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ABSTRACT: 

Given the lack of background data on essential and non-essential trace elements in invertebrates 

and fish known to be the predominant prey of marine mammals and seabirds breeding at the 

Kerguelen Islands, this study intends to provide these results of great influence for predators in 

higher trophic levels. To this end, plankton organisms (9 species/4 phyla), mollusks (2 bivalves 

and 2 squid species) and fishes (8 benthic and 10 pelagic species) from Kerguelen waters were 

analysed for cadmium (Cd), copper (Cu), mercury (Hg), and zinc (Zn). Individual 

concentrations of non-essential elements (particularly Cd) showed larger variation in 

comparison with essential ones due to homeostasis. Cd ranged over 4 orders of magnitude; 

however, Hg ranged only 1, without significant correlation to trophic level. Instead, ecological 

parameters (benthic/mesopelagic habitat and feeding ecology) showed a more important 

influence on the results. Concerning seashore organisms, bivalves collected inside the Gulf of 

Morbihan had higher Cd concentrations compared to those from the Kerguelen shelf, 

suggesting a local source of Cd, such as runoff water from bird colonies. Comparison with 

literature showed metal concentrations in invertebrates and fishes from Kerguelen Islands 

somewhat lower than in the Antarctic area, with Hg prevailing in benthic species and Cd in 

pelagic ones. In contrast to Hg, Cd values of squids, jellyfish and the amphipod Themisto 

gaudichaudii were significantly higher than all other species. Finally, top predators foraging in 

this area that can be subject to potentially high Hg and Cd exposure through their diet at 

Kerguelen are reviewed. 

 

Keywords: plankton; myctophid; food web; metals; trace elements; Kerguelen 
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INTRODUCTION 

 

The Southern Ocean constitutes a particular environment for marine biota where human inputs 

of metals are supposed to be very low. Several essential elements such as iron (Fe) or copper 

(Cu) are poorly concentrated and/or bioavailable in these waters and could therefore act as 

limiting factors for phytoplankton (e.g. Coale, 1991). In higher trophic level organisms, low Cu 

and zinc (Zn) concentrations in regard to organisms from temperate regions have been found in 

crustaceans and mollusks (e.g. Bustamante et al. 1998a, 2003; Petri and Zauke 1993; Rainbow 

1989), raising the question of how can these organisms cope with essential element supposed 

deficiency. Several hypotheses have been suggested to answer this question such as a relatively 

higher efficiency of mechanisms of element uptake compared to similar organisms from non-

deficient areas and/or the replacement of essential elements by non-essential ones in 

biochemical reactions or in enzymes. To date, such replacement has only been evidenced for 

Zn substitution by Cd in carbonic anhydrase from marine diatoms (Lane and Morel 2000; Lane 

et al. 2005; Xu et al. 2008). In this context, the interactions between essential and non-essential 

elements in invertebrates and fish from the Southern Ocean appear poorly documented and, 

moreover, baseline values necessary for the study of such interactions are even scarcer, if not 

inexistent in the literature. 

Despite the comparatively low inputs of non-essential elements, very high 

concentrations of Cd and Hg have been reported in several organisms from distinct trophic 

levels in Antarctic and subantarctic environments (Sanchez-Hernandez 2000; Bustamante et al. 

2003; Dos Santos et al. 2006; Bargagli 2008). Population growth and industrial development in 

several countries of the Southern Hemisphere are changing the global pattern of persistent 

anthropogenic contaminants and new classes of chemicals have already been detected in the 

Southern Ocean (e.g. Bargagli 2008; Von Waldow 2010; Carravieri et al. 2014a). Very high 
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concentrations of both Cd and Hg were also found in the tissues of top predators such as seabirds 

and marine mammals from the Southern Ocean (see the review of Sanchez-Hernandez, 2000). 

These high trophic level vertebrates are mainly exposed to trace elements through their food 

(Aguilar et al. 1999; Muirhead and Furness 1988) and some specific prey highly contribute to 

the exposure to a given element. For example, cephalopod consumption is well-known to 

provide elevated concentrations of Cd under a bioavailable form (Bustamante et al. 1998b, 

2002) and mesopelagic fish contain high amounts of methyl-Hg (e.g. Chouvelon et al. 2012; 

Monteiro et al. 1996). However, there is only a few data on invertebrates and fish to provide 

background for explaining the high Cd and Hg concentrations in the top predators from the 

Southern Ocean. Therefore, it is of major concern to provide data about lower trophic level 

organisms they feed on to give a more comprehensive and evidence supported basis to their 

contamination pattern. In addition to that, age, trophic position, sex, size among other ecological 

parameters likely play a role in trace elements concentration in these prey organisms (e.g. Dehn 

et al 2006; Locarnini and Presley 1995; McIntyre et al. 2007). 

Situated near the Polar Front, the Kerguelen Islands are a particularly important area for 

breeding seabirds and for mammals (see Guinet et al. 1996). Specifically, this archipelago hosts 

a large and highly diverse avian assemblage (35 different breeding species according to 

Weimerskirch et al. 1989) and 13 species of marine mammals (3 mysticetes, 7 odontocetes and 

3 pinnipeds; Borsa 1997). According to their reproduction strategies, many seabird species 

catch their prey in the highly productive waters around the Archipelago and feed on a few key 

species of marine organisms, including some crustaceans (e.g. euphausiids, hyperiids, 

copepods), fish (e.g. myctophids, notothenioids) and cephalopods (e.g. oceanic squids) (Bocher 

et al. 2001; Cherel and Hobson 2005; Cherel et al. 2010; Guinet et al. 1996). Their exposure to 

contaminants and that of their offspring is therefore determined by the concentrations in these 
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lower trophic level organisms consumed specifically in this area, at least during the breeding 

period. 

In this context, the present study was conducted to document selected trace element 

concentrations in zooplankton, mollusks and fishes around the Kerguelen Islands to provide 

understanding on the degree of metal contamination in low trophic level organisms being the 

prey of seabirds and marine mammals. To this end, Cd, Cu, Hg and Zn have been analysed in 

organisms belonging to different phyla of pelagic invertebrates and in 17 coastal and oceanic 

fish species to cover the main categories of prey species of the Kerguelen seabird community 

and of the marine mammals foraging in these waters. The non-essential elements Cd and Hg 

constitute the main metals of concern for wild vertebrates because of their known toxicity 

(Scheuhammer 1987; Tan et al. 2009; Tartu et al. 2013). In turn, Cu and Zn can be disturbed 

by the interaction of Cd and Hg on their regulation proteins such as the metallothioneins (e.g. 

Øverjordet et al. 2015). The levels of these trace elements were compared within the benthic 

and pelagic food webs and were globally compared with similar organisms from other marine 

ecosystems, when available. Finally, the significance of key species in contaminants transfer 

towards top predators was examined. 

 

MATERIALS AND METHODS 

 

Sampling of organisms 

 

Pelagic and benthic organisms were successively collected in the waters surrounding the 

Kerguelen Island Archipelago (Figure 1) during the austral summers from 1997 to 1999. 

