
HAL Id: hal-02338280
https://hal.science/hal-02338280v1

Preprint submitted on 29 Oct 2019 (v1), last revised 2 Dec 2020 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A map between moduli spaces of connections
Frank Loray, Valente Ramirez

To cite this version:

Frank Loray, Valente Ramirez. A map between moduli spaces of connections. 2019. �hal-02338280v1�

https://hal.science/hal-02338280v1
https://hal.archives-ouvertes.fr


A MAP BETWEEN MODULI SPACES OF CONNECTIONS

FRANK LORAY AND VALENTE RAMÍREZ

Abstract. We are interested in studying moduli spaces of rank 2 logarithmic connec-
tions on elliptic curves having two poles. To do so, we investigate certain logarithmic
rank 2 connections defined on the Riemann sphere and a transformation rule to lift such
connections to an elliptic curve. The transformation is as follows: given an elliptic curve
C with elliptic quotient π : C → P1, and the logarithmic connection (E,∇) on P1, we may
pullback the connection to the elliptic curve to obtain a new connection (π∗E, π∗∇) on
C. After suitable birational modifications we bring the connection to a particular normal
form. The whole transformation is equivariant with respect to bundle automorphisms
and therefore defines a map between the corresponding moduli spaces of connections.

The aim of this paper is to describe the moduli spaces involved and compute explicit
expressions for the above map in the case where the target space is the moduli space of
rank 2 logarithmic connections on an elliptic curve C with two simple poles and trivial
determinant.

1. Introduction

Let C be a compact complex curve, E a rank 2 holomorphic vector bundle, and ∇ : E →
E ⊗ Ω1

C(D) a connection having simple poles at the (reduced) divisor D = t1 + . . . + tn.
At each pole ti, consider the residue matrix Resti(∇) and denote by ν+

i , ν
−
i its eigenvalues.

Fixing the base curve (C,D), the spectral data ν̄ = (ν±1 , . . . , ν
±
n ), the trace connection

(detE, tr∇), and introducing weights µ̄ for stability, we may construct the moduli space
Conµ̄ν̄ (C,D) of µ̄-semistable ν̄-parabolic connections (E,∇, ¯̀) using Geometric Invariant
Theory (GIT) [Nit93, IIS06a]. This moduli space is a separated irreducible quasi-projective
variety of dimension 2N , where N = 3g − 3 + n is the dimension of deformation of the
base curve, and g is the genus of C. This variety is moreover endowed with a holomorphic
symplectic structure (which is in fact algebraic) [Boa01, Ina13, IIS06a].

Moduli spaces of connections over the Riemann sphere have been extensively studied,
in particular as these correspond to spaces of initial conditions for Garnier systems. The
elliptic case with one and two poles have been studied in [Lor16] and [FL18], respectively.

Closely related, we have moduli spaces Bunµ̄(C,D) of µ̄-semistable parabolic bundles,
and a natural map (which we denote Bun) that assigns to a parabolic connection (E,∇, ¯̀)
its underlying parabolic bundle (E, ¯̀). This correspondence is a Lagrangian fibration
[LS15], and over the set of simple bundles it defines an affine CN -bundle which is an affine
extension of the cotangent bundle of Bunµ̄(C,D) [AL97a, AL97b].
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Let (C, T ) be an elliptic curve with two marked points, and let ι be the unique elliptic
involution that permutes the marked points. Taking the quotient by this involution defines
an elliptic covering π : C → P1. Via this ramified covering we can pull bundles and
connections from P1 back to the elliptic curve C. This correspondence defines a map
between the corresponding moduli spaces. In this paper we aim to study a particular map

Φ: Conµ̄ν̄ (P1, D)→ Conµ̄
′

ν̄′ (C, T ),

obtained in this way (see Section 3 for details). This transformation was originally intro-
duced in [DL15], and using the associated monodromy representations it was shown to be
dominant and generically 2 : 1. The same transformation rule induces also a map between
moduli spaces of parabolic bundles (which we denote by the same symbol Φ), making the
following diagram commute:

Conµ̄ν̄ (P1, D) Conµ̄
′

ν̄′ (C, T )

Bunµ̄(P1, D) Bunµ̄
′
(C,D′)

Φ

Bun Bun

Φ

(1.1)

The moduli spaces Conµ̄ν̄ (P1, D) and Bunµ̄(P1, D) have been explicitly described in
[LS15], as well as the fibration Bun between them. The moduli space of parabolic bun-
dles Bunµ̄

′
(C, T ) was later studied in [Fer16]. Moreover, the latter paper also describes

geometrically and in coordinates the map Φ: Bunµ̄(P1, D)→ Bunµ̄
′
(C, T ).

