what happens in the presence of a
violation of the equivalence principle due to a fifth-force
[32]. One can check, instead, using the definition of Llens,
Lφa

, and Alens
α , respectively Eqs. (76), (14), and (79), that

for Horndeski theories the right-hand side of this equation
vanishes, as expected by the consistency relations.
Although, as explained after Eq. (73), Bmml is not directly
an observable, Eq. (82) gives an estimate of what one
would find for the bispectrum obtained by cross-correlating
observable quantities such as the galaxy-galaxy-galaxy
lensing shear bispectrum. The k=q enhancement makes
this effect easier to see, so that one can obtain fairly tight

observational bounds on the squeezed limit cross-bispec-
trum without having to go through a full cosmological
analysis.
Additionally, when the consistency relations are broken,

different tracers of the dark-matter distribution can in
general have different squeezed limits. This means that
when correlating different tracers, one expects an effect of
the form Eq. (82), proportional to the difference in the bias
coefficients of the two tracers.

VI. OTHER OBSERVATIONAL CONSEQUENCES

The breaking of the consistency relations in DHOST
theories has observational consequences on cosmological
observables involving higher-order kernels in perturbation
theory, which we briefly discuss in this section.

A. n-point functions

Let us discuss the observational consequences associated
with squeezed configurations of n-point functions. One can
convince oneself that, by symmetry, any (nþ 1)-point
correlation function of all the same fields where only
one leg with momentum q is made soft will be proportional
to the sum of the short momenta,

P
n
i¼1 k⃗i, which vanishes

at leading order in q by momentum conservation. Thus, as
for the (auto-correlation) bispectrum there are no obvious
consequences in the single soft-mode squeezed limit of any
(nþ 1)-point correlation function.

FIG. 3. Shape of the difference of the reduced cross-correlation bispectrum and the one in ΛCDM,
Qmmlðk1; k2; k3Þ −Qmml

ΛCDMðk1; k2; k3Þ, for two 10% modifications away from the ΛCDM values ðAlens
α ; Alens

γ Þ ¼ ð1;−0.284Þ, i.e. for
ðAlens

α ; Alens
γ Þ ¼ ð1.1;−0.284Þ (upper panels) and ðAlens

α ; Alens
γ Þ ¼ ð1;−0.256Þ (lower panels), while setting Llens ¼ 1 and ðAα; AγÞ to their

ΛCDM values. Only changing Alens
α produces a signal for folded triangles. Moreover, as discussed in the text, for LlensAα − Alens

α ≠ 0
(upper panels) the signal is maximized in the squeezed limit (upper-left corner; since the bispectrum diverges in the squeezed limit, for
presentation purposes we stop plotting it when Qmml −Qmml

ΛCDM > 0.195).
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As a next possibility, one can consider a higher number
of soft modes. The simplest example is the trispectrum,
defined by

hδðk⃗1Þδðk⃗2Þδðk⃗3Þδðk⃗4Þi ¼ ð2πÞ3δDðk⃗1 þ k⃗2 þ k⃗3 þ k⃗4Þ
× Tðk⃗1; k⃗2; k⃗3; k⃗4Þ: ð83Þ

In particular, let us focus on the double-soft limit
Tðq⃗1; q⃗2; k⃗1; k⃗2Þ, where two of the modes, q⃗1 and q⃗2, are
made much smaller than the other two, k⃗1 and k⃗2.
In the standard case (ΛCDM or Horndeski theories), the

consistency relations ensure that the trispectrum vanishes at
leading order in q1;2=k1;2 in the double-squeezed limit.
This is straightforward to verify in perturbation theory.
Following the discussion of Sec. 2.1 of [26], the double-
soft limit of the trispectrum in perturbation theory is given
by the sum of three contributions. The first is obtained
when the density perturbations of the short modes are both
taken at second order, i.e.,

