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Highlights 

• The two major bioactive constituents from Thonningia sanguinea were purified by 

CPC. 

• A multi-heart cut strategy allowed the isolation of four additional compounds. 

• High flow rates and rotation speeds enabled CPC separations in short amounts of time. 
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ABSTRACT 

Thonningia sanguinea is a parasitic herb widely used in traditional African medicine. 

Dihydrochalcone glucosides (unsubstituted, substituted with hexahydroxydiphenoyl or galloyl 

moieties) are the main constituents in the subaerial parts of this plant. In the present study, a 

purification of the six major compounds from a methanol extract of the plant’s subaerial parts 

was achieved by centrifugal partition chromatography. A first dimension CPC separation with 

the solvent system methyl tert-butyl ether – 1,2-dimethoxyethane – water (1:2:1) in the 

ascending mode enabled the isolation of the two major bioactive compounds thonningianin A 

and B from 350 mg of methanol extract within only 16 minutes with respectable yields (25.7 

and 21.1 mg), purities (87.1 and 85%), and recoveries (71.2 and 70.4%). Using a multi-heart 

cut strategy, the remaining four major dihydrochalcone glucosides of the extract were further 

separated in a second dimension CPC with the solvent system ethyl acetate – 1,2-

dimethoxyethane – water (2:1:1) in the descending mode with high purities (88.9 – 98.8%).  
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1. INTRODUCTION 

Thonningia sanguinea is a widely used medicinal plant throughout tropical Africa [1–3]. 

During an ethnopharmacological survey in the province of Uíge in northern Angola, various 

traditional uses have emerged: e.g. the use against erectile dysfunction, cough, urinal infections, 

and as anthelmintic [4]. In a recent study on this plant, we reported the in vitro pharmacological 

potential of T. sanguinea and some of its secondary metabolites as inhibitors of protein tyrosine 

phosphatase 1B (PTP1B) [5], a cellular receptor representing a potential target for the treatment 

of diabetes, obesity and some types of cancer [6]. The crude methanol (MeOH) extract of the 

plant batch investigated in the present study contained six dihydrochalcone glucosides as major 

compounds, which were identified as thonningianin A (thA), thonningianin B (thB), 3-

hydroxyphloridzin (1), 2′-O-(6-O-galloyl-β-D-glucopyranosyl)-3-hydroxyphloretin (2), 2′-O-

(4,6-O-Sa-hexahydroxydiphenoyl-β-D-glucopyranosyl)-3-hydroxyphloretin (3), and 2′-O-(3-

galloyl-4,6-O-Sa-hexahydroxydiphenoyl-β-D-glucopyranosyl)-3-hydroxyphloretin (4) [5,7]. 

Except for 1, all mentioned compounds comprise galloyl groups or a hexahydroxydiphenoyl 

group at their glucose moiety and can thus be defined as hydrolysable tannins. For a more 

detailed investigation of the faith of the compounds after oral ingestion and the corresponding 

bioavailability, the isolation of the main compounds within a short time and with high purity is 

of special interest.  

Counter-current chromatography (CCC) is an overarching term for all forms of liquid-liquid 

chromatography that use a biphasic immiscible liquid system without any solid support for 

separation. In CCC, the liquid stationary phase is retained in the device by centrifugal forces, 

while the liquid mobile phase is pumped through. CCC qualifies mainly as preparative 

technique for two reasons: on one hand, the separation power is less affected by the injection 

of large sample amounts than that of a solid-phase LC column (overloading effects). On the 

other hand, the performances (efficiency and stationary phase retention) are improved during 

the scale-up process [8]. Further benefits of CCC are the possibility to recover all components 

injected into the system thanks to extrusion and the absence of irreversible adsorption or sample 

contamination through interaction with a solid stationary phase. Therefore, it is particularly 

suited for the separation of complex samples such as plant extracts and plays an important role 

in natural products chemistry [9].  

In the past, CCC has been used for the separation and purification of common hydrolysable 

tannins [10–12] as well as for the isolation of dihydrochalcone glucosides from Sweet Tea 

(Lithocarpus polystachyus) [13]. These separations were conducted over 6 hours for up to three 

targets. The lead compounds of the extract investigated in this study represent hybrids of these 
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two compound classes, which have not been subjected to separation with CCC related methods 

until now. The aim of this study was the development of a multiple heart-cut two-dimensional 

CCC method to provide the purification of the six major constituents of the MeOH extract of 

T. sanguinea subaerial parts in a timely manner, with the focus on the fast isolation of the major 

two biologically active constituents, thA and thB. For that purpose, a first CCC dimension (1D) 

was carried out at large scale in a normal phase mode and a second CCC dimension (2D) was 

performed to separate selected fractions in a reverse phase mode. To ensure a fast process, an 

instrument with a hydrostatic CCC design, a Centrifugal Partition Chromatograph (CPC), was 

used. CPC devices generally can be operated with almost any two-phase system, are resistant 

to stationary phase loss and allow high flow rates and hence short separation times [14]. 