The objective of this paper is to complete the explicit description of the commutative
diagram (1.1) by describing the space Conµ̄

′

ν̄′ (C, T ), endowing it with a coordinate system,
and computing the map Φ: Conµ̄ν̄ (P1, D)→ Conµ̄ν̄ (C, T ) in such coordinates.

1.1. Summary of the new results. Let C ⊂ P2 be an elliptic curve given by the affine
equation y2 = x(x− 1)(x− λ), and π : C → P1 the elliptic quotient (x, y) 7→ x. Let t ∈ P1

be a point different from 0, 1, λ,∞. From now on we fix the divisors D = 0 + 1 +λ+∞+ t
on P1, and T = π∗(t) on C. We refer the reader to Section 3 for the details of the
transformation that takes a connection ∇ on (P1, D) and returns a connection Φ(∇) on
(C, T ). We also define in Section 3 the weights µ̄ and spectral data ν̄ that we will use
throughout the present work.

In Section 6 we construct a family of connections over C, denoted UC , birationally
parametrized by Bunµ̄(P1, D) × C2. This family is the image under Φ of the universal
family for Conµ̄ν̄ (P1, D) constructed in [LS15, Section 5]. The family UC is generated
by elements ∇0,Θ1,Θ2 in such a way that any element ∇ ∈ UC is given by a unique
combination

∇ = ∇0(u) + κ1Θ1(u) + κ2Θ2(u), u ∈ Bunµ̄(P1, D), (κ1, κ2) ∈ C2.

The natural map into the moduli space UC 99K Conµ̄ν̄ (C, T ) is a rational dominant map,
generically 2:1. Using this family we are able to give an explicit a birational equivalence

Conµ̄ν̄ (C, T )
∼
99K Bunµ̄(C, T )× C2.
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This gives a trivialization of the affine C2-bundle Conµ̄ν̄ (C, T ) → Bunµ̄(C, T ) over some
open and dense subset of Bunµ̄(C, T ). Furthermore, over this dense set, it identifies the
moduli space of parabolic Higgs bundles with the cotangent bundle T ∗Bunµ̄ν̄ (C, T ) in a
natural way.

Using the isomorphism Bunµ̄(C, T ) ∼= P1
z × P1

w constructed in [Fer16, Section 4.3], we
obtain a coordinate system for the moduli space of connections

Conµ̄ν̄ (C, T )
∼
99K P1

z × P1
w × C2

(κ1,κ2).

We have explicitly computed the map Φ in these coordinates. The corresponding formulas
are given in Section 8. Moreover, we show that the 2-form ωC defining the symplectic
structure of Conµ̄ν̄ (C, T ) is given by

ωC = dz ∧ dκ1 + dw ∧ dκ2,

which coincides, under our identification, with the Liouville 2-form defining the canonical
symplectic structure on T ∗Bunµ̄ν̄ (C, T ). Moreover, we verify that the map Φ is a symplectic
map.

Unlike Conµ̄ν̄ (P1, D), the moduli space Conµ̄ν̄ (C, T ) is singular. We describe the singular
locus and describe the local analytic type of such singularities.

Additionally, we define an apparent map for connections from the family UC . This map
is defined as the set of tangencies of the connection with respect to two fixed subbundles.
The image of this map belongs to P2 × P2. This map is not well defined on the moduli
space, but after symmetrization, ie. after passing to the quotient P2× P2 → Sym2(P2), we
obtain a well defined map which we denote AppC . Note that this is a map between spaces
of the same dimension, thus not a Lagrangian fibration. The map is rational, dominant,
and the generic fiber consists of exactly 12 points (cf. Theorem 9.1).

Finally, inspired by the results of [LS15], we combine the maps App and Bun to obtain a
generically injective map AppC ×Bun: Conµ̄ν̄ (C, T ) 99K Sym2(P2)×P1

z×P1
w, showing that

a generic connection is completely determined by its underlying parabolic bundle together
with its image under the apparent map.