T1122 ¼ 4P11ðq1ÞP11ðq2ÞP11ðjk⃗1 þ q⃗1jÞF2ð−q⃗1; k⃗1 þ q⃗1Þ
× F2ð−q⃗2; k⃗2 þ q⃗2Þ þ ðk⃗1 ↔ k⃗2Þ: ð84Þ

Another one is obtained when one of the short-mode
density perturbation is taken at third order. Defining the
third-order kernel F3 analogously to F2 as

δð3Þðk⃗Þ ¼
Z

k⃗

k⃗1;k⃗2;k⃗3

F3ðk⃗1; k⃗2; k⃗3Þδð1Þðk⃗1Þδð1Þðk⃗2Þδð1Þðk⃗3Þ;

ð85Þ
(from the definition F3 is symmetric under permutations of
fk⃗1; k⃗2; k⃗3g), this reads

T1113 ¼ 6P11ðq1ÞP11ðq2ÞP11ðk1ÞF3ð−q⃗1;−q⃗2;−k⃗1Þ: ð86Þ

The last contribution is obtained by taking the other short
mode at third order, i.e. exchanging k⃗1 ↔ k⃗2 in Eq. (86).
In the standard case F2ð−q⃗1; k⃗1 þ q⃗1Þ ≈ −q⃗1 · k⃗1=ð2q21Þ,
and F3ð−q⃗1;−q⃗2;−k⃗1Þ ≈ ðq⃗1 · k⃗1Þðq⃗2 · k⃗1Þ=ð6q21q22Þ, so
that once one considers the permutations, there is a
cancellation between these three contributions.
This is no longer true in DHOST theories. If we define

the (time-dependent) coefficient of F3 in the squeezed
limit as Bα from F3ð−q⃗1;−q⃗2;−k⃗1Þ ≈ Bαðq⃗1 · k⃗1Þðq⃗2 · k⃗1Þ=
ð6q21q22Þ, for the trispectrum in the double-squeezed limit

(setting k⃗2 ≈ −k⃗1) we obtain

lim
q1;2→0

Tðq⃗1; q⃗2; k⃗1; k⃗2Þ
Pðq1ÞPðq2ÞPðk1Þ

≈ −8ðA2
α − BαÞ

q⃗1 · k⃗1
2q21

q⃗2 · k⃗1
2q22

;

ð87Þ

which shows that the consistency relation is violated in this
case. One can show by an explicit computation that in
DHOST theories Bα ≠ A2

α but we postpone its presentation
to future work.

B. Loops

The cancellation between T1122 and T1113 discussed
above is also crucial in loop diagrams.8 For instance, the
1-loop power spectrum receives two contributions,
P1-loop ¼ P22 þ P13, where

P22ðkÞ≡ 2

Z
d3q⃗
ð2πÞ3 ½F2ðq⃗; k⃗ − q⃗Þ�2P11ðqÞP11ðjk⃗ − q⃗jÞ;

P13ðkÞ≡ 6

Z
d3q⃗
ð2πÞ3 F3ðq⃗;−q⃗; k⃗ÞP11ðqÞP11ðkÞ: ð88Þ

In the standard case, the IR parts of these integrals, coming
from the small momenta q ≪ k, cancel when summing
P22 þ P13 [55,64–66] as a consequence of the equivalence
principle [25]. This was also shown to happen in ΛCDM
and quintessence theories with exact time dependence [67].
This cancellation does not hold anymore when the

consistency relations are violated [26]. Indeed, as expected
from the above discussion, in DHOST theories we have

P1-loopðkÞ
P11ðkÞ

≈ 4ðA2
α − BαÞ

Z
q≲k

d3q⃗
ð2πÞ3

�
q⃗ · k⃗
2q2

�
2

P11ðqÞ: ð89Þ

Here the IR divergences come from the q⃗ → 0 limit in P13,
and from the q⃗ → 0 and q⃗ → k⃗ limits in P22. This
expression can be rewritten as