 

2. MATERIALS AND METHODS 

 

2.1 Chemicals and instrumentation 

All solvents used for extract preparation, HPLC analysis and CPC separations were of analytical 

grade and were purchased from Sigma-Aldrich (Isle d’Abeau, France). 1,2-Dimethoxyethane 

(unstabilized) was purchased from TCI (Zwijndrecht, Belgium), methyl tert-butyl ether from 

Acros Organics (Fischer Scientific, Illkirch, France). Standards of the target compounds used 

for the identification of our isolates were obtained by conventional chromatographic methods 

during our previous study on Thonningia sanguinea [5]. The laboratory scale CPC instrument 

used in this study was the FCPC-A from Kromaton Rousselet-Robatel (Annonay, France) with 

interchangeable rotors. The rotors had an exact volume of 253 mL for 1D large-scale and 36 mL 

for 2D small-scale separation experiments. The CPC apparatus was equipped with a 

PuriFlash1000 (Interchim, Montluçon, France) providing the quaternary pump, UV detector set 

at 280 nm, an automatic sample injection valve fitted with a sample loop (1.08 mL for small 

scale, 18.9 mL for large-scale experiments), and a fraction collector. The HPLC system used 

for the analysis of all fractions was an Alliance 2690 from Waters (Saint-Quentin-en-Yvelines, 

France) using a binary pump, an autosampler, and a DAD detector Waters 996. Waters 

EmPower software was used for data acquisition.  

 

2.2 Plant material and extract preparation 

The underground parts of Thonningia sanguinea Vahl (Balanophoraceae) were collected in a 

forest in November 2016 during a field trip in the northern Angolan province of Uíge (S 

7°04′32.5″, E 14°38′14.3″, 541 m. a.s.l.). The collection and export permits were issued by the 
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Ministry of Environment of Angola and the Province Government of Uíge. The collected plant 

material was identified in Dresden, Germany. An authenticated plant voucher specimen is 

deposited at the herbarium of the Technische Universität Dresden (voucher no. HD 043263). 

The collected plant material was cleaned, immediately dried in a drying cabinet at 40°C (HTD 

100 Bench Top, LinTek), and subsequently boxed using a vacuum machine. For extract 

preparation, the dried plant material was milled to a fine powder using an electric coffee grinder 

and 5 g thereof weighted into an Erlenmeyer flask. To remove surface-active compounds that 

could disturb the biphasic liquid system in CPC (e.g. fatty acids, triglycerides), the material was 

first defatted by sonication with petroleum ether (five minutes with 30 mL, four times). The 

residue was dried and extracted with 30 mL MeOH using sonication for 5 minutes. The 

procedure was repeated six times with fresh MeOH to ensure exhaustive extraction, the extracts 

were pooled and the solvent subsequently removed by vacuum rotary evaporation to yield 2.71 

g of dry extract. 

 

2.3. Selection of the CPC solvent systems 

Partition coefficients of the six major compounds and some prominent impurities were 

determined using the shake-flask method: 20 mg of the extract were weighted into a small flask 

and 2 mL of each of the phases from the equilibrated solvent system was subsequently added. 

The mixture was shaken vigorously for several seconds to allow the complete dissolution and 

equilibration of the compounds between the two phases. Thereafter, 1 mL of both phases were 

separately transferred into HPLC vials. While the lower (aqueous) phase was directly analyzed 

by HPLC, the solvent of the upper phase was removed by evaporation with N2, and the residue 

redissolved in 1 mL MeOH prior to HPLC analysis. The distribution coefficients were finally 

obtained by calculating the ratio of the peak areas at 280 nm of each target compound in the 

two phases.  

