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Abstract
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1238 T. Kimura

1 Introduction

Let Mk,n be the instanton moduli space of k-instanton configuration in 4D SU(n)

gauge theory onR4 ∼= C
2. This moduli space plays a significant role in the study of 4D

gauge theory. In particular, we are interested in the volume of the moduli space, which
gives rise to the contribution to the partition function of 4D N = 2 supersymmetric
gauge theory. The total partition function is given as the summation over the instanton
sectors [21]

Z =
∞∑

k=0

qk Zk (1.1)

where the instanton fugacity q is related to the complexified coupling constant τ =
θ

2π
+ ι

4π

g2
by q = exp (2πιτ) with the imaginary unit ι = √−1. θ and g2 are the

theta angle and the gauge coupling constant, appearing in the Lagrangian. In fact, the
k-instanton contribution is given as the volume of the instanton moduli space

Zk = vol(Mk,n). (1.2)

Since the instanton moduli space is non-compact, we need a regularization scheme to
evaluate the volume: The equivariant integral provides a proper regularized volume
of the instanton moduli space, which ends up with the contour integral, called the
Losev–Moore–Nekrasov–Shatashvili (LMNS) formula [12,13,15],1

vol
(Mk,n

) = 1

k!
εk

εk1ε
k
2

∮ k∏

a=1

dφa

2πι

n∏

α=1

1

(φa − aα) (φa − aα + ε)

k∏

a<b

φ2
ab

(
φ2
ab − ε2

)
(
φ2
ab − ε21

) (
φ2
ab − ε22

) ,

(1.3)

where φab = φa − φb. (φa)a=1,...,k and (aα)α=1,...,n are the sets of the equivariant
parameters for GL(k,C) and GL(n,C) acting on the instanton moduli space. The
equivariant parameters for Spin(4) acting as the Lorentz transformation for R4 ∼= C

2

are given by (ε1, ε2) and ε = ε1 + ε2. The partition function depends on these equiv-
ariant parameters, and the Seiberg–Witten prepotential is consequently reproduced by
asymptotic behavior of the partition function in the limit ε1,2 → 0.

The instantonmoduli space forC2 is an example of the quiver variety corresponding
to Â0 quiver [18,19], and from this point of view, it is natural to consider the equivariant
volume of generic quiver varieties. In this paper, we focus on the quiver gauge theory
on C

2 and consider similar integrals to the LMNS formula (1.3) associated with the
quiver, which provide the corresponding gauge theory partition functions. We point
out that the multivariable integral is concisely expressed as a correlation function of
vertex operators with the free field realization depending on the quiver structure. We
remark that this vertex operator is nothing but the operator introduced in Refs. [8–
10] to construct the quiver W-algebra. Such a connection between the gauge theory

1 This formula is extended to BCD-type [17,28] and supergroup gauge theory [11].
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Integrating over quiver variety and BPS/CFT correspondence 1239

observable and the vertex operators is now called the BPS/CFT correspondence [22–
26]. An earlier remarkable example is the equivalence between the SU(2) instanton
partition function and the Liouville conformal block, a.k.a., the AGT relation [1]. The
recent progress on the supersymmetric localization [30,31] allows us to obtain a lot
of exact results on the gauge theory side, and many examples of the correspondence
can be now checked so far based on these results.

Another gauge theory observable associated with the quiver variety is the
qq-character [22], which is a two-parameter deformation of the character of rep-
resentations constructed on the quiver. Realization of the representations using the
quiver variety is now established [20], and with this realization, the qq-character is
constructed by integrating over the quiver variety. We show that the vertex operator
formalism discussed in this paper is also applicable to this qq-character integral con-
struction. It has been known that the qq-character plays a role of the generating current
of the quiver W-algebra [8–10], which implies the operator formalism provides a still
formal, but concise closed formula for arbitrary generating current of the W-algebra.

The remaining part of the paper is organized as follows: In Sect. 2, we introduce the
vertex operators associated with the quiver. We explicitly show the operator product
expansion (OPE) factors between them based on their free field realization. In Sect. 3,
we consider the partition function of 5D N = 1 quiver gauge theory defined on
C
2 × S1, which is the K-theoretic analog of the equivariant volume of the instanton

moduli space. We show that the gauge theory partition function is expressed as a
correlator of the vertex operators associated with the quiver. In Sect. 4, we consider
the qq-character based on the integral formula. We show that the integral measure is
reproduced by the OPE factors between the vertex operators, and the highest weight
module is generated by the Weyl orbit generating operator. In Sect. 5, we consider 6D
N = (1, 0) gauge theory on C2 × T 2, which yields an elliptic analog of these results.
We show that there are two approaches to the elliptic theory: One is to consider the
torus correlation function instead of the correlation function on a cylinder C×. The
other is deformation of the vertex operators providing the elliptic OPE factors.