P1-loopðkÞ
P11ðkÞ

≈ ðA2
α − BαÞ

k2

3
σ2v; ð90Þ

where σ2v ≡ R
q≲k

d3q⃗
ð2πÞ3 P11ðqÞ=q2 is the variance of the long-

wavelength displacement, which depends on where we
place the IR cutoff. Taking it for instance at 0.04 Mpc−1h
we find σ−1v ≃ 0.15 Mpc−1h, which is where nonlinear
scales start. (For power-law universes with P11ðkÞ ∝ kn,
this loop will only be IR-convergent for n > −1 instead of
the standard n > −3 for theories that satisfy the equiv-
alence principle.)
In conclusion, in ΛCDM and Horndeski theories (i.e.

for Aα ¼ Bα ¼ 1) the long-wavelength displacement of
momentum q does not affect the 1-loop power spectrum at
k ≫ q, as expected from the equivalence principle, but in
DHOST theories the long-wavelength motion affects the
short-scale physics on nonlinear scales.

8For example, the leading IR part of the 1-loop power
spectrum can be obtained from the double-soft four-point
function by gluing together the two soft legs.
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VII. CONCLUSION

In this paper we have investigated the consistency
relations for large-scale structure when gravity is modified.
Assuming Gaussian initial conditions, we have shown that
the consistency relations derived in ΛCDM also hold for
Horndeski theories. Indeed, the gravitational and fluid
equations are simultaneously invariant under the same
combination of coordinate and field transformations, which
we discuss in Secs. II C and III B, that can be used to
remove the effect of a long-wavelength mode q on the
short-scale physics (see Sec. IVA). This is analogous to
what happens in ΛCDM due to the equivalence principle.
The validity of the consistency relations for Horndeski

theories was derived using perturbation theory, but as long
as the coupling with the long wavelength mode satisfies the
equivalence principle, these relations are nonperturbative,
i.e. they hold regardless of the nonlinear short-scale phy-
sics, such as baryonic effects, bias, etc. Of course, in scalar-
tensor theories, self-interactions of the scalar field are
known to renormalize the coupling to a long-wavelength
field and lead to violations of the equivalence principle
[68]. However, the class of theories that we discuss here
enjoy Galilean invariance [69] and are known not to
renormalize the scalar charge as long as the gravitational
and scalar binding energies are negligible [68,70].
Next, we extended this study to DHOST theories. As

discussed in Sec. IV B, in this case, due to the kinetic
coupling between matter and the scalar field, the gravita-
tional and fluid equations are invariant under two separate
combinations of coordinate and field transformations. In
the absence of a common transformation, the consistency
relations are not satisfied.
We have also discussed the consequences on the per-

turbation-theory kernels. In ΛCDM, their values in the
squeezed limit (i.e. in the limit when one or more modes
become much smaller than the others) are protected by the
symmetry transformation of the gravitational and fluid
equations. We have shown that these properties also extend
to Horndeski theories. However, in theories beyond
Horndeski the perturbation-theory kernels are modified
also in the squeezed limit, as we have shown explicitly by
computing the second-order solutions of the density con-
trast and velocity divergence. Although a large-scale
physical adiabatic mode is absent in this case, we can still
use the transformations of the gravitational field and fluid
equations to compute the form of the second-order kernels
in the squeezed limit from the linear solution, see Sec. III B.
Using the second-order kernel, in Sec. VA we have

computed the matter bispectrum. Thanks to translational
invariance, it is not enhanced as 1=q in the squeezed limit
even in beyond Horndeski theories. However, for DHOST
theories, its shape receives modifications in the so-called
folded limit k1 þ k2 ¼ k3, confirming and extending the
results of [40]. To see an enhancement signaling a viola-
tion of the consistency relation, we must consider the

cross-correlation between different tracers, such as for
instance the correlation of the density contrast with the
lensing potential, computed in Sec. V B.
Violation of the consistency relations canbe also observed