 

2.4. Centrifugal partition chromatography 

The solvent systems for the CPC runs were prepared by mixing and equilibrating the respective 

solvents directly in HPLC glass bottles. Samples for the CPC were dissolved in an equal mixture 

of upper and lower phase of the respective solvent system and filtered through a 0.45 µm PTFE 

filter before injection. Prior to each CPC run, the system was filled with two rotor volumes of 

stationary phase and equilibrated at the selected rotation speed by pumping the mobile phase at 

the indicated flow rate. Stationary phase retention volume ratios (Sf) were monitored either by 

collecting the volume of the displaced stationary phase after equilibration or by considering that 
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unretained compounds, providing a slight increase in UV signal, exhibit an elution volume 

equal to the mobile phase volume.  

The 1D large scale CPC was used with the solvent system MTBE – DME – water (1:2:1) at 

2000 rpm, ascending mode, 20 mL/min. The sample was 350 mg MeOH extract in 9 mL 

upper/lower phase mixture. Detection was performed at 280 nm. The eluate was collected every 

10 mL up to 19.5 min, then every 15 mL. Each tube was analyzed by HPLC. 

Three fractions (III, IV, V) were respectively pooled as shown in Fig. 2, evaporated to dryness 

and sent to the 2D CPC with the solvent system ethyl acetate – DME – water (2:1:1). The small 

rotor was used in descending mode, at 3 mL/min, 2800 rpm. Samples of 16.0 (III), 13.1 (IV), 

and 13.0 (V) mg of the respective fraction were dissolved in 1.08 mL upper/lower phase 

mixture. Fraction collection was performed every 3 mL (1 minute). 

 

2.5. HPLC analysis 

All HPLC assays were performed on an Agilent Eclipse XDB-C18 3.5 µm, 3.0 × 100 mm 

column at 1 mL/min, 20° C, 280 nm. Mobile phase: (A) water + 0.02 % trifluoroacetic acid, 

(B) ACN. Gradient 10% to 40% B in 25 min.  

All six target compounds were identified in the fractions by comparison of their retention times 

with authenticated standards. For purity estimation of the compounds in the pooled fractions, 5 

µL of the sample solutions (1 mg/mL) was analyzed at 210 nm. The purity reflects the 

percentage of the peak area of the target peak vs. the total integration area throughout the 

chromatogram. The contents of the target compounds 1-4, thA, and thB in the used extract 

were determined using a validated UHPLC method previously published [7]. Therefore, three 

solutions of 15.00 mg defatted MeOH extract in 25.0 mL MeOH were prepared and 

subsequently assayed in three replicates each. The recoveries of the target compounds were 

estimated based on the following equation: 

 

% compound recovery	=	
weight of the fraction containing the target compound × % purity

amount of target compound in the used extract  

 

For monitoring the tube content obtained from the 1D CPC and for peak reconstruction in Fig. 

2, 1 mL of the eluate was evaporated to dryness, reconstituted in MeOH, and an aliquot (5 or 

10 µL) was analyzed by HPLC. For the 2D CPC, 10 µl of the eluate were directly injected for 

HPLC analysis of the collected tubes. 
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3. RESULTS AND DISCUSSION 

 

3.1. Solvent system selection for 1D CPC separation 

The quite complex HPLC chromatogram of the defatted MeOH extract used in this 

investigation (Fig. 1) displays six major and several minor compounds. The goal of this study 

was to accomplish the purification of the six major compounds (1-4, thA and thB) by CPC, 

with the focus on a fast purification of the two bioactive substances thA and thB.  

 

 

Fig. 1. HPLC-UV chromatogram (280 nm) of the defatted MeOH extract (5 mg/mL MeOH) of Thonningia sanguinea subaerial 

parts. For compound structures, see Fig. 2 and 3. The remaining HPLC parameters are summarized in the materials and methods 

section. 

 

The first step of CCC method development consists in the selection of a suitable solvent 

system, in which target compounds have distribution coefficients (K) in an acceptable range 

that would allow to elute them in one step, i.e K between 0.1 to 8 [15], along with separation 

factors a (a = K2/K1) > 1.5 in order to guarantee a successful separation. The partition 

coefficients of the six target compounds (1-4, thA, and thB) of the defatted MeOH extract in a 

series of solvent systems are shown in Table 1. The K values of the most prominent impurities 

were also calculated and considered (data not shown). In a previous CCC separation of 

hydrolysable tannins, a solvent system consisting of n-butanol, n-propanol, and water has been 

used [10]. Applied on the MeOH extract of T. sanguinea, this solvent system showed either 

strong emulsification (ratio 4:1:5) or poor distribution (ratio 2:1:3, see Table 1). In the two-

solvent system water/n-butanol (1:1), the K values of the compounds were close to ∞ (data not 