Information on these organisms are summarised in Table 1. In coastal waters, pelagic 

zooplankton mainly constituted by hyperiid amphipods (Themisto gaudichaudii) and copepods 
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(Paraeuchaeta antarctica), was sampled inside the Morbihan Gulf in March 1997 with an ORI-

net (2 m², 1 mm mesh aperture). In this area, several benthic fish species (mostly Notothenidae) 

were also collected by net fishing overnight (Table 1). Outside the gulf, hyperiid amphipods (T. 

gaudichaudii), euphausiids (Euphausia vallentini, E. frigida and E. triacantha) and six 

myctophid species were collected in the eastern part of the peri-insular shelf in February 1998, 

using a IYGPT trawl (International Young Gadoid Pelagic Trawl; opening: 12 x 7 m) with 10-

mm mesh size in the cod-end. Other pelagic material (gelatinous plankton, planktonic 

crustaceans, squid and fish) were sampled during February 1999 on cruises of the RV “La 

Curieuse”. Benthic fish were collected by bottom trawl used for commercial fishery in the 

Southern Kerguelen shelf. The samples of the copepod Thysanoessa sp. were obtained from 

stomach contents of the South Georgian diving petrel collected during investigations on the diet 

of this species (Bocher et al. 2003) and potential effects of partial digestion must be taken into 

account.Mussels were collected by hand on the shore during low tides in January 1999. 

Immediately after collection, the organisms were separated by species, then sex and size or age 

classes whenever possible (Euphausia vallentini above and below 25mm, and 

Champsocephalus gunnari adults and juveniles respectively), and frozen in plastic bags or 

vials. Then, samples were stored at –20°C until analysis. All organisms were analysed whole, 

except the mussels, which had their shells removed. 

 

Sample preparation and analysis 

 

Length (mm) and mass (g) of fish and squids were thoroughly determined, as well as the sex, 

whenever possible (i.e., when size and maturity allowed so), and their gut content was removed. 

In the case of myctophids, otoliths were taken out to ensure identification of the species. Fish 

and squids were systematically treated individually, except Harpagifer sp. (12 individuals 
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resulted in 4 samples). In contrast, all other invertebrates were pooled, except the jellyfish, 

which were treated individually. Pooling was primarily made because of analytical reasons, in 

order to gather enough mass to attend protocol specifications. Sample characteristics, i.e. 

family, species, length, weight and sex (for squid, fish and some crustacean species), are given 

in Table 1. Trophic level is assessed based on the personal data of the co-authors, mostly based 

on stomach contents. Six of the seventeen fish species had also their trophic levels determined 

by stable isotope ratio of nitrogen published in other studies (Cherel et al. 2010). Since the 

difference between these two methods was lower than one trophic level, only the former will 

be further considered during data interpretation. 

Samples were dried for two to three days at 50°C to a constant weight and then 

homogenised. Next, 2 aliquots of approx. 100 to 300 mg each (according to availability) of 

homogenised dry sample were digested with 5 ml of 65% HNO3 and 0.3 ml of 70% HClO4 

during 72 h at 80°C. When the solution was clear, acids were evaporated and the obtained 

residues were dissolved in 10 ml 0.3 N nitric acid. Cd, Cu and Zn were analysed using a flame 

and graphite furnace atomic absorption spectrophotometer Varian 250 Plus with deuterium 

background correction. For Hg, aliquots ranging from 5 to 20 mg of dried material were 

analysed directly in an Advanced Mercury Analyser spectrophotometer (Altec AMA 254). Hg 

determination involved evaporation of Hg by progressive heating until 700°C were reached and 

then held under oxygen atmosphere for 3 min, followed by an amalgamation on a gold-net. 

Afterwards, the net was heated to liberate the collected mercury, subsequently measured by UV 

atomic absorption spectrophotometry. 

Quality assurance was assessed using dogfish liver DOLT-2 (NRCC) and dogfish 

muscle DORM-2 (NRCC) as reference materials. Such standards were analysed and treated 

under the same conditions as the samples, with errors in regard to the certified values remaining 

below 5% in both cases. Detection limits were 0.004 for Cd, 0.5 for Cu, 0.005 for Hg, and 3 µg 
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g-1 dry weight (dw) for Zn. All trace element concentrations in Kerguelen Islands marine 

organisms are reported in µgg-1dw unless stated otherwise. Water contents allowing 

recalculations of the metal concentrations from dw to wet weight (ww) are given in Table 1. 

 

Statistical analyses 

Statistical analyses were performed in Microsoft Excel 2007 and Statsoft Statistica 11 and 12. 

Before analyses, data were checked for normality of distribution and homogeneity of variances 

using Shapiro-Wilk and Brown-Forsythe tests, respectively, followed by ANOVA and Post-

hoc Tukey HSD. Spearman's or Pearson's correlations are used to assess the degree of 

monotonic or linear dependence, respectively, between two variables. At-test was used to assess 

whether female and male datasets differed when available. All statistically significant results 

were set at =0.05 and all presented correlations should be assumed significant unless stated 

otherwise. 
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RESULTS 

Metal concentrations in invertebrates and fishes from the Kerguelen Island waters are presented 

in Table 2. Cu, Hg, and Zn concentrations showed, in a general way, a lesser degree of 

variability when compared to Cd. Indeed, Cu, Hg and Zn average concentrations vary one order 

of magnitude each whereas Cd ranged over three orders of magnitude.  

Regarding the influence of biological factors in the results, the only crustacean species 

for which gender comparison was possible was Paraeuchaeta antarctica. All four trace 

elements presented significant differences between males and females, these later showing 

significantly higher Cd (p<0.001), Cu (p=0.004) and Zn (p=0.015) levels than males. This 

difference can be attributed to their considerably higher length and weight (Table 1). 

Concerning Hg, significantly higher (p=0.037) concentrations were found in males than in 

females. 

In cephalopods, there were no differences on metal concentrations between males and 

females (for Todarodes angolensis Cd, pt-test = 0.149 and Hg, pt-test = 0.867; for Moroteuthis 

ingens Cd, pt-test = 0.206 and Hg, pt-test = 0.923); moreover, no correlation (neither Pearson's nor 

Spearman's) between biometrics and metal concentrations were found. In fish, metal 

concentrations showed no significant difference between the sexes nor correlation with the 

biometric parameters (total length and total weight) with a few exceptions concerning Cd and 

Hg. Cd correlated significantly with total length in L. squamifrons (r=0.723, p=0.018) and with 

both length and weight in G. fraseri (r=0.704, p=0.005 and 0.862, p<0.001, respectively). 

Interestingly, a significant negative correlation of Cd with both biometric parameters was found 

for juvenile C. gunnari (r=-0.702, p=0.023 and -0.636, p=0.048) and Protomyctophum tenisoni 

(r=-0.549, p=0.034 and -0.627, p=0.012). In turn, Hg correlated (Spearman's rank) significantly 

with total length in Gymnoscopelus piabilis (r=0.591, p=0.033) and Lepidonotothen 

squamifrons (r=0.670, p=0.034); with weight in Protomyctophum bolini (r=0.697, p=0.004) 



 10 

and with both length and weight (shown respectively) in Channichthys rhinoceratus (r=0.843, 

p=0.02 and r=0.802, p=0.07), G. fraseri (r=0.771, p=0.001 for both), Notothenia rossii 

(r=0.554, p=0.049 and r=0.577, p=0.038) and Zanclorhynchus spinifer (r=0.959, p=0.002 and 

r=0.965, p=0.002). Finally, in regard to between-elements relationships, Cd and Hg levels 

correlated with one another significantly in Champsocephalus gunnari (total, r=0.947, 

p<0.001) and G. fraseri (r=0.843, p<0.001). 