2 Vertex operators

2.1 Quiver

We follow the convention used in [8]. We denote a quiver,2 consisting of nodes and
edges, by Γ = (Γ0, Γ1) where Γ0 is a set of nodes and Γ1 is a set of edges. The rank
of quiver is given as rk Γ = |Γ0|. For such a quiver, we define the mass deformed
q-Cartan matrix

ci j =
(
1 + q−1

)
δi j −

∑

e:i→ j

μ−1
e −

∑

e: j→i

μeq
−1, (2.1)

2 We consider simply laced quivers here. We can generalize the result in this paper to the fractional (non-
simply-laced; symmetrizable) quiver using the formalism introduced in [10].
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1240 T. Kimura

where q ∈ C
×, and (μe)e∈Γ1 is a set of C

×-valued parameters assigned to each edge.
In the gauge theory setup, the former one is associated with the equivariant parameter
for Spin(4) action q = q1q2 where

(q1, q2) := (eε1, eε2) ∈ U(1)2 ⊂ Spin(4). (2.2)

The latter ones are identified with the multiplicative bifundamental mass parameters,
which are given from the additive bifundamental mass (me)e∈Γ1 as μe = eme ∈ C

×.
We denote the Adams operation of the q-Cartan matrix, replaced with the degree

n monomials, by

c[n]
i j = (1 + q−n)δi j −

∑

e:i→ j

μ−n
e −

∑

e: j→i

μn
eq

−n . (2.3)

We remark that it is reduced to the ordinary quiver Cartan matrix in the classical limit
n → 0,

c[0]
i j = 2δi j − #{e : i → j} − #{e : j → i}. (2.4)

2.2 Vertex operators

We introduce the vertex operators associated with the quiver Γ using the free field
oscillators. We then summarize the OPE factors between them, which will be used in
the following argument.

2.2.1 A-operator

We define the A-operator for each node of the quiver i ∈ Γ0,

Ai (x) = : exp
⎛

⎝ai,0 − κi log x +
∑

n �=0

ai,n x
−n

⎞

⎠ : (2.5)

where : : is the normal ordering symbol, and the free field oscillators obey the com-
mutation relation

[
ai,n, a j,m

]
= −1

n
(1 − qn1 )(1 − qn2 ) c[n]

j i δn+m,0. (2.6)

This oscillator has an explicit realization using formal parameters (ti,n)i∈Γ0,n=1,...,∞,

(n > 0) ai,−n = (1 − qn1 )(1 − qn2 )ti,n, ai,n = −1

n
c[n]
j i

∂

∂t j,n
, ai,0 = − log qi ,

(2.7)
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Integrating over quiver variety and BPS/CFT correspondence 1241

where (qi )i∈Γ0 is the gauge coupling constant, and the formal parameter
(ti,n)i∈Γ0,n=1,...,∞ is identified with the coupling constant for the generic Casimir
operator [14,27,29]. The zero mode coefficient (κi )i∈Γ0 ∈ Z

|Γ0| is to be identified
with the Chern–Simons level of the corresponding gauge theory. This vertex operator
is slightly modified from the original definition by Frenkel–Reshetikhin [6] and also
from [8], used in the construction of the q-deformed W-algebras.

2.2.2 Y-operator

We define the Y-operator

Yi (x) = : exp
⎛

⎝yi,0 − c̃[0]
j i κ j log x +

∑

n �=0

yi,n x
−n

⎞

⎠ :, (2.8)

where the free field oscillator obeys the commutation relation

[
yi,n, y j,m

]
= −1

n
(1 − qn1 )(1 − qn2 ) c̃[−n]

i j δn+m,0. (2.9)

It has the following realization using the formal parameters (ti,n)i∈Γ0,n=1,...,∞,

(n > 0) yi,−n = (1−qn1 )(1−qn2 )c̃[−n]
i j t j,n, yi,n = −1

n

∂

∂ti,n
, yi,0 = − c̃[0]

j i log q j ,

(2.10)

where we denote the inverse of the q-Cartan matrix by c̃[n]
i j .