in higher-order correlators and in Sec. VI Awe study these
violations in the trispectrum in the double squeezed limit.
The same effects can be also observed in the 1-loop power
spectrum (Sec. VI B): while in ΛCDM and in Horndeski
theories short-scale physics is not affected by longer modes
as expected by the equivalence principle, inDHOST theories
this is not the case. For this reason, the usual treatment of
BAO reconstruction and IR resummation (see for instance
[71] and references therein for past and recent developments)
cannot be applied to these theories and must be revised. We
postpone a detailed study of these topics to future work.
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APPENDIX A: COEFFICIENTS

Here, we report the covariant DHOST action, its expres-
sion in terms of the EFTof DE, and the explicit expressions
for many of the coefficients appearing in the main text. We
find it useful sometimes to write χN ¼ fΦ;Ψg in order to
separate the Newtonian potentials from the scalar field π.

1. DHOST action and map

The action for DHOST theories, including all possible
quadratic combinations up to second derivatives of the field
ϕ, reads

SDHOST ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Pðϕ; XÞ þQðϕ; XÞ□ϕ

þ fðϕ; XÞð4ÞRþ
X5
I¼1

aIðϕ; XÞLIðϕ;ϕ;ν;ϕ;ρσÞ
�
;

ðA1Þ
where X ≡ −ϕ;μϕ

;μ=2, a semicolon denotes the covariant
derivative, ð4ÞR is the 4D Ricci scalar, P, Q, f and aI are
free functions, and the LI are defined by
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L1 ¼ ϕ;μνϕ
;μν; L2 ¼ ðϕ;μ

;μÞ2; L3 ¼ ðϕ;μ
;μÞðϕ;ρϕ;ρσϕ

;σÞ;
L4 ¼ ϕ;μϕ;μνϕ

;νρϕ;ρ; L5 ¼ ðϕ;ρϕ;ρσϕ
;σÞ2: ðA2Þ

The time-dependent functions appearing in the EFT of
DE action Eq. (1) are related to the free functions in the
above action as [17,22]

M2 ¼ 2ðf − 2a2XÞ;
αB ¼ αV − 3β1 þ _ϕðfϕ þ 2Xf;ϕX þ XQ;XÞ=ðM2HÞ;
c2T ¼ 2f=M2;

αH ¼ 4Xða2 − f;XÞ=M2;

β1 ¼ 2Xðf;X − a2 þ a3XÞ=M2;

β2 ¼ −8X2ða3 þ a4 − 2a5XÞ=M2;

β3 ¼ −8Xðf;X − a2 − a4XÞ=M2;

αV ¼ 4Xðf;X − 2a2 − 2Xa2;XÞ=M2: ðA3Þ

2. Equations of motion

The coefficients appearing in the equations of motion
Eqs. (3)–(5), are given explicitly by

c1 ¼ −4HαB þHð4αH − 2β3ð1þ αMÞÞ − 2_β3;

c2 ¼ 4Hð1þ αM − c2TÞ þ 4ðHαHð1þ αMÞ þ _αHÞ;

c3 ¼ −2H2C2 þ
1

2
fH½4_αH − 2ð1þ αMÞ_β3 − β3 _αM� − β̈3g

þ 1

2
f−H2ð1þ αMÞ½−4αH þ β3ð1þ αMÞ�

þ 4αH _H − β3ð1þ αMÞ _Hg;
c4 ¼ 4ð1þ αHÞ; c5 ¼ −2c2T; c6 ¼ −β3;

c7 ¼ 4αH; c8 ¼ −2ð2β1 þ β3Þ; c9 ¼ 4β1 þ β3;