Concerning Bivalves, two mussel species (the blue mussel, Mytilus edulis desolationis 

and the Magellan mussel, Aulacomya atra) sampled in four different locations: (Foch, Cap Noir, 

Port-aux-Français and Mayes Island) were analysed in the present study. A significant negative 

correlation (Spearman's rank) between Cd and Cu (r=-0.725, p=0.039) was found in the blue 

mussel, and also in the Magellan mussel (r=-0.798, p=0.004). This latter species presented yet 

significant correlation between Cu and total weight (r=-0.682, p=0.042), Cd and total weight 

(r=0.673, p=0.048) and Cd and Hg (r=-0.702, p=0.034). When all samples (both species) are 

considered together, there is a significant correlation between Cd and total weight (r=0.547, 

p=0.007) and also a significant negative correlation between Cd and Cu (r=-0.537, p=0.009).  

 

DISCUSSION 

The main objective of this study was to provide baseline levels in a wide range of phyla which 

constitute the prey for high trophic level organisms such as large fish, seabirds, and marine 

mammals. The species collected in the present study represent a wide range of ecological 

groups from the pelagic/benthic and neritic/oceanic communities from the Kerguelen Island 

waters. The size of the collected organisms falls within the range of the size preyed by top 

predators from this area and more specifically, from the large seabird community that includes 

35 species (Weimerskirch et al. 1989). 
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Influence of biological factors on metal concentrations 

Among factors influencing metal concentrations, sex differences were found for the 

crustacean Paraeuchaeta antarctica. Higher concentrations of Cd, Cu and Zn in female P. 

antarctica might be due to the fact that metals are highly retained by copepods and Cd, Cu and 

Zn bioaccumulation with the size is likely to have played a major role in this difference, not 

necessarily via diet, but also possibly via the dissolved phase, in a passive way (Wang et al. 

1996; Wang and Fisher 1998) or else via a possible remobilisation due to sexual maturation, as 

further discussed. In contrast to Cd, Cu and Zn, higher Hg concentrations in males is likely due 

to the fact that the sampled females could have already reached sexual maturity size and have 

excreted Hg in the laid eggs. Indeed, maternal transfer may act as a major pathway for Hg(II) 

and MeHg elimination in crustaceans (Tsui and Wang 2004). The size of the specimens 

analysed here ranged from 5 to 10 mm, whereas this species presents CV (last copepodite stage) 

at 6.5±0.3 mm and CVI (adults) at 8.7±0.4 mm (Bocher et al. 2002), therefore the sampleset 

likely contained sexually mature individuals.  

In cephalopods, the lack of difference in Cd and Hg concentrations between males and 

females is surprising considering the sexual dimorphism in both species, females reaching 

larger sizes than males. Indeed, sexual dimorphism and ontogenic effects can influence in metal 

concentrations in cephalopods (e.g. Pierce et al., 2008; Chouvelon et al., 2011). The absence of 

variation of metal concentrations in both cephalopod species is likely due to the limited number 

of specimens of each sex and limited size range for both T. angolensis and M. ingens. 

Nevertheless, metal concentrations found in both squid species were among the highest for all 

the species from the present study, especially for Cd. Cephalopods are considered as 

superbioaccumulators of many trace elements and their capacity to bioaccumulate remarkable 

Cd levels was already shown in several environments (Dorneles et al. 2007; Martin and Flegal 

1975; Miramand and Bentley 1992; Miramand and Guary 1980), including Kerguelen waters 
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(Bustamante et al. 1998b). Even though the specific proteins involved in Cd bioaccumulation 

are not fully known, its significant correlation (Spearman's rank) with Zn (r=0.902) in T. 

angolensis (the highest Cd level) suggests the involvement of MTLP in Cd detoxification. For 

Hg as well, cephalopods were among the most contaminated species. Within this group, Hg is 

mainly under the highly bioavailable organic form (Bustamante et al. 2006) and therefore they 

represent a significant source of this element for their predators. 

In fish, the significant negative correlation of Cd with both biometric parameters (size 

and weight) for C. gunnari and P. tenisoni could be due to a higher Cd exposure in earlier life 

stages (due to diet, habitat or maternal transfer), with a growth dilution effect taking place and 

concentrations decreasing thereafter. Since benthic organisms present, in a general way, overall 

lower Cd values when compared to pelagic ones (Fig. 2), this is in accordance with previous 

studies describing C. gunnari as bentho-pelagic, but with a shift from the pelagic to the benthic 

environment as the fish grow (Kock 2005a, b). Concerning Hg, the correlations found between 

this element and biometrics are likely related to the bioaccumulation of Hg as the fish grow. 

Moreover, benthic species presented mostly higher Hg levels than pelagic ones (Fig. 2). In 

sediments, organic carbon and microbial activity play an important role on Hg bioavailability 

as microorganisms highly contributes to the methylation of inorganic Hg (Andersson et al. 

1990), enhancing the exposure of benthic species to Hg. In regard to Cd and Hg positive 

significant correlations with size and weight in C. gunnari and G. fraseri, it would mean that 

these species are simultaneously exposed to sources of both contaminants. This could be due to 

the consumption 1) of one specific prey that presents high concentrations of Cd and Hg or 2) 

of several prey that present conversely high concentrations of Cd or Hg. The second hypothesis 

seem more likely in regard to C. gunnari, since its diet in a subantarctic environment (South 

Georgia Archipelago) comprised a large proportion of Antarctic krill Euphausia superba, 

knowing that Euphausids had comparatively high Hg levels (See Table 2) and, more 
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importantly, the hyperiid amphipod Themisto gaudichaudii (with very high Cd levels) as the 

most frequent prey (Kock et al., 1994). In regard to G. fraseri, it feeds mainly on copepods and 

to a lesser extent, on the Euphausid Thysanoessa spp. (Saunders et al. 2015), both presenting 

high Cd and Hg concentrations (Table 2). Therefore it seems reasonable to state that the first 

one of the previous hypotheses would be more likely in this case. 

The influence of the trophic position on metal concentrations is examined in Figure 2, 

which presents the concentrations of Cd and Hg stratified by trophic level. In this regard, stable 

isotopes ratios of nitrogen bring slightly superior data for trophic levels (TLs) of six fish species 

included in the present study (Cherel et al. 2010), all of them inferior to one trophic level: 0.9 

TL for Protomyctophum bolini, 0.7 TL for Gymnoscopelus nicholsi, 0.5 TL for P. tenisoni, 0.3 

TL for Electrona antarctica and G. fraseri and finally 0.2 TL for G. piabilis. The difference 

between these TLs obtained by different methods was negligible and did not change the 

stratification of concentrations along the TLs. 