3

We remark that the a- and y-oscillators behave as the root and the weight since they
are converted to each other through the q-Cartan matrix

ai,n =
∑

j∈Γ0

y j,n c
[n]
j i , (2.11)

which implies the relation between the A- and Y-operators as follows:

Ai (x) = : Yi (x)Yi (qx)∏

e:i→ j

Y j (μeq
−1x)

∏

e: j→i

Y j (μ
−1
e x)

: . (2.12)

Such an interpretation is relevant to the construction of representations on the quiver
[20], which is discussed in Sect. 4.

3 For the affine quiver, the quiver Cartan matrix is not invertible in particular for n = 0 since det(c[0]i j ) = 0.
In this case, we should deal with the zero mode separately. See [8] for details.
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1242 T. Kimura

2.2.3 V-operator

We define the V-operator

Vi (x) = : exp
⎛

⎝
∑

n �=0

vi,n x
−n

⎞

⎠ :, (2.13)

which has the realization

(n > 0) vi,−n = − c̃[n]
j i t j,n, vi,n = 1

n

1

(1 − qn1 )(1 − qn2 )

∂

∂ti,n
. (2.14)

We remark the relation to the y-oscillator

vi,n = − 1

(1 − qn1 )(1 − qn2 )
yi,n, (2.15)

and thus, this V-operator is related to the weight associated with the quiver.

2.2.4 OPE factors

In order to write down the OPE factors, we define a rational function

S(x) = (1 − q1x)(1 − q2x)

(1 − x)(1 − qx)
= exp

( ∞∑

n=1

1

n
(1 − qn1 )(1 − qn2 )xn

)
, (2.16)

which obeys the reflection relation

S(x−1) = S(q−1x). (2.17)

Then, the OPE factors between the vertex operators are given as follows:
AA OPE From the commutation relation (2.6), we obtain

Ai (x)A j (x
′) = : Ai (x)A j (x

′) : ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S

(
x ′

x

)−1

S
( x

x ′
)−1

(i = j)

S

(
μeq

−1 x
′

x

)
= S

(
μ−1
e

x

x ′
)

(s.t. e : i → j)

S

(
μ−1
e

x ′

x

)
= S

(
μeq

−1 x

x ′
)

(s.t. e : j → i)

1 (otherwise)

.

(2.18)
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Integrating over quiver variety and BPS/CFT correspondence 1243

YA OPE Since the y- and a-oscillators obey the commutation relation

[
yi,n, a j,m

]
= −1

n
(1 − qn1 )(1 − qn2 ) δi j δn+m,0, (2.19)

we obtain

Yi (x)A j (x
′) = A j (x

′)Yi (x) = S

(
x ′

x

)−δi j

: Yi (x)A j (x
′) : . (2.20)

VA OPE The v- and a-oscillators obey the commutation relation

[
vi,n, a j,m

]
= 1

n
δi j δn+m,0, (2.21)

and thus, we obtain

Vi (x)A j (x
′) =

(
1 − x ′

x

)−δi j

: Vi (x)A j (x
′) :, (2.22a)

A j (x
′)Vi (x) =

(
1 − x

x ′
)−δi j : Vi (x)A j (x

′) : . (2.22b)

3 Gauge theory partition function

We consider the partition function of 5DN = 1 quiver gauge theory on C2 × S1 and
show that it is expressed as a correlation function of the vertex operators introduced
in Sect. 2.

3.1 A1 quiver

3.1.1 N = 1 pure Yang–Mills theory

The partition function of SU(n) Yang–Mills theory (A1 quiver) is given as the sum
over the instanton contributions:

Z =
∞∑

k=0

qk Zk . (3.1)

The k-instanton contribution leads to the following contour integral,

Zk = 1

k!
(

1 − q

(1 − q1)(1 − q2)

)k ∮ k∏

a=1

dφa

2πιφa

φκ
a

P(φa )̃P(qφa)

k∏

a �=b

S

(
φa

φb

)−1

, (3.2)
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1244 T. Kimura

which is the q-analog of the LMNS formula (1.3) for 4D N = 2 gauge theory. Here
P(x) and P̃(x) are the gauge polynomials given by

P(x) =
n∏

α=1

(
1 − να

x

)
, P̃(x) =

n∏

α=1

(
1 − x

να

)
, (3.3)

where (να)α=1,...,n is a set of the multiplicative Coulomb moduli parameters, given by
να = eaα ∈ C

×, and κ ∈ Z is theChern–Simons level. The k-instanton contribution for
5D theory is not directly interpreted as the equivariant volume of the instanton moduli
space, but it is given as the twisted Witten index of the supersymmetric quantum
mechanics on S1, whose Hilbert space is given by the instanton moduli space Mk,n .
We remark that the integral (3.2) is a multivariable contour integral, so that we have
to fix the integral contour properly. A modern characterization of such a contour
integral is by the Jeffrey–Kirwan residue prescription. See, for example, [2] for the
explanation in a similar context. The resultant residue is consistent with the fixed point
in the instanton moduli space under the equivariant action in this case.