1.2. Code repository. All the computations mentioned in the present work have been
carried out using the computer algebra system SageMath [Sage]. The code is available at
the following repository [GitHub].

1.3. Related work. It is well-known that compact Riemann surfaces of genus g with n
punctures are hyperelliptic for

(g, n) = (2, 0), (1, 2), (1, 1), and (1, 0).

It has been observed byW. Goldman in [Gol97, Theorem 10.2] that, SL2(C)-representations
of the fundamental group of these surfaces, with parabolic representation around each
puncture, are invariant under the hyperelliptic involution; moreover, they come from the
orbifold quotient representations. From the Riemann-Hilbert correspondance, this means
that a similar result should hold true for logarithmic connections, providing a dominant
map between the corresponding moduli spaces of connections. This has been studied in
details in the genus 2 case in [HL19]. The genus 1 case has been considered much earlier
in [Hit95] (see also [LvdPU08]). For the genus 1 case with one puncture, the same results
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also revealed to be true with arbitrary local monodromy at the puncture, which has been
studied in [Lor16].

The case studied here, 2 punctures on genus 1 curves, was first considered in [DL15]
for representations. There it was proved that the result of Goldman extends as follows:
Consider the unique elliptic involution permuting the two punctures; then any SL2(C)-
representation whose image is Zariski dense, and whose boundary components have image
into the same conjugacy class, is invariant under the involution and comes from a repre-
sentation of the orbifold quotient. The goal of the present paper was to provide the similar
property for logarithmic connections, and therefore complete the whole picture for hyper-
elliptic curves. We note that similar constructions also hold within the class of connections
on the 4-punctured sphere (see [MV13]).

The present work relies strongly on several results from [LS15, Fer16], which we discuss
in Section 5.

Finally, we remark the following for the 2-punctured elliptic curve case. Let E be a
rank 2 vector bundle over the elliptic curve C of degree d. By tensoring E with a line
bundle L, we can change the degree to any desired value as long as it has the same parity
as d. Therefore, the study of moduli spaces of rank 2 connections falls into two cases: odd
degree and even degree. Usually the determinant of the bundle is fixed to be either OC in
the even case (as in the present paper), or OC(w∞), where w∞ ∈ C is the identity element
for the group structure of C. The moduli space of connections on C with two poles and
fixed determinant OC(w∞) has already been described in detail in [FL18], together with
its symplectic structure and apparent map. As pointed out in [Fer16], it is possible to
pass from the moduli space in the even degree case to that in the odd degree case. This
is done by one elementary transformation followed by a twist by a rank 1 connection of
degree zero. However, the transformation is not canonical, and this passage makes explicit
computations hard to obtain.

1.4. A note about notation. We are going to deal with a lot of objects that are defined
over the elliptic curve C, and analogous objects defined over P1. In order to avoid confusion,
we will try to use bold typography for objects in C that have a counterpart in P1 (eg. ∇
and ∇). An exception is the use of µ̄, ν̄ to denote weight vectors and spectral data. This
notation is explained in Definition 3.1.

Throughout this work we will use Φ to denote the transformation described in Section 3,
which takes an object (a parabolic bundle, connection, or Higgs bundle) defined over
(P1, D), and returns an analogous object defined over (C, T ). Abusing notation, we use
the same symbol to denote the induced maps between moduli spaces (cf. Remark 3.1). In
a similar fashion, we use the symbol τ to denote the geometric transformation discussed
in Remark 5.3, which acts on objects defined over (P1, D). We use the same symbol to
denote the involutions that are induced on the corresponding moduli spaces. A closely
related transformation τ is defined in Section 7, which acts on the family UC but has
trivial action on Conµ̄ν̄ (C, T ).

Finally, we remark that we write P1
z whenever we want to make explicit the fact that

the space P1 is endowed with an affine coordinate z ∈ C. This will allow us to distinguish
different occurrences of P1. Similar for affine spaces such as C2

(c1,c2).