Cd concentrations ranged over 4 orders of magnitude, i.e. from 0.063 µg g-1 in 

Gobionotothen acuta to 79.4 µg g-1 in T. angolensis across the different trophic levels, 

interestingly, a relatively similar pattern to the one reported for an Arctic marine food web 

(Macdonald and Sprague 1988). Moreover, a large intraspecific variation is shown by different 

taxa as well, such as in salps and specially crustaceans (Table 2). However, no significant 

correlation between Cd concentrations and the trophic level of the species was found in our 

sampling, suggesting that Cd is not biomagnified within our sampling set. However, it is 

important to remark that the increase in trophic level within our sample set does not always 

infer a direct food-consumer link between the sampled organisms, so biomagnification strictu 

sensu must be regarded with caution. Moreover, samples were taken in different years and 

interannual and local differences are possible as well. Also, the transfer of Cd appears to be 

more related to the species rather than to the trophic level itself, as previously shown in other 
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environments (Miramand et al. 1999; Pigeot et al. 2006). This specificity is likely related to Cd 

bioaccumulation capacities which are particularly elevated for some taxa such as the hyperiid 

amphipods Themisto sp. (e.g., Ritterhoff and Zauke 1997) and cephalopods (e.g., Bustamante 

et al.1998a, 2002; Dorneles et al. 2007, Penicaud et al. 2017), or particularly weak as in most 

marine fish species (Kojadinovic et al. 2007; Wang 2002).  

The lack of biomagnification is apparently repeated for Hg in our set of samples, 

contrary to what is previously reported for local avifauna (Blévin et al. 2013; Carravieri et al. 

2014b). It is important to remark that Hg biomagnification concerns its main organic form, i.e. 

methyl-Hg, due to its high bioavailability (e.g. Kannan et al. 1998) whereas our analyses were 

made only for total Hg. A much higher assimilation efficiency is displayed for methyl-Hg than 

for inorganic Hg and a slight variation in this property may determine whether or not some of 

the element is biomagnified (Reinfelder et al. 1998). Yet, the proportion of methyl-Hg is poorly 

documented for low trophic level prey in the Southern Ocean. This issue clearly deserves 

further research in this ecologically important and representative oceanographic area. 

 

Sessile organisms as indicators of possible secondary metal sources 

 

In mussels, the positive correlation between Cd and weight and the negative correlation 

between Cd and Cu suggest that as they grow, the homeostatically controlled Cu is 

proportionally surpassed by the bioaccumulative Cd in their organisms, likely bound to 

metallothioneins (Klaassen et al. 1999). Indeed, mussels produce Cd-induced metallothioneins 

(Mackay et al. 1993) and Cd can displace essential metals such as Cu and Zn normally 

associated to these proteins (Amiard et al. 2006). Tukey post-hoc tests resulted in separated 

groups for Cd (raw data for average lot length and mass and TE concentrations are available as 

Online Resource 1). One group containing samples from Foch, Cap Noir and Port-aux-Français; 
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and the second one, from Port-aux-Français and Mayes (always in crescent order). This result 

suggests some local Cd source enrichment inside the Gulf of Morbihan, where Port-aux-

Français, the largest human settlement in the area (between 45 in austral winter and 120 people 

in austral summer) and Mayes are both located. Conversely, both other locations (Foch and Cap 

Noir) are exposed to the open ocean, in the northern shore. This is apparently contrary to the T. 

gaudichaudii data (Table 2), which presented levels for continental shelf samples three times 

higher than coastal ones. However, the average individual weight from the continental shelf 

samples was around three times the one from coastal samples, therefore there is likely an 

influence from age and, thus, from bioaccumulation. A strong effect of age is confirmed by a 

previous study on the closely related species T. libellula from the Greenland Sea (Ritterhoff 

and Zauke 1997). Nevertheless, a growth dilution effect should be expected for the continental 

shelf samples, which leaves two hypotheses: whether exposure is increased for larger 

individuals, or the influence of local Cd sources within the Gulf of Morbihan is not as important 

to T. gaudichaudii as it is for mussels. Since literature presents related species (T. japonica and 

probably T. gaudichaudii as well) switching from herbivory to carnivory during their life cycles 

(Pakhomov and Perissinotto 1996), the first hypothesis remains more likely, corroborating the 

existence of a local Cd secondary source. 

Using fish for comparison did not prove to be helpful, since the only two species 

collected inside the Gulf were benthic (N. rossii and P. magellanica) and there was an evident 

bias in Cd levels towards pelagic species, as stated above, possibly because of Cd enriched 

upwelled waters around the archipelago(Bustamante et al. 1998b, 2003). For coastal sites inside 

the Morbihan Bay, another source can be suspected. Indeed, Mayes provides diverse and highly 

suitable breeding sites for large colonies of burrowing petrels, which breed there in very high 

densities (Weimerskirch et al. 1989), with up to 6 burrows per square metre (Mougeot et al. 

1998). Seabird faeces can alter the trace metal composition in soils (Headley 1996) and 
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therefore, colonies might work as secondary trace metal sources (see Choy et al. 2010; Espejo 

et al. 2014). Water percolating bird colonies has already been shown to have an important role 

in the exposure of terrestrial flora to contaminants in Antarctic lands (Cipro et al. 2011). It is 

therefore plausible to assume an analogous effect for the mussels when this water reaches the 

sea. Nevertheless, this subject deserves further investigation. 

 

Comparison with similar ecosystems in other regions 

Table 3 presents a comparison of the obtained results with those from the literature despite the 

scarcity of data for equivalent organisms in similar environments, which reinforces the need for 

studies such as this one. Therefore taxonomic, geographic and ecological differences might 

present some bias that has to be taken into account when interpreting the data. 

 Having said that, the jellyfish in our work showed Cd values at least one order of 

magnitude higher than its counterparts from North-eastern Atlantic waters (Caurant et al. 1999). 

Its Zn concentrations were around three times higher as well, not characterising the 

coaccumulation of Cd and Zn seen in other cases. To the best of our knowledge, the presence 

of metallothioneins in jellyfish has not been reported yet. 

 For Ctenophora, our results are somewhat closer to the ones for the North Atlantic 

Ocean than the ones for the Mediterranean, suggesting an influence from local conditions. 

Tunicates presented results for Cd and Cu in a reasonable agreement with the ones from the 

literature.  

 Crustaceans, in turn, showed some differences: in a general way, Euphausia spp. values 

of Cd, Cu and Zn are lower than in organisms from Antarctica and Thysanoessa spp. values for 

Cd were higher than in organisms from the Bering Sea, closer to pollution sources than 

Kerguelen Islands (Zauke et al. 2003). So, the difference might be due to a species-specific 

reason or in a lesser extent, to the influence of water masses dynamics 
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As for mollusks, bivalves presented lower values when compared to Antarctic filter 

feeders, even if the previously discussed influence of a local source is considered (Ahn et al. 

1996; Bargagli 2001). Cephalopods, on the other hand, presented similar Hg levels when 

compared to another subantarctic environment, Macquarie Island (McArthur et al. 2003) or 

slightly superior when compared to branchial hearts concentrations from samples collected off 

Amsterdam Islands (Kojadinovic et al. 2011), which is located north of the Polar Front. Care 

must be taken when comparing digestive gland data (Kojadinovic et al. 2011) to muscle or even 

whole organism data, since this organ might present higher concentrations, even if it does not 

greatly contribute to the total Hg burden in some oceanic squids (Bustamante et al. 2006). 