For the latter simplicity, we shift the coupling constant

q −→ 1 − q

(1 − q1)(1 − q2)
q, (3.4)

and then, using the OPE factors shown in Sect. 2.2.4, we obtain the correlator formula
for the partition function

qk Zk = 1

k!
∮ k∏

a=1

dφa

2πιφa

〈
V(n)

∣∣∣
k∏

a=1

A(φa)
−1
∣∣∣V(n)

〉
/
〈
V(n)

∣∣∣V(n)
〉

(3.5)

where the V state
∣∣V(n)

〉
and its dual

〈
V(n)

∣∣ are defined with the V operator
∣∣∣V(n)

〉
= :

n∏

α=1

V(να) : |0〉 ,
〈
V(n)

∣∣∣ = 〈0| :
n∏

α=1

V(q−1να) : . (3.6)

The vacuum state |0〉 and its dual 〈0| are annihilated by the negative and positive
modes

(n > 0)
∂

∂tn
|0〉 = 〈0| tn = 0. (3.7)

The normalization factor
〈
V(n) | V(n)

〉
cancels theOPE factors between theV-operators4

4 We remark that this normalization factor is slightly similar, but different from the perturbative contribution
to the gauge theory partition function, written using the q-double Γ -function

Γ2(x; q1, q2) =
∞∏

n,n′=0

(
1 − xqn1 q

n′
2

)−1 = exp

( ∞∑

m=1

1

m

1

(1 − qm1 )(1 − qm2 )
xm

)
. (3.8)
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Integrating over quiver variety and BPS/CFT correspondence 1245

〈
V(n)

∣∣∣V(n)
〉
= exp

⎛

⎝
∞∑

m=1

1

m

1

(1 − qm1 )(1 − qm2 )

1

1 + q−m

n∑

α,β

νβ

να

⎞

⎠ . (3.9)

Furthermore, we define theW-operator, which is a charge associated with the root
operator,

W =
∮

dφ

2πιφ
A(φ)−1. (3.10)

Then, the normalized partition function has a formal, but concise expression

Z̃ =
∞∑

k=0

1

k!
〈
V(n)

∣∣∣Wk
∣∣∣V(n)

〉
=
〈
V(n)

∣∣∣ eW
∣∣∣V(n)

〉
. (3.11)

We have several remarks on this formula. First, a proper regularization would be
necessary on the product Wk , which may provide a singularity due to the operator
collision. A possible way of regularization is to deform the vertex operator with a
regularization parameter and then take this parameter to zero after the computation.5

Next is the relation of the operator W to the screening charge in 2D CFT, which
is defined as an integral of the screening current. The screening charge is a similar
formal operator, which does not make sense by itself, but plays an important role in
derivation of an integral formula for theCFTcorrelation function, a.k.a., theDotsenko–
Fateev integral formula [4,5]. In fact, the A-operator used here is directly related to
the screening current for the q-deformation of W-algebras by q-difference operation
[6,8–10]. This suggests a possible interpretation of the W-operator as an alternative
screening charge in the q-deformed setup.

Another remark is the similarity of the expression (3.11) to several formulas in the
literatures, e.g., the Fourier transform of the gauge theory partition function, known as
the dual partition function [27], the Ŵ-operator representation of the matrix integral
[16], and the partition function as the norm of theGaiotto–Whittaker state [7]. Actually
such an expression is often found in the context of the integrable hierarchy as the
corresponding τ -function. It would be interesting to pursue the connection between
the formula presented here and other similar formulas.