1.5. Acknowledgements. We would like to thank Thiago Fassarella for many valuable
discussions on this topic.
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2. General aspects about moduli spaces of connections

Let X be a smooth projective complex curve and D = t1 + . . . + tn a reduced divisor.
A quasi-parabolic bundle of rank 2 on (X,D) is a pair (E, ¯̀), where E is a holomorphic
vector bundle of rank 2 over X, and ¯̀ = {`1, . . . `2} a collection of rank 1 subspaces
`i ⊂ E|i. A parabolic bundle is a quasi-parabolic bundle endowed with a vector of weights
µ̄ = (µ1, . . . , µn), where µi ∈ [0, 1]. We will usually omit the vector µ̄ in the notation and
denote a parabolic bundle simply by (E, ¯̀).

A logarithmic connection onX with poles atD is a pair (E,∇), where E is a holomorphic
vector bundle over X, and ∇ : E → E ⊗Ω1

X(D) is a C-linear map satisfying Leibniz’ rule.
The eigenvalues of the residue Resti(∇), ν+

i , ν
−
i are called the local exponents, and the

collection ν̄ = (ν±1 , . . . , ν
±
n ) is the spectral data. We have the following equality known as

Fuchs’ relation:
n∑
i=1

(ν+
i + ν−i ) + degE = 0.

Definition 2.1. Let ν̄ be fixed spectral data and µ̄ a fixed vector of weights. A ν̄-parabolic
connection of rank 2 on (X,D) is a triple (E,∇, ¯̀) where (E, ¯̀) is a rank 2 parabolic bundle
and (E,∇) is a logarithmic connection with poles on D, such that at each subspace `i the
residue Resti(∇) acts by multiplication by ν+

i .

We remark that the difference between two connections is an OX -linear operator (known
as a Higgs field), and the space of connections with a fixed parabolic structure a (finite
dimensional) affine space.

Definition 2.2. A parabolic Higgs bundle of rank 2 on (X,D) is a triple (E,Θ, ¯̀), where
(E, ¯̀) is a parabolic vector bundle, Θ: E → E⊗Ω1

X(D) is a OX -linear map, and such that
for each ti ∈ D the residue Resti(Θ) is nilpotent with null space given by `i.

We now introduce the notion of µ̄-semistability.

Definition 2.3. Let (E, ¯̀) be a rank 2 parabolic bundle andµ̄ = (µ1, . . . , µn) ∈ [0, 1]n its
weight vector. We define the µ̄-parabolic degree of a line subbundle L ⊂ E as

degE − 2 degL+
∑
`i 6⊂L

µi −
∑
`i⊂L

µi.

The parabolic bundle (E, ¯̀) is said to be µ̄-semistable (µ̄-stable) if the parabolic degree is
non-negative (resp. positive) for every subline bundle L.

In order to define moduli spaces it is convenient to fix the determinant bundle det(E),
and the trace tr(∇) in the case of connections. These choices will not appear explicitly
in the notation, but we always assume this objects have been defined and fixed. Thus
we denote by Bunµ̄(X,D) the moduli space of µ̄-semistable parabolic bundles modulo s-
equivalence, where all bundles are assumed to have determinant equal to some fixed line
bundle. The moduli space does not depend on the choice of the prescribed determinant,
as we can freely change it by twisting all connections by a given line bundle.

Remark 2.1. A parabolic connection is said to be µ̄-semistable if every subbundle invari-
ant by the connection has non-negative parabolic degree. It is possible for a connection to
be µ̄-semistable while the underlying parabolic bundle is not. Usually, parabolic bundles



A MAP BETWEEN MODULI SPACES 6

admitting a connection ∇ with generic exponents ν̄ are indecomposable and µ̄-semistable
for a suitable choice of weights µ̄ [LS15, Section 3]. Thus semistability is restored by mod-
ifying the weights. However, because of the particular definition of the transformation Φ
in Section 3, we need to use very specific weights so that the map preserves the notion of
semistability [Fer16, Section 6]. Thus, when extending Φ to the moduli space of connec-
tions, we cannot allow ourselves to vary the weights and we are forced to replace the usual
notion of semistability of connections by semistability of the underlying parabolic bundle.

In virtue of the above remark, the following definition might not be standard.