For benthic fish species, Antarctic organisms (Table 3) presented levels for both Cd and 

Hg one order of magnitude higher than in the present study. For pelagic ones, the only truly 

pelagic neritic fish present in all sizes throughout the water column is Pleuragramma antarctica 

(Wöhrmann et al. 1997). For this species, Brasso et al. (2014) present Hg data averaging 0.014 

µg g-1 for juveniles and 0.021 µg g-1 for adults (for whole fish, after conversion to dry weight). 

This is an apparent contradiction to the trend previously discussed (Antarctic organisms with 

higher levels than subantarctic ones), however, this species feeds on a lower trophic level than 

the ones in Table 3 and also lives in shallower shelf waters (Giraldo et al. 2011; Pinkerton et al. 

2013), which makes it less exposed to these contaminants. Nevertheless, Goutte et al. (2015) 

present an average of 0.065 µg g-1 for P. antarcticum collected in Adelie Land, Antarctica, 

much similar to the concentration we found for E. antarctica. 

Taking all the previous information into account, Kerguelen marine invertebrates and 

fish seemed to present lower metal concentrations when compared to other sub-Antarctic and 

especially to Antarctic environments, with the exception of some particular species, notably 

Themisto gaudichaudii (see also Beltcheva et al. 2011; Guynn and Peterson 2008; Hennig et al. 
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1985; Kahle and Zauke 2003; McArthur et al. 2003; Rainbow 1989; Stoeppler and Nürnberg 

1979 and the comparison in Table 3). 

 

Implications concerning the transfer to predators 

Because all of the species investigated here constitute to a wide extent, primary or secondary 

prey for seabirds breeding on the Kerguelen Islands, it is important to provide information on 

their exposure to trace elements. This is especially important for the non-essential Cd and Hg 

which can have toxic effects at different levels on wild vertebrates (e.g. Gallien et al. 2001; Tan 

et al. 2009; Goutte et al. 2014; Tartu et al. 2013). In addition to linking prey and predator, this 

section is intended to highlight the fact that some of the accumulation/magnification occur not 

only in high trophic levels. 

In regard to Cd, the main homogenous group after Tukey HSD was composed by all 

species but T. gaudichaudii, jellyfish and both the cephalopods. T. gaudichaudii is an important 

part of local macrozooplankton and the main prey for local planktivorous seabirds (Bocher et 

al. 2001), therefore their main Cd source (Bocher et al. 2003). Jellyfish showed a Cd 

concentration one to two orders of magnitude higher than the fish, similar to the findings of 

Caurant et al.(1999). Jellyfish could therefore represent a vector for Cd transfer, since their 

energetic value is likely very low (Caurant et al. 1999) so their predators should ingest a large 

amount of them to satisfy their energetic needs. Cephalopods, in turn, may also function as 

vectors for Cd transfer to top predators (e.g., Bustamante et al. 1998a; Lahaye et al. 2005). This 

role is even more evident at higher latitudes as they showed somewhat higher Cd concentrations 

in Antarctic and subantarctic areas when compared to temperate and tropical waters (e.g. 

Dorneles et al. 2007; Kojadinovic et al. 2011; Pierce et al. 2008). Since cephalopods are present 

in the diet of several predators from Kerguelen Islands such as albatrosses or elephant seals 

(Cherel et al. 2000, 2004; Guinet et al. 1996; Lescroël et al. 2004), their role as Cd vectors is 
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evident. Reported concentrations in the kidney of seabirds from other subantarctic areas such 

as Gough Island in the South Atlantic Ocean clearly highlighted that seabirds feeding on squids 

displayed higher Cd concentrations that crustacean- and fish-feeder species (Muirhead and 

Furness 1988). 

Hg, as previously presented, had a much less species-specific distribution, with less 

interspecific variation when compared to Cd, even though some stratification within the trophic 

levels could be detected. No statistical difference was found among all invertebrates taken 

together (Tukey HSD) and, concerning the fish, only Notothenia rossii, Gymnoscopelus 

piabilis, G. fraseri and C. rhinoceratus (in crescent Hg concentration) departed from a 

homogenous group that contained all the other species. The unicorn icefish C. rhinoceratus 

presented elevated Hg concentrations, which is consistent with its feeding ecology (Kock 

2005a,b): indeed, the diet of juveniles is composed by crustaceans and then adults shift to forage 

on various notothenioids (mostly benthic) and mesopelagic fish in a lesser extent. In turn, 

mesopelagic fish, notably the myctophids, are among the most Hg contaminated. Therefore, 

predators relying on benthic or benthopelagic prey, as the gentoo penguin Pygoscelis papua 

(Lescroël and Bost 2005) or mesopelagic fish, such as elephant seals Mirounga leonina (Cherel 

et al. 2008) and the white-chinned petrel Procellaria aequinoctialis (Delord et al. 2010), would 

be highly exposed to Hg. 

The present study highlights that not only top predators will be exposed to elevated 

amounts of Cd and Hg through their diet when consuming specific types of prey, but also lower 

trophic level organisms can be subject to the same effect. Zooplankton eating predators are 

exposed to Cd especially if they consume the amphipod T. gaudichaudii (i.e., Halobaena 

caerulea, Pachyptila desolata, P. belcheri, Pelecanoides georgicus and P. urinatrix, according 

to Bocher et al. 2003). Cephalopod eating species as the wandering albatross (Diomedea 

exulans) and the great-winged-petrel (Pterodroma macroptera) are also highly exposed to Cd 
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but also to Hg which is consistent with the concentrations recorded in their internal tissues and 

their feathers (Anderson et al. 2009; Bustamante et al. 2016; Muirhead and Furness 1988; 

Stewart et al. 1999; Tavares et al. 2013) and also with blood (Anderson et al. 2010; Carravieri 

et al. 2014a). Finally, fish eating species, as the grey (Procellaria cinerea) or the white-chinned-

petrel (Procellaria aequinoctialis) are highly exposed (see Stewart et al. 1999; Anderson et al. 

2009; Cipro et al. 2014) to Hg through the consumption of mesopelagic and benthic fish (Delord 

et al. 2010). 
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Caption to figures and table 

 

 

Figure 1 – Kerguelen location in the Southern Indian Ocean among the French Southern Lands (left) and detailed map (right).STZ, SAZ and AZ stand for, respectively, the 

subtropical, sub-Antarctic and Antarctic zones; whereas STF and PF stand for the subtropical and polar fronts. Taken from Cipro et al (2014). 
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Figure 2 – Hg (left, linear scale) and Cd (right, log scale) concentrations (µg g-1 dw) stratified by trophic level. Benthic species in black, pelagic ones in white. 
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Table 1 - Sample characteristics together with water content in the whole organisms (for dry/wet wt metal concentrations conversion). p: individuals in pooled samples 

 
             Taxa  Sample Length Fresh weight Sex Water content Collection Functional   

  Class or family Size (mm) (# : g or  (%) Zone Group   

  Species (N)  * : mg)       

            
           