3.1.2 N = 1 SQCD

We then consider 5DN = 1 SQCD, which has additional nf fundamental and naf anti-
fundamental hypermultiplets. In this case, the k-instanton contribution has additional
factors as follows:

5 We thank Nikita Nekrasov for pointing out this issue.
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1246 T. Kimura

Zk = 1

k!
(

1 − q

(1 − q1)(1 − q2)

)k ∮ k∏

a=1

dφa

2πιφa
φκ
a
Q(φa)Q̃(qφa)

P(φa )̃P(qφa)

k∏

a �=b

S

(
φa

φb

)−1

(3.12)

where we define the matter polynomials

Q(x) =
nf∏

f=1

(
1 − μ f

x

)
, Q̃(x) =

naf∏

f=1

(
1 − x

μ̃ f

)
(3.13)

with the sets of the multiplicative fundamental and antifundamental mass parameters,
(μ f ) f =1,...,nf and (μ̃ f ) f =1,...,naf .

In a similar way to the previous case, under the coupling shift (3.4), we obtain

qk Zk = 1

k!
∮ k∏

a=1

dφa

2πιφa

〈
V(n,naf)

∣∣∣
k∏

a=1

A(φa)
−1
∣∣∣V(n,nf)

〉
/
〈
V(n,naf)

∣∣∣V(n,nf)
〉

(3.14)

with the modified V-state,

| V(n,nf) 〉 = :
n∏

α=1

V(να)

nf∏

f =1

V(μ f )
−1 : |0〉 , (3.15a)

〈 V(n,naf) | = 〈0| :
n∏

α=1

V(q−1να)

naf∏

f=1

V(q−1μ̃ f )
−1 : . (3.15b)

The additional contribution of the (anti)fundamental matter is imposed by this mod-
ification of the V-state. Then, summing up all the instanton sectors, we obtain the
normalized partition function

Z̃ =
∞∑

k=0

1

k!
〈
V(n,naf)

∣∣∣Wk
∣∣∣V(n,nf)

〉
=
〈
V(n,naf)

∣∣∣eW
∣∣∣V(n,nf)

〉
. (3.16)

We remark that one can use the sameW-operator as far as considering A1 quiver gauge
theory, and the matter content dependence appears only in the V-state.6

3.2 Quiver gauge theory

We study 5D N = 1 Γ -quiver gauge theory on C
2 × S1. We define the dimension

vectors, k = (ki )i∈Γ0 , n = (ni )i∈Γ0 , n
(a)f = (n(a)fi )i∈Γ0 , which characterize the instan-

ton moduli space denoted by Mk,n . The gauge theory partition function is given as
the summation over topological sectors characterized by the dimension vector

6 The theory with the adjoint matter is classified into Â0 quiver theory. See Sect. 3.2.1 for details.
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Z =
∑

k

qk Zk (3.17)

where we use the convention

∑

k

=
∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

krk Γ =0

, qk =
∏

i∈Γ0

q
ki
i . (3.18)

The k-instanton contribution to the partition function has the following contour integral
form:

Zk =
∏

i∈Γ0

1

ki !
∮ ∏

i∈Γ0

ki∏

a=1

dφi,a

2πιφi,a
zi (φi ; νi , μi , μ̃i )

∏

e:i→ j

ki∏

a=1

k j∏

b=1

S

(
μeq

−1φ j,b

φi,a

)

∏

e: j→i

ki∏

a=1

k j∏

b=1

S

(
μ−1
e

φi,a

φ j,b

)
(3.19)

with the building block for each node i ∈ Γ0

zi (φi ; νi , μi , μ̃i ) =
ki∏

a=1

φ
κi
i,a

Qi (φi,a)Q̃i (qφi,a)

Pi (φi,a )̃Pi (qφi,a)

ki∏

a �=b

S

(
φi,a

φi,b

)−1

(3.20)

and the shift of the coupling constant

qi −→ 1 − q

(1 − q1)(1 − q2)
qi . (3.21)

We define the gauge polynomials and the matter polynomials associated with each
gauge node

Pi (x) =
ni∏

α=1

(
1 − νi,α

x

)
, P̃i (x) =

ni∏

α=1

(
1 − x

νi,α

)
, (3.22a)

Qi (x) =
nfi∏

f =1

(
1 − μi, f

x

)
, Q̃i (x) =

nafi∏

f =1

(
1 − x

μ̃i, f

)
, (3.22b)

with the multiplicative Coulomb moduli and the (anti)fundamental mass parameters,

νi = (νi,α)α=1,...,ni , μi = (μi, f ) f =1,...,nfi
, μ̃i = (μ̃i, f ) f =1,...,nafi

. (3.23)
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In this case, we obtain the following correlator representation using the OPE factors
shown in Sect. 2.2.4:

Zk =
∏

i∈Γ0

1

ki !
∮ ∏

i∈Γ0

ki∏

a=1

dφi,a

2πιφi,a

〈
V(n,naf)

∣∣∣
∏

i∈Γ0

ki∏

a=1

Ai (φi,a)
−1
∣∣∣V(n,nf)

〉
/
〈
V(n,naf)

∣∣∣V(n,nf)
〉

(3.24)

with the V-state

| V(n,nf) 〉 = :
∏

i∈Γ0

ni∏

α=1

Vi (νi,α)

nf∏

f =1

Vi (μi, f )
−1 : |0〉 , (3.25a)

〈 V(n,naf) | = 〈0| :
∏

i∈Γ0

ni∏

α=1

Vi (q−1νi,α)

naf∏

f=1

Vi (q−1μ̃i, f )
−1 : . (3.25b)

Namely, all the factors appearing in the contour integral (3.19) are reproduced by
the OPE factors between the vertex operators associated with the quiver Γ . Then,
introducing the W-operator for each node i ∈ Γ0

Wi =
∮

dφ

2πιφ
Ai (φ)−1, (3.26)

the summation over the instanton sectors is given as

Z̃ =
∑

k

〈
V(n,naf)

∣∣∣
∏

i∈Γ0

Wki
i

ki !
∣∣∣V(n,nf)

〉
=
〈
V(n,naf)

∣∣∣
∏

i∈Γ0

eWi

∣∣∣V(n,nf)

〉
. (3.27)

This formalism is available for generic quiver, not restricted to the finite-type Dynkin
quiver, but also the affine and hyperbolic quivers.

We remark that the vertex operators used in this paper are also used in another
formalism [8–10], where the screening charge, given as the screening current integral,
plays a central role in the construction of the partition function instead of the A-
operator. The explicit relation between these two formulations is not yet obvious,
whereas a clue would be that the q-difference of the screening current gives rise to the
A-operator, as mentioned before. We would discuss this issue in a future research.

3.2.1 ̂A0 quiver

Let us consider Â0 quiver (5D N = 1∗ SU(n) gauge theory), which is the simplest
example of the affine quivers. In this case, the q-Cartan matrix is given by

c = 1 + q−1 − μ−1 − μq−1 = (1 − μ−1)(1 − μq−1), (3.28)
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with the multiplicative adjoint mass μ = emadj ∈ C
×. In the classical limit, this q-

Cartan matrix is reduced to c[0] = 0, so that not invertible. We now assume c �=
0 ⇐⇒ μ �= 1, q, and it becomes invertible after the q-deformation.

In this case, the k-instanton contribution is given by

Zk = 1

k!
∮ k∏

a=1

dφa

2πιφa

P(μ−1φa )̃P(μ−1qφa)

P(φa )̃P(qφa)

k∏

a �=b

S

(
φa

φb

)−1

S

(
μ−1φa

φb

)−1

,

(3.29)

which is written using the vertex operators as follows:

qk Zk = 1

k!
∮ k∏

a=1

dφa

2πιφa

〈
V(n,n)

∣∣∣
k∏

a=1

A(φa)
−1
∣∣∣V(n,n)

〉
/
〈
V(n,n)

∣∣∣V(n,n)
〉
. (3.30)

The V-state is now defined

| V(n,n) 〉 = :
n∏

α=1

V(να)V(μνα)−1 : |0〉 , (3.31a)

〈 V(n,n) | = 〈0| :
n∏

α=1

V(q−1να)V(μq−1να)−1 :, (3.31b)

and the normalized partition function is given as the summation over the instanton
sectors

Z̃ =
∞∑

k=0

1

k!
〈
V(n,n)

∣∣∣Wk
∣∣∣V(n,n)

〉
=
〈
V(n,n)

∣∣∣eW
∣∣∣V(n,n)

〉
, (3.32)

where theW-operator is the integral of the A-operator associated with Â0 quiver as in
the previous case.

4 qq-character integral formula

The qq-character is the doubly quantum deformation of the character of representa-
tions constructed on the quiver Γ . It was shown in [22] that the qq-character has a
formula based on the integration over the quiver variety associated with the quiver Γ .
We apply the operator formalism to the qq-character based on this integral formula.