shown), indicating that a less polar solvent combination could be more appropriate. In solvent 

systems of the “Arizona” series (heptane/ethyl acetate/MeOH/water), the compounds showed 

marginal distribution in the two phases, but with K values lying mostly outside of the 
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practicable range. Finally, the most suitable K values were obtained with a solvent system 

containing methyl tert-butyl ether (MTBE), 1,2-dimethoxyethane (DME) and water in a ratio 

of 1:2:1 (No 10, see Table 1). The settling time of the solvent system when containing the 

sample was 40 seconds (40 mg extract/mL) and no emulsification was observed. Moreover, the 

two priority compounds thA, and thB exhibited Kasc values below 2 with a large selectivity, 

indicating that their CPC separation in ascending mode (aqueous stationary phase) should be 

fast. Therefore, this solvent system was selected for the 1D CPC separation. 

 

Table 1. Partition coefficients of 1-4, thA and thB in selected solvent systems, measured using 

the shake-flask method.  

 

No. solvent system partition 
coefficient 

composition 
(v/v) 

compounds and their respective K values 

1 2 3 4 thB thA 

1 n-butanol – n-propanol – water Kdes 2:1:3 6.9 11.6 7.7 15.9 39.0 110 

2 heptane – ethyl acetate – MeOH – water Kdes 1:3:1:3 0.15 0.21 0.10 0.36 1.92 7.92 

3 heptane – ethyl acetate – MeOH – water Kdes 1:4:1:4 0.28 0.49 0.29 1.35 5.46 32.6 

4 heptane – ethyl acetate – MeOH – water Kdes 1:5:1:5 0.44 0.85 0.58 2.76 10.3 82.3 

5 heptane – ethyl acetate – MeOH – water Kdes 1:5.5:1:5.5 0.50 1.09 0.76 4.32 17.2 ∞ 

6 MTBE – water Kdes 1:1 0.47 1.32 0.36 6.22 4.55 58.4 

7 MTBE – ACN – water Kdes 4:1:5 0.57 1.41 0.91 7.02 3.6 20.1 

8 MTBE – ACN – water Kdes 2:2:3 1.31 2.59 2.97 11.2 18.9 87.1 

9 MTBE – DME – water Kdes 1:1:1 7.17 7.47 19.8 10.3 1.74 0.68 

10 MTBE –DME – water Kasc 1:2:1 3.76 4.01 6.44 5.07 1.39 0.78 

11 MTBE - DME – n-butanol – water Kasc 1:1.75:0.25:1 2.19 2.11 3.08 2.37 0.91 0.53 

12 ethyl acetate – DME – water Kdes 2:1:1 0.96 1.55 1.41 3.25 9.95 31.5 

13 ethyl acetate – DME – water Kdes 1.5:1:1 0.78 1.17 1.07 2.18 6.86 20.0 

 

3.2. 1D large scale CPC 

 

The 1D CPC was performed in ascending mode, meaning that the lower phase of the chosen 

solvent system (MTBE – DME – water 1:2:1) acted as stationary phase and the upper phase as 

mobile phase. A rotation speed of 2000 rpm and a flow rate of 20 mL/min applied on the large 

CPC rotor afforded a stable stationary phase volume ratio (Sf) of 64% in the column after 
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equilibration with a maximum backpressure of 62 bar. A sample solution close to the solubility 

limit (38.8 mg/mL) was injected into the 9 mL loop representing an amount of 350 mg. Despite 

a significant stationary phase bleed after injection (estimated Sf 39.5 %), nearly resolved 

symmetric peaks (Rs 1.31) could be observed for thA and thB in the CPC-UV chromatogram 

(Fig. 2A) in a relatively short elution time (below 18 min). The pooled fraction I afforded 25.7 

mg of thA in a purity of 87.1% within 12.5 minutes after injection of the crude extract, whereas 

21.1 mg of thB (purity = 85.0%) were obtained from fraction II after 16 minutes. Corresponding 

HPLC analysis are shown in Fig. 2B. The compound recovery was 71.2% for thA and 70.4% 

for thB.  

The injection of a higher sample amount (780 mg) was also investigated but led to a dramatic 

loss of stationary phase (Sf decreased from 64% to 33%) accompanied  by a loss of resolution 

(supporting information, Fig. S1). Nevertheless, thA and thB could still be obtained with 

declined purities (79.6% and 81.2%), but with increased yields (51.1 and 52.3 mg) and only 

slightly decreased recoveries (63.4% and 63.5%), which underlines the robustness of this CPC 

method. 