ðA4Þ

with

C2 ≡ −αM þ αBð1þ αMÞ þ c2T − 1

þ ð1þ αBÞ
_H
H2

þ _αB
H

þ ρ̄m
2H2M2

; ðA5Þ

b1 ¼ H½4αB þ αVð−1þ αMÞ − 2αM þ 3ðc2T − 1Þ�
þ _αV −H½8β1αM þ αHð3þ αMÞ� − _αH − 8_β1;

b2 ¼ αV − αH − 4β1; b3 ¼ c2T − 1: ðA6Þ

We have also defined

C1 ≡ 1

4
ðc1 −Hc8ð1þ αMÞ − _c8Þ;

C2 ≡ 1

4
ðc2 −Hc7ð1þ αMÞ − _c7Þ;

C3 ≡ 1

4
f2c3 þ ð1þ αMÞ½2H _c9 þ c9ðH2ð1þ αMÞ þ _HÞ�

þ c9H _αM þ c̈9g;

C4 ≡ 1

2
ðc9Hð1þ αMÞ þ _c9Þ: ðA7Þ

Note that these equations are general: no degeneracy
conditions or observational constraints have been assumed.

3. Linear solutions

Here, we focus on the linear equations of motion to give
explicit expressions for the coefficients appearing in
Eq. (9). As usual, we solve Eqs. (3)–(4) for ∂2Φ and
∂2Ψ in terms of ∂2π, ∂2 _π, and δ. This has the form

∂2χN ¼ ωχN
1 ∂2π þ ωχN

2 ∂2 _π þ ωχN
3 δ; ðA8Þ

where

ωΦ
1 ¼ 8C1c5 − 4C2c4

ω
; ωΦ

2 ¼ c4c7 − 2c5c8
ω

ωΦ
3 ¼ −4a2c5ρ̄m

ωM2
; ωΨ

1 ¼ 8C2c6 − 4C1c4
ω

ωΨ
2 ¼ c4c8 − 2c6c7

ω
; ωΨ

3 ¼ 2a2c4ρ̄m
ωM2

; ðA9Þ

where ω≡ c24 − 4c5c6. Next, we plug these expressions
into Eq. (5) to obtain the expression for ∂2π, where,
once we impose the degeneracy conditions discussed in
Sec. II A, the terms proportional to ∂2 _π and ∂2π̈ drop out,
and we are left with an expression as in Eq. (9) with

μπ ¼ −
c1ωΦ

3 þ c2ωΨ
3 þ c8 _ωΦ

3 þ c7 _ωΨ
3

a2Cπ
;

νπ ¼ −
c8ωΦ

3 þ c7ωΨ
3

a2Cπ
; ðA10Þ

where we have defined

Cπ ¼ 4C3 þ c1ωΦ
1 þ c2ωΨ

1 þ c8 _ωΦ
1 þ c7 _ωΨ

1 : ðA11Þ

Next, we plug the solution for ∂2π into Eqs. (3)–(4) to
get the solutions for ∂2Φ and ∂2Ψ in the form Eq. (9) with

μχN ¼ μπðωχN
1 þ 2HωχN

2 Þ þ _μπω
χN
2 þ a−2ωχN

3 ;

νχN ¼ μπω
χN
2 þ νπðωχN

1 þ 2HωχN
2 Þ þ _νπω

χN
2 ;

σχN ¼ νπω
χN
2 : ðA12Þ
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Note that these equations are general: no degeneracy
conditions or observational constraints have been assumed,
except to say that the terms proportional to ∂2 _π and ∂2π̈
drop out of the solution for ∂2π.
Now, we specialize to the case where we impose the

degeneracy conditions in Sec. II A, along with αH ¼ −2β1
(which imposes that gravitational waves do not decay).9