We define the dimension vectors, v = (vi )i∈Γ0 , w = (wi )i∈Γ0 , character-
izing the representation on the quiver [20]. Let v = (vi,a)i∈Γ0,a=1,...,vi , w =
(wi,α)i∈Γ0,α=1,...,wi be the equivariant parameters for GL(v) =

∏

i∈Γ0

GL(vi ,C) and

GL(w) =
∏

i∈Γ0

GL(wi ,C) action. Then, we introduce the highest weight operator
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Yw(w) = :
∏

i∈Γ0

wi∏

α=1

Yi (wi,α) : . (4.1)

The qq-character is given as the summation over v ∈ Z
rk Γ
>0

Tw(w) =
∑

v

Tw,v(w), (4.2)

where each contribution Tw,v(w) corresponds to the integral over the quiver variety
Mv,w(Γ )

Tw,v(w) =
∏

i∈Γ0

1

vi !
∮ ∏

i∈Γ0

vi∏

a=1

dvi,a

2πιvi,a

vi∏

a �=b

S

(
vi,b

vi,a

)−1 ∏

e:i→ j

vi∏

a=1

v j∏

b=1

S

×
(

μeq
−1 v j,b

vi,a

) ∏

e: j→i

vi∏

a=1

v j∏

b=1

S

(
μ−1
e

vi,a

v j,b

)

×
vi∏

a=1

wi∏

α=1

S

(
vi,a

wi,α

)
: Yw(w)

vi∏

a=1

Ai (vi,a)
−1 : . (4.3)

We again shift the coupling constant (3.21), which is absorbed by the normalization
constant of the A-operator.

It turns out that all the S-factors appearing in the integral are precisely reproduced
by the OPE factors of the A- and Y-operators shown in Sect. 2.2.4:

Tw,v(w) =
∮ ∏

i∈Γ0

vi∏

a=1

dvi,a

2πιvi,a
Yw(w)

∏

i∈Γ0

vi∏

a=1

Ai (vi,a)
−1. (4.4)

Then, we obtain a formal, but concise formula for generic qq-character using the
W-operator (3.26)

Tw(w) =
∑

v

Yw(w)
∏

i∈Γ0

Wvi
i

vi ! = Yw(w)
∏

i∈Γ0

eWi . (4.5)

We remark that the qq-character is an operator acting on the Fock space generated by
(ti,n, ∂ti,n )i∈Γ0,n=1,...,∞, so that it is not expressed as a free field correlator.

From the representation theoretical point of view, the qq-character formula (4.5) is
interpreted as follows: The operator defined in (4.1) is the highest weight, and the sum
over the dimension vector v (4.2) corresponds to the sum over the correspondingWeyl
orbit. The operator

∏
i∈Γ0

eWi in the formula plays a role of theWeyl orbit generating

operator.
We remark that the qq-character Tw(w) is now an operator acting on the Fock space,

which becomes a pole-free regular function after taking the gauge theory average. In
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the operator formalism, the regularity of the qq-character is rephrased as the com-
mutativity with the screening charge associated with the quiver [8–10]. It would be
worth studying the regularity and the commutativity in terms of theW-operator since
it also has an essential connection with the screening charge in the quiver W-algebra
formalism. We leave this issue for a future study.

5 6DN = (1, 0) theory

In this section, we show that the formalism shown above is naturally generalized to
the 6DN = (1, 0) theory compactified on a torus, C2 × T 2. Let τ be the modulus of
the torus on which the gauge theory is compactified. We define the elliptic nome

p = e2πιτ ∈ C
× (5.1)

and the theta function

θ(x; p) = (x; p)∞(px−1; p)∞. (5.2)

We remark the relation

θ(x−1; p) = (−x−1)θ(x; p) (5.3)

is essentially equivalent to 1 − x−1 = (−x−1)(1 − x).

5.1 Partition function

We consider A1 quiver theory for simplicity. We can similarly formulate generic
quiver gauge theory based on the same argument in Sect. 3.2. See also [9] for related
discussions.

The gauge theory partition function is given as the instanton sum

Z =
∞∑

k=0

qk Zk . (5.4)

The k-instanton contribution for 6D SU(n) theory with nf and naf (anti)fundamental
hypermultiplets is given by

Zk = 1

k!
(

θ(q; p)
θ(q1; p)θ(q2; p)

)k ∮ k∏

a=1

dφa

2πιφa

Q(φa)Q̃(qφa)

P(φa )̃P(qφa)

k∏

a �=b

S

(
φa

φb

)−1

(5.5)
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where all the factors are replaced with the elliptic functions

S(x) = S(q−1x−1) = θ(q1x; p)θ(q2x; p)
θ(x; p)θ(qx; p) = exp

⎛

⎝
∑

n �=0

1

n

(1 − qn1 )(1 − qn2 )

1 − pn
xn

⎞

⎠ ,

(5.6a)

P(x) =
n∏

α=1

θ
(να

x
; p
)

, P̃(x) =
n∏

α=1

θ

(
x

να

; p
)

, (5.6b)

Q(x) =
nf∏

f =1

θ
(μ f

x
; p
)

, Q̃(x) =
naf∏

f =1

θ

(
x

μ̃ f
; p
)

. (5.6c)

We remark that we should impose the anomaly free condition in order that the partition
function possesses a proper modular property.