The remaining four target compounds (1-4) eluted as estimated from their K values. The 

selectivity between these targets was estimated below 1.3 during shake-flasks experiments and 

hence, as expected, they were not separated from one another by CPC. While a second 

dimension is then compulsory to separate these compounds, it is of interest to build on the 

preliminary separation that occurred in this first dimension. Hence, a multi-heart cut strategy 

was performed, by selecting fractions in which the number of targets is limited. Thus, fractions 

III-V were combined according to Fig. 2 and further purified by a 2D CPC exhibiting a different 

selectivity. 
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Fig. 2 A: 1D CPC separation of the MeOH extract on the 253 mL rotor; sample concentration: 350 mg in 9 mL upper/lower 

phase mixture; Sf = 64.4% prior to and 39.9% after injection; 58 bar; black line: CPC-UV chromatogram; colored lines: peak 

reconstruction of the target compounds  utilizing AUC of the HPLC analysis. Fractions I-V according to the dashed lines. B: 

Chromatograms of the HPLC analysis of combined fractions I (thA) and II (thB), at 210 nm; purity according to HPLC-UV.  

 

3.4. 2D CPC 

 

In order to isolate compounds 1-4 from fractions III-V of the 1D CPC, the implementation of a 

second CPC method was necessary. The experiments were conducted on a smaller rotor (36 

mL), as the amount of the fractions enriched in the target compounds (III-V) was comparably 

small. The solvent system ethyl acetate – DME – water (2:1:1, No 12, Table 1) used in 

descending mode, i.e. the stationary phase is the organic upper phase, featured Kdes values for 

1-4 in an acceptable range, with the target compounds eluting according to a reverse-phase 

mechanism. Analogous to the 1D, the presence of the aprotic di-ether DME turned out to be 

essential for a satisfying distribution of the compounds between the two phases. The exchange 
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of MTBE with ethyl acetate provided an additional selectivity which can be easily illustrated 

by an x,y-plot of the corresponding K values of each compound obtained of system No 10 (x-

axis) vs. system No 12 (y-axis) (supporting information, Fig. S2). Thus, the separation factor a 

of compounds 1 and 2 was improved up to 1.6, while the selectivity between 2 and 4 reached a 

value of 2.1. As expected, the separation of the three co-eluting compounds of the 1D CPC was 

achieved in the 2D CPC as shown in Fig. 3. Compounds 1 and 2 were separated by 2D CPC of 

fraction III. Compound 4 could be obtained from Fraction IV and finally, compound 3 was 

separated from impurities by 2D CPC of Fraction V. The selection of a short collection interval 

enabled the production of highly pure compounds with the disadvantage of a rather low 

recovery (11.4%, 12.6%, 40.4%, and 33.7% for 1, 2, 3, and 4, respectively). For an increase of 

recovery, the collection window might be enlarged, however with the drawback of lower purity. 

 

Fig. 3. 2D separation of the fractions III-IV on the 36 mL CPC rotor; Left side of the figure: CPC-UV chromatograms (Sf = 

45.8 – 47.2%; 49-51 bar). Right side: Chromatograms of the HPLC analysis of the pooled fractions IIIa, IIb, IVa, and Va. (210 

nm), which were combined according to the dashed lines; purity according to integration of the chromatogram. 
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4. CONCLUSION 

In the presented study, six major dihydrochalcone glucoside derivatives could be obtained with 

high purity (≥ 85%) from a complex MeOH extract of the subaerial parts of Thonningia 

sanguinea by the sole use of CPC in a timely manner. The two bioactive substances thA and 

thB were purified within just 16 minutes with the 1D CPC solvent system in the ascending 

elution mode with good yields (25.7 and 21.1 mg) and respectable purities (87.1% and 85%) 

and recoveries (71.2% and 70.4%) on a 253 mL CPC rotor.  

Moreover, a multiple heart-cut strategy was performed on selected fractions with a 2D CPC 

introducing additional selectivity on compounds 1-4. The overall purification of the six major 

compounds of Thonningia sanguinea subaerial parts could hence be performed in few hours. 

This study underlines the versatility of centrifugal partition chromatography in natural product 

purification and once again emphasizes this technique as useful alternative to separation 

techniques relying on solid stationary phases. The numerous solvent systems offer a wide range 

of columns with various selectivities expanding the available orthogonal separations for 

multiple target isolation.  
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