This gives

μπ ¼
1

M2Cπð1 − β1Þ2
�
2ð1 − β1Þβ1 _̄ρm

þ 2Hρ̄mðαB − αMð1 − β1Þ þ β1ð4 − 3β1ÞÞ
�

νπ ¼
2β1ρ̄m

M2Cπð1 − β1Þ
ðA13Þ

where

Cπ ¼
2H2αc2s
ð1 − β1Þ2

; ðA14Þ

and

αc2s ≡ −
ρ̄mð1 − β1Þ2

H2M2
þ 2

�
1þ αB −

_β1
H

�2

×

�
1

aM2

d
dt

�
aM2ð1 − β1Þ

Hð1þ αBÞ − _β1

�
− 1

�
: ðA15Þ

For the other coefficients in Eq. (9), we have

μΦ ¼ ρ̄m
2M2ð1 − β1Þ2

þ μπϖΦ − _μπβ1
1 − β1

;

νΦ ¼ −ðμπ þ _νπÞβ1 þ νπϖΦ

1 − β1
; σΦ ¼ −

νπβ1
1 − β1

; ðA16Þ

and

μΨ ¼ ρ̄mð1 − 2β1Þ
2M2ð1 − β1Þ2

þ μπϖΨ þ _μπβ1
1 − β1

;

νΨ ¼ ðμπ þ _νπÞβ1 þ νπϖΨ

1 − β1
; σΨ ¼ νπβ1

1 − β1
; ðA17Þ

where we have defined

ϖΦ ¼ HðαB − αM − β1ð1 − αM − 2β1ÞÞ − _β1
1 − β1

;

ϖΨ ¼ 1

1 − β1

�
− _β1 þ 2β1 _β1

þHðαB þ β1ð3 − 2αB þ αMÞ − β21ð4þ αMÞÞ
�
:

ðA18Þ

4. Quadratic solutions

The solutions for the gravitational potentials in terms of
π can be written

∂2χð2ÞN ¼ ωχN
1 ∂2πð2Þ þ ωχN

2 ∂2 _πð2Þ þ ωχN
3 δð2Þ

þ a−2ðλχN1 Q2½πð1Þ; πð1Þ� þ λχN2 P2½πð1Þ; πð1Þ�Þ;
ðA19Þ

where we have defined P2½φa;φb� ¼ ∂ið∂jφa∂i∂jφbÞ, and

λΦ1 ¼ 2b2c5 − b3c4
ω

; λΦ2 ¼ 2c5c8 − c4c7
ω

λΨ1 ¼ 2b3c6 − b2c4
ω

; λΨ2 ¼ 2c6c7 − c4c8
ω

: ðA20Þ

Now, taking Eq. (A19), plugging it into Eq. (5), and

replacing all of the linear solutions in the form ∂2φð1Þ
a ¼

a2Lφa
δð1Þ using Eq. (14), we obtain a solution for ∂2πð2Þ of

the form Eq. (16) with

υπα ¼ −νπLπ; and υπγ ¼ −υπα þ Δυπγ ; ðA21Þ

where

−
Cπ

Lπ
Δυπγ ¼ b1Lπ þ 2b2LΦ þ 2b3LΨ

þ q1;8;Φ þ q2;7;Ψ − 2c9ðð2þ fÞHLπ þ _LπÞ;
ðA22Þ

with

qi;j;χN ¼ −cjLχN þ Lπλ
χN
1 ci

þ Lπλ
χN
1 cj

�
2ð1þ fÞH þ 2

_Lπ

Lπ
þ

_λχN1
λχN1

�
: ðA23Þ

Now, we plug the solution for ∂2πð2Þ into Eq. (A19)
to get,

υχNα ¼ −νχNLπ − σχN ð3HfLπ þ _LπÞ;
υχNγ ¼ L2

πðλχN1 − λχN2 Þ
þ υπγ ðωχN

1 þ 2ð1þ fÞHωχN
2 Þ þ _υπγω

χN
2 : ðA24Þ

9Notice that, while we use many of the same symbols as [22],
their definitions have changed slightly in order to simplify the
current work.
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Note that these equations are general: no degeneracy
conditions or observational constraints have been assumed.
Also, notice that the coefficients of Xαs are relatively simple
and only depend on the coefficients in the linear equations
of motion. The reason for this is discussed in Sec. II C.