5.1.1 Trace formula

Let L0 be the energy operator defined

L0 =
∞∑

m=1

m tm
∂

∂tm
. (5.7)

Under the shift (3.4), the k-instanton contribution is written as the trace over the Fock
space generated by (tn, ∂tn )n=1,...,∞,

qk Zk = 1

k!
∮ k∏

a=1

dφa

2πιφa
Tr

[
pL0 V(n,naf)

(
k∏

a=1

A(φa)
−1

)
V(n,nf)

]
/Tr

[
pL0 V(n,naf)V(n,nf)

]

(5.8)

where we define

V(n,nf) = :
n∏

α=1

V(να)

nf∏

f =1

V(μ f )
−1 :, V(n,naf) =:

n∏

α=1

V(q−1να)

naf∏

f =1

V(q−1μ̃ f )
−1 : .

(5.9)

Then, the normalized partition function is given by

Z̃ =
∞∑

k=0

1

k! Tr
[
pL0 V(n,naf) Wk V(n,nf)

]
= Tr

[
pL0 V(n,naf) eW V(n,nf)

]
. (5.10)

This 6D formula is interpreted as a correlator on a torus T 2, or elliptic curve Ep =
C

×/pZ = C/(Z⊕ τZ), while the 5D formula (3.16) is a correlator on a cylinder C×.
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5.1.2 Elliptic vertex operators

We define the elliptic deformation of the vertex operators using the doubling trick [3],

Ai (x) = : exp
⎛

⎝ai,0 +
∑

n �=0

a(+)
i,n x−n +

∑

n �=0

a(−)
i,n x+n

⎞

⎠ :, (5.11a)

Yi (x) = : exp
⎛

⎝yi,0 +
∑

n �=0

y(+)
i,n x−n +

∑

n �=0

y(−)
i,n x+n

⎞

⎠ :, (5.11b)

where the oscillators obey the commutation relations,

[
a(±)
i,n , a(±)

j,m

]
= ∓ 1

n

(1 − q±n
1 )(1 − q±n

2 )

1 − p±n
c[±n]
j i δn+m,0, (5.12a)

[
y(±)
i,n , y(±)

j,m

]
= ∓ 1

n

(1 − q±n
1 )(1 − q±n

2 )

1 − p±n
c̃[∓n]
i j δn+m,0. (5.12b)

These vertex operators provide elliptic analog of the OPE factors in Sect. 2.2.4, replac-
ing all the factors with the elliptic function. The V-operator is similarly defined to
provide the elliptic OPE factor,

Vi (x)A j (x
′) = θ

(
x ′

x
; p
)−δi j

: Vi (x)A j (x
′) :, (5.13a)

A j (x
′)Vi (x) = θ

( x

x ′ ; p
)−δi j : Vi (x)A j (x

′) : . (5.13b)

In this case, the Fock space is generated by two sets of the formal parameters,
(t (±)
i,n , ∂

(±)
i,n )i∈Γ0,n=1,...,∞, which is a direct product of the Fock spaces generated by

the plus and minus sectors. For example, the vacuum is given by |0〉 = |0〉(+) ⊕|0〉(−).
Then, we obtain exactly the same formula of the k-instanton contribution as (3.14)
and the total partition function (3.16), as a correlator with respect to the doubled Fock
space equipped with the elliptic vertex operators defined here.

5.2 qq-character

We can similarly consider the qq-character in 6D N = (1, 0) theory on C
2 × T 2.

Since the qq-character discussed in this paper is an operator, it is not expressed as a
correlator, and we should use the elliptic vertex operator formalism used in Sect. 5.1.2
to construct the qq-character in this case. Using the elliptic vertex operators with the
doubled Fock space, we obtain formally the same formula as (4.4), and also (4.5), for
arbitrary highest weight modules constructed on a quiver.
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