 Cnidarians          

  Jellyfish 3 - 7-50 # - 91 ± 3 Shelf waters Filter-feeder   

 Ctenophora          

  Beroe sp. 15p - 1.6-2.3 # - 92 ± 1 Shelf waters Filter-feeder   

 Crustaceans          

  Euphausiacea          

  Euphausia frigida 90 p 14-18 11-29 * - 80 ± 2 Eastern Shelf waters Herbivore   

  E. triacantha 15p 27-36 137-410 * - 70 ± 3 Eastern Shelf waters Herbivore   

  E. vallentini (small) 32 p 16-24 19-88 * - 61 ± 3 Eastern Shelf waters Herbivore   

  E. vallentini (large) 60 p 25-30 24-96 * - 73 ± 3 Eastern Shelf waters Herbivore   

  Thysanoessa sp. 60 p 5-20 1-53 * - 76 ± 5 Stomach content Omnivore   

  Copepoda          

  Paraeuchaeta antarctica 60 p 5-10 6-18 * ♀ 64 ± 2 Coastal waters (Morbihan) Carnivore 1   

  “ 125 p 3-5 4-8 ♂ 69 ± 1 Coastal waters (Morbihan) Carnivore 1   

  Amphipoda          

  Themisto gaudichaudii 100p 14-17 31-51 * - 71 ± 2 Coastal waters (Morbihan) Carnivore 1   

  “ 32p 17-27 54-224 * - 71 ± 1 Eastern Shelf waters Carnivore 1   

 Cephalopods          

  Ommastrephidae          

  Todarodes angolensis  11 197-221 129-214 # 6 ♂, 5 ♀ 77 ± 3 Shelf waters Carnivore 1-2   

  Onychoteuthidae          

  Moroteuthis ingens 8 103-257 44-472 # 4 ♂, 4 ♀ 79 ± 1 Shelf waters Carnivore 1-3   

 Bivalvia          

  Mytilidae          

  Mytilus edulis desolationis 36 p 30-78 1.9-42# - 88 ± 4 Cap Noir, Port-aux-

Français, Mayes, Foch 
 

Filter-feeder   

  Aulacomya atra 27 p 38-97 4.8-65# - 80 ± 4 Filter-feeder   

 Tunicates          

  Salpa thompsoni 9 p 33-42 3.1-5.4 # - 95 ± 0 Shelf waters Herbivore   

  “ 12 p 33-44 3.1-5.9 # - 94 ± 2 Shelf waters Herbivore   
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 Fishes           

  Centrolophidae          

  Icichthys australis 8 212-312 125-416 # 5 ♂, 3 ♀ 74 ± 13 Shelf waters Carnivore 1-2   

  Channichthyidae          

  Channichthys rhinoceratus 13 257-420 212-563 # 5 ♂, 8 ♀ 79 ± 3 Shelf waters (Morbihan) Carnivore 2-3   

  Champsocephalus gunnari (adults) 10 299-328 164-232 # 5 ♂, 5 ♀ 74 ± 1 Shelf waters Carnivore 1-2   

  C. gunnari (juveniles) 10 122-154 127-154 ND 74 ± 1 Shelf waters Carnivore 1   

  Congiopodidae          

  Zanchlorhyncus spinifer 6 126-163 34-83 # 3 ♂, 3 ♀ 70 ± 3 Southern Shelf waters Carnivore 1-2   

  Gempylidae          

  Paradiplospinus gracilis 1 370 67 # ♂ 70 Oceanic waters Carnivore 1-3   

  Harpagiferidae          

  Harpagifer sp. 12 p 54-75 3.8-9.1 # - 72 ± 4  Shelf waters(Morbihan) Carnivore 1-2   

  Myctophidae          

  Electrona antarctica 15 48-78 1.3-4.4 # ND 62 ± 2 Oceanic waters Carnivore 1-2   

  Gymnoscopelus fraseri 15 65-82 2.5-5.5 # ND 69 ± 1 Oceanic waters Carnivore 1-2   

  G. nicholsi 4 129-164 22-42 # 4 ♀ 61 ± 6 Oceanic waters Carnivore 1-2   

  G. piabilis 14 114-162 17-44 # 5 ♂, 9 ♀ 71 ± 3 Oceanic waters Carnivore 1-2   

  Protomyctophum bolini 15 49-58 1.2-2.2 # ND 66 ± 2 Oceanic waters Carnivore 1   

  P. tenisoni 15 34-42 0.3-0.7 # ND 73 ± 2 Oceanic waters Carnivore 1   

  Notothenidae          

  Gobionotothen acuta 1 177 82 # ♀ 75 Coastal waters (Morbihan) Carnivore 1-2   

  Lepidonotothen squamifrons 10 234-310 177-386 # 5 ♂, 5 ♀ 74 ± 2 Shelf waters (Morbihan) Carnivore 1-2   

  Notothenia cyanobrancha 1 195 160 # ♀ 77 Shelf waters (Morbihan) Carnivore 1   

  N. rossii 13 137-288 57-450 # 5 ♂, 7 ♀, 1 ND 78 ± 3 Coastal waters (Morbihan) Carnivore 2-3   

  Paranotothenia magellanica 6 147-168 74-119 # 2 ♂, 4 ♀ 78 ± 1 Shelf waters (Morbihan) Carnivore 1-2   

  Stomidae          

  Stomias sp. 14 102-178 1.1-4.7 # ND 81 ± 6 Oceanic waters Carnivore 3   
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Table 2 – Metal concentrations (µgg-1 dry wt) of organisms from the Kerguelen Islands. Pooled samples are marked with a p 
           Group   N Cd Cu Hg Zn  

  Species Family  Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range  

             
              Ctenophors            

  Beroe sp. Beroidae 3p 0.077 ± 0.009 0.070-0.088 6.7 ± 0.2 6.4-6.9 0.054 ± 0.010  0.045-0.065 642 ± 58 582-697  

 Euphausids            

  Euphausia frigida Euphausiidae 4 p 0.137 ± 0.047 0.109-0.207 5.8 ± 0.1 5.7-5.8 0.023 ± 0.002 0.021-0.025 43 ± 3 41-43  

  E. triacantha " 3 p 0.289 ± 0.025 0.260-0.306 14.9 ± 6.7 4.3-19.8 0.036 ± 0.006 0.029-0.041 55 ± 2 53-57  

  E. vallentini (small) " 3 p 0.500 ± 0.217 0.278-0.711 17.8 ± 2.1 15.4-19.5 0.042 ± 0.003 0.039-0.045 58 ± 9 52-68  

  E. vallentini (large) " 3 p 0.659 ± 0.093 0.589-0.765 30.0 ± 1.0 29.0-30.9 0.017 ± 0.001 0.016-0.018 39 ± 3 37-43  

  Thysanoessa sp. " 8p 3.66 ± 1.80 1.38-6.26 33.7 ± 12.8 12.8-45.4 0.067 ± 0.031 0.024-0.125 30 ± 11 10-47  

 Copepods            

  Paraeuchaeta antarctica (♀) Euchaetidae 3 p 2.11 ± 0.05 2.06-2.16 8.8 ± 1.1 7.7-9.8 0.038 ± 0.019 0.023-0.060 245 ± 66 197-321  

  P. antarctica (♂) " 3 p 0.81 ± 0.05 0.78-0.87 4.9 ± 0.4 4.4-5.2 0.072 ± 0.002 0.071-0.074 87 ± 9 77-92  

 Amphipods            

  Themisto gaudichaudii(coast) Hyperridae 4 p 28.5 ± 7.4 21.2-38.8 12.5 ± 0.7 11.9-13.4 0.026 ± 0.005 0.022-0.034 52 ± 3 48-55  