Definition 2.4. In this paper Conµ̄ν̄ (X,D) denotes the moduli space of ν̄-parabolic con-
nections on (X,D), where the determinant bundle and trace connection equal some fixed
pair (L, ξ), and such that the underlying parabolic bundle is µ̄-semistable. Similarly, we
denote by Higgsµ̄(X,D) the moduli space of parabolic Higgs bundles with µ̄-semistable
underlying bundle. Note that in this way we consider an open subset of the usual moduli
spaces of connections (as defined in [IIS06a, IIS06b, Ina13]).

From now on, unless otherwise specified, connections, Higgs fields and bundles are as-
sumed to have trivial determinant and zero trace.

3. The pullback map

Let C ⊂ P2 be an elliptic curve such that in some fixed affine chart it is given by the
equation

y2 = x(x− 1)(x− λ), λ ∈ C \ {0, 1}.

This curve is endowed with the elliptic involution (x, y) 7→ (x,−y). With respect to the
group structure of C, this involution is precisely p 7→ −p. The quotient of C under this
involution gives rise to the elliptic quotient π : C → P1. This is a 2 : 1 cover ramified over
the 2-torsion points w0,w1,wλ,w∞, which are the points on C that satisfy x = 0, 1, λ,∞,
respectively.

Let us choose a point t ∈ P1 \ {0, 1, λ,∞}, and let π−1(t) = {t1, t2}. We define the
following divisors of P1:

W = 0 + 1 + λ+∞, T = t, D = W + T.

We define analogous divisors for C:

W = w0 + w1 + wλ + w∞, T = t1 + t2, D = W + T.

We are going to abuse notation and denote them with the same letters. It should be clear
from the context whether we are talking about a divisor on P1 or on C.

Now, let us fix the spectral data and weights to use throughout the text. We remark
that for the most part we will work with sl2-connections. Therefore the spectral data will
always satisfy ν−i = −ν+

i .

Definition 3.1. Let ν any complex number such that 2ν 6∈ Z, and choose µ a real number
0 < µ < 1. When working with parabolic bundles over (C, T ), we define the spectral data
ν̄ = (±ν,±ν) and the weight vector µ̄ = (µ, µ). If working with bundles over (P1, D),
we will use the same notation ν̄, µ̄ to denote the vectors ν̄ =

(
±1

4 ,±
1
4 ,±

1
4 ,±

1
4 ,±ν

)
and

µ̄ =
(

1
2 ,

1
2 ,

1
2 ,

1
2 , µ
)
.
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We now follow the construction presented in [Fer16, Section 6]. Below we make explicit
the case of connections, but remark that this simultaneously defines transformations Φ
acting on parabolic bundles and Φ acting on connections.

Let ∇ be a connection on the trivial bundle OP1 ⊕ OP1 , having simple poles over the
divisor D, with spectral data given by ν̄ =

(
±1

4 ,±
1
4 ,±

1
4 ,±

1
4 ,±ν

)
. Assume that over W

these are apparent singularities (ie. after suitable birational transformations these points
are no longer poles of the connection). The following series of transformations defines the
map Φ:

(1) Pullback ∇ to C. This gives a connection π∗∇ on π∗(OP1 ⊕ OP1) = OC ⊕ OC
with poles on D. Locally, the connection near t1, t2 looks like ∇ around t. This
is not the case around the ramification points wk, but we know this construction
multiplies the residual eigenvalues by a factor of two. Therefore the spectral data
is given by

(
±1

2 ,±
1
2 ,±

1
2 ,±

1
2 ,±ν,±ν

)
.

(2) Perform a positive elementary transformation for each pole of the divisor W . This
gives a new connection on some bundle E of degree 4. The spectral data over the
points ti is unchanged, and the new spectral data at the wk is ν+

k = −1
2 , ν

−
k = −1

2
(not an sl2-connection).

(3) Tensor with the rank 1 connection (OC(−2w∞), ξ), where ξ is a fixed connection
with simple poles on W and residue 1

2 at each of them (no poles on T ). By
design, the bundle E′ = E ⊗OC(−2w∞) has trivial determinant and the residual
eigenvalues at wk are all zero. Generically the bundle E′ is of the form E′ =
L⊕L−1, where L is a rank 1 bundle of degree zero. The assumption that the poles
of ∇ over W were apparent singularities implies that the new connection is in fact
holomorphic at each point in W .

(4) Since the final connection is holomorphic at W , we may forget these points from
the divisor of poles and consider it as a connection defined on (C, T ) with spectral
data