APPENDIX B: GREEN’S FUNCTION

1. Definition

To solve the system equation (31) perturbatively, we use
the Green’s function, defined by

∂2
t Gðt; t1Þ þ ν̄ΦðtÞ∂tGðt; t1Þ − μ̄ΦðtÞGðt; t1Þ ¼ δDðt − t1Þ;

ðB1Þ
whose explicit expression is given by

Gðt; t1Þ ¼ Ḡðt; t1ÞΘHðt − t1Þ; ðB2Þ
with

Ḡðt; t1Þ≡D−ðtÞDþðt1Þ −DþðtÞD−ðt1Þ
Wðt1Þ

; ðB3Þ

where the Wronskian is given by

WðtÞ ¼ DþðtÞ _D−ðtÞ −D−ðtÞ _DþðtÞ; ðB4Þ
and ΘH is the Heaviside step function.

2. Green’s function manipulations

To solve Eq. (56) for δð2Þ in the squeezed limit, we apply
the Green’s function to the right-hand side. We first apply it
to the second line in Eq. (56), where we will find that we
obtain the standard contribution. We have

Z
t

0

dt1Ḡðt; t1Þ
�
2
∂i
_δ

∂2
∂i
_δþ ∂iδ̈

∂2
∂iδþ ν̄Φ

∂i
_δ

∂2
∂iδ

�
t1

: ðB5Þ

Next, we integrate by parts the term proportional to δ̈ to get

Z
t

0

dt1
∂i
_δðt1Þ
∂2

fðν̄Φðt1ÞḠðt; t1Þ − ∂t1Ḡðt; t1ÞÞ∂iδðt1Þ

þ Ḡðt; t1Þ∂i
_δðt1Þg; ðB6Þ

and we remind the reader that all δ fields appearing above
are the linear field δð1Þ.
Now, one can check explicitly using Eq. (B3) and the

fact that _W ¼ −ν̄ΦW, that

ν̄Φðt1ÞḠðt; t1Þ − ∂t1Ḡðt; t1Þ
¼ Wðt1Þ−1ðDþðtÞ _D−ðt1Þ −D−ðtÞ _Dþðt1ÞÞ ðB7Þ

and further that

Wðt1Þ−1ðDþðtÞ _D−ðt1Þ −D−ðtÞ _Dþðt1ÞÞδð1Þðt1Þ
¼ δð1ÞðtÞ − Ḡðt; t1Þ_δð1Þðt1Þ; ðB8Þ

for any linear combination of growing and decaying modes
δð1Þ. Using Eq. (B7) and Eqs. (B8), (B6) becomes

Z
t

0

dt1
∂i
_δð1Þðt1Þ
∂2

∂iδ
ð1ÞðtÞ ¼ ∂iδ

ð1ÞðtÞ
∂2

∂iδ
ð1ÞðtÞ; ðB9Þ

which is the standard contribution familiar from ΛCDM
and Horndeski theories.
Finally, we apply the Green’s function to the last

two lines of Eq. (56). This does not simplify in any
particularly nice way, so, after plugging in the linear fields,
we get Eq. (57).
With these manipulations in mind, we can also show how

to directly obtain the identity equation (44). For this, we use
the growing mode solution Eq. (11) in Eq. (B5), from
which we find

1 ¼
Z

t

0

dt1Ḡðt; t1Þ
Dþðt1Þ2
DþðtÞ2

× ð3f2H2 þH _f þ f _H þ ν̄ΦHfÞt1 : ðB10Þ

Now, we would like to rewrite Eq. (37) for υδα so that we
isolate the expression above in parentheses, so we add and
subtract 3f2H2 þH _f þ f _H þ ν̄ΦHf to the right-hand side
of Eq. (37) to get

υδα ¼ 3f2H2 þH _f þ f _H þ ν̄ΦHf þ K2: ðB11Þ

After plugging this into Eq. (43), we obtain Eq. (44).
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