  T. gaudichaudii (shelf) Hyperridae 4 p 73.4 ± 7.2 70.4-81.7 16.0 ± 7.1 11.8-24.2 0.024 ± 0.002 0.023-0.027 82 ± 5 80-88  

 Tunicates            

  Salpa thompsoni Salpidae 3 p 0.624 ± 0.066 0.583-0.700 19.9 ± 5.5 14.9-25.7 0.033 ± 0.003 0.030-0.035 969 ± 142 821-1104  

 

 

 “ " 3 p 2.154 ± 0.135 2.066-2.310 7.7 ± 1.8 5.6-9.0 0.015 ± 0.001 0.013-0.016 367 ± 82 302-458  

 Cnidarians            

  Jellyfish Not determined 3 29.0 ± 30.8 9.98-64.53 7.4 ± 0.9 6.8-9.4 0.081 ± 0.015 0.067-0.097 353 ± 305 142-703  

 Mollusks            

  Moroteuthis ingens Onychoteuthidae 8 29.6 ± 20.0 6.0-60.0 39 ± 14 23-61 0.099 ± 0.063 0.034-0.215 66 ± 20 19-81  

  Todarodes angolensis Ommastrephidae 11 79.4 ± 41.8 17.5-172.3 80 ± 39 50-194 0.100 ± 0.058 0.057-0.270 107 ± 27 59-158  

  Mytilus edulis desolationis Mytilidae 

 

12 p 6.50 ± 5.83 2.27-27.71 6.23 ± 1.95 3.57 – 9.08 0.273 ± 0.187 0.113-0.647 83 ± 25 48.7-125  

  Aulacomya atra " 9 p 9.11 ± 4.79 4.05-18.49 8.49 ± 2.08 5.87-12.71 0.208 ± 0.116 0.105-0.417 135 ± 39 84.2-221  

Benthic fish            

  Channichthys rhinoceratus Channichthyidae 13 0.173 ± 0.125 0.022-0.484 1.8 ± 0.4 1.3-2.7 0.345 ± 0.296 0.058-0.870 79 ± 26 50-128  

  Gobiotothen acuta Notothenidae 1 - 0.063 - 2.9 - 0.075 - 88  

  Harpagifer sp. Harpagiferidae 4p 0.404 ± 0.091 0.330-0.536 3.5 ± 0.45 3.00-3.93 0.230 ± 0.084 0.128-0.334 107 ± 19 80-123  

  Lepidonotothen squamifrons Notothenidae 10 0.475 ± 0.198 0.232-0.808 1.5 ± 0.4 1.1-2.5 0.150 ± 0.089 0.063-0.271 43 ± 9 31-58  

  Notothenia cyanobrancha " 1 - 0.323 - 2.1 - 0.216 - 64  
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  N. rossii " 13 0.134 ± 0.043 0.084-0.229 3.0 ± 1.0 1.6-4.9 0.145 ± 0.053 0.072-0.260 47 ± 9 27-58  

  Paranotothenia magellanica " 6 0.288 ± 0.234 0.095-0.650 2.2 ± 0.2 1.9-2.6 0.106 ± 0.019 0.075-0.126 57 ± 4 53-64  

  Zanclorhyncus spinifer Congiopodidae 6 0.781 ± 0.320 0.322-1.173 1.8 ± 0.2 1.5-2.1 0.067 ± 0.013 0.054-0.083 40 ± 6 35-52  

 Pelagic fish            

  Champsocephalus gunnari Channichthyidae 10 0.835 ± 0.267 0.412-1.323 1.6 ± 0.4 0.8-2.1 0.036 ± 0.006 0.028-0.049 67 ± 7 58-82  

  C. gunnari (juveniles) " 10 0.556 ± 0.248 0.355-1.176 2.4 ± 0.8 2.0-4.6 0.036 ± 0.005 0.026-0.041 81 ± 8 73-91  

  Electrona antarctica Myctophidae 15 0.270 ± 0.101 0.132-0.506 2.1 ± 0.5 1.6-3.5 0.066 ± 0.015 0.046-0.100 22 ± 3 17-28  

  Gymnoscopelus fraseri " 15 0.496 ± 0.233 0.256-0.929 3.2 ± 0.6 2.4-4.8 0.197-0.101 0.094-0.424 27 ± 2 24-31  

  G. nicholsi " 4 0.251 ± 0.098 0.180-0.392 2.2 ± 0.7 1.4-2.9 0.137 ± 0.047 0.096-0.200 19 ± 1 17-20  

  G. piabilis " 14 0.887 ± 0.454 0.453-1.826 2.3 ± 0.3 1.6-2.9 0.179 ± 0.078 0.067-0.333 28 ± 4 20-35  

  Icichthys australis Centrolophidae 8 0.903 ± 0.755 0.143-2.320 1.2 ± 0.2 0.6-1.5 0.064 ± 0.026 0.041-0.112 26 ± 5 15-31  

  Paradiplospinus gracilis Gempylidae 1 - 0.164 - 1.4 - 0.200 - 26  

  Protomyctophum bolini Myctophidae 15 0.188 ± 0.063 0.105-0.341 2.7 ± 0.4 2.0-3.4 0.086 ± 0.022 0.059-0.135 32 ± 5 25-43  

  P. tenisoni " 15 0.408 ± 0.112 0.289-0.744 3.6 ± 0.5 3.0-4.6 NA NA 44 ± 5 38-56  

  Stomias sp. Stomidae 14 1.168 ± 0.470 0.423-2.359 3.9 ± 1.5 2.2-8.0 0.075 ± 0.014 0.053-0.098 54 ± 13 39-83  
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s - Comparison of heavy metal concentrations in organisms from the Kerguelen Islands with those from the literature (range or mean ±SD, in g g-1 dw). 
           Taxa  Location Cd Cu Hg Zn Reference  

  Species        

          
         
 Cnidarians         

  Unidentified jellyfish Southern Indian Ocean 29.0 ± 30.8 7.4 ± 0.9 0.081 ± 0.015 353 ± 305 Present study  

  Pelagia noctiluca Mediterranean Sea 0.4 2.0 - 46 Romeo et al. (1987)  

  Velella velella Mediterranean Sea 1.2 ± 0.5 5.7 ± 0.7 - 118 ± 34 "  

  “ Mediterranean Sea 2.7 ± 0.9 9.3 ± 1.9 - 100 ± 18 "  

  Sagartia troglodytes Seine estuary, France 0.06 5.8 - 238 Miramand et al. (2001)  

 Ctenophora         

  Beroe sp. Southern Indian Ocean 0.077 ± 0.009 6.7 ± 0.2 0.054 ± 0.010  642 ± 58 Present study  

  Beroe ovate Mediterranean Sea 1.4 ± 0.4 2.8 ± 0.8 - 29 ± 9 Romeo et al. (1992)  

  “ North Atlantic 0.16 2.0 - 52 Dubé (1982)  

 Tunicates         

  Salpa thompsoni Southern Indian Ocean 0.624 ± 0.066 19.9 ± 5.5 0.033 ± 0.003 969 ± 142 Present study  

  “ Southern Indian Ocean 2.154 ± 0.135 7.7 ± 1.8 0.015 ± 0.001 367 ± 82 Present study  

  S. maxima Mediterranean Sea 0.4 ± 0.4 5.9 ± 2.4 - 79 ± 20 Romeo et al. (1992)  

  S. fusiformis Mediterranean Sea 1.1 ±1.0 6.6 ± 4.9 - 64 ± 28 "  

 Euphausiacea        

  Euphausia frigida Southern Indian Ocean 0.109-0.207 5.7-5.8 0.021-0.025 41-43 Present study  

  E. triacantha Southern Indian Ocean 0.260-0.306 4.3-19.8 0.029-0.041 53-57 Present study  

  “ Southern Ocean 9.0 31 - 402 Hennig et al., (1985)  

  E. superba Western Antarctic Peninsula 0.13-0.75 37.8-140 0.0131-0.0489 35.2-51.3 Locarnini and Presley (1995)  

  E. vallentini Southern Indian Ocean 0.278-0. 765 15.4-30.9 0.016-0.045 37-68 Present study  

  Thysanoessa longipes Bering Sea 0.36-1.14 - - 59-88 Hamanaka and Tsujita (1981)  

  Thysanoessa sp. Southern Indian Ocean 1.38-6.26 12.8-45.4 0.024-0.125 10-47 Present study  

 Copepoda        

  Paraeuchaeta antarctica Southern Indian Ocean 0.78-2.16 4.4-9.8 0.023-0.074 77-321 Present study  

  Calanus hyperboreus Baffin Bay, Canadian Arctic 1.62 ± 0.79 1.55 ± 0.57 0.025 ± 0.017 17.73 ± 0.65 Campbell et al. (2005)  

  
Several species 

Fram strait, Arctic 0.32 - 0.75 4.0 - 7.5 0.31 - 0.68 79 - 351 
Ritterhoff and Zauke (1997) 

 

  Greenland Sea 0.12 - 0.69 3.8 - 5.9 0.2 - 0.5 86 - 389  

  Pooled (Eurytemora affinis, Acartia 

clausi and Temora longicornis) 

Seine estuary, high salinity 0.9 ± 0.4 15 ± 6 - 260 ± 68 
Miramand et al. (1998) 

 

  Seine estuary, low salinity 5.5 ± 2.1 47 ±27 - 480 ± 190  

  Several species Weddel Sea, Antarctica 2.3-14.4 - - - (Kahle and Zauke, 2003)  



 38 

 Amphipoda        

  Themisto gaudichaudii Southern Indian Ocean 21.2-81.7 11.8-24.2 0.022-0.034 48-88 Present study  

  " Around 60°S170°E (Polar Front) 118±81 34±26 - 529±238 Hennig et al. (1985)  

  " ~45/55°S 170°E (N of the Front) 29±23 38±24 - 587±560 "  

  " Antarctica 10.8-117 11.2-79.3 - 44.6-82.6 Rainbow (1989)  

  Themisto compressa Northeastern Atlantic 35.5-108 18.6-66.7 - 58.5-109 "  

  Euphausia superba Antarctica 0.15-1.5 30.0-85.5 - 42.0-74.8 "  

  Paramoera walkeri Terra Nova Bay, Antarctica 5.1-10.9 - - - Bargagli et al. (1996)  

 Bivalvia        

  Adamussium colbecki (digestive gland) Terra Nova Bay, Antarctica 55.7 ± 27 - 0.35 ± 0.08 - Bargagli (2001)  

  Laternula elliptica(digestive gland) Maxwell Bay, Antarctica 11.5 ± 4.1 38.1 ± 5.0 - 153 ± 39 Ahn et al. (1996)  

  Mytilus edulis desolationis Southern Indian Ocean 6.50 ± 5.83 6.23 ± 1.95 0.273 ± 0.187 83 ± 25 Present study  

  Aulacomya atra Southern Indian Ocean 9.11 ± 4.79 8.49 ± 2.08 0.208 ± 0.116 135 ± 39 Present study  

 Cephalopods        

  Moroteuthis ingens Southern Indian Ocean 29.6 ± 20.0 39 ± 14 0.099 ± 0.063 66 ± 20 Present study  

  " Macquarie Island - - 0.086 ± 0.017 - McArthur et al. (2003)  

  Todarodes angolensis Southern Indian Ocean 79.4 ± 41.8 80 ± 39 0.100 ± 0.058 107 ± 27 Present study  

  Todarodes fillipovae (branchial heart) Southern Indian Ocean 34.3 ± 19.7 179 ± 87.5 0.42 ± 0.17 65.6 ± 15.0 Kojadinovic et al.(2011)  

  Todarodes fillipovae (digestive gland) " 246 ± 187 218 ± 196 0.14 ± 0.06 94.3 ± 66.1 "  

 Benthic fish        

  Notothenia rossii Southern Indian Ocean 0.134 ± 0.043 3.0 ± 1.0 0.145 ± 0.053 47 ± 9 Present study  

  N. coriiceps (body) Livingston Island, Antarctica 0.28 ± 0.02 1.64 ± 1.78 - 93.05 ± 2.15 Beltcheva et al. (2011)  

  N. coriiceps (muscle) Adelie Land, Antarctica - - 0.221 ± 0.085 - Goutte et al., (2015)  

  N. coriiceps (liver) " 9.032 ± 3.215 11.8 ± 4.1 - 119 ± 17 "  

  Notothenia spp. Admiralty Bay, Antarctica - - 0.0163 64.6 dos Santos et al. (2006)  

  Trematomus newnesi " - - 0.016 99.1 "  

  Trematomus newnesi (kidney) Terra Nova Bay, Antarctica 1.86 ± 0.89 - - - Bargagli et al. (1996)  

  T. bernachii McMurdo Sound, Antarctica - - 0.0539 ± 0.0321 - Wintle et al. (2015)  

 Pelagic fish        

  Electrona antarctica Southern Indian Ocean 0.270 ± 0.101 2.1 ± 0.5 0.066 ± 0.015 22 ± 3 Present study  

  Dissostichus eleginoides Scotia Sea, Antarctica 0.003 0.17 0.005 - Stoeppler and Brandt (1979)  

  " South Georgia - - 0.23 ± 0.01 - Guynn and Peterson (2008)  

  " Prince Edwards Islands - - 0.8 ± 0.07 - "  

  " Chilean ZEE around 40°S - - 0.73 ± 0.10 - "  
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  " Macquarie Island - - 0.33 ± 0.12 - McArthur et al. (2003)  

  " Southern Ocean (Pacific sector) - - 0.43 (0.15-0.97) - Hanchet et al. (2012)  

  Dissostichus mawsoni " - - 0.16 (0.02–0.70) - "  

  Antimora rostrata " - - 0.19 (0.04-0.68) - "  

  Macrourus whitsoni " - - 0.38 (0.01-1.10) - "  

  Pleuragramma antarcticum Adélie Land, Antarctica - - 0.065 ± 0.009 - Goutte et al.(2015)  

  P. antarcticum (adult) Ross Sea shelf, Antarctica - - 0.021± 0.009 - Brasso et al.(2014)  

  P. antarcticum (juvenile) Ross Sea shelf, Antarctica - - 0.014± 0.004 - "  

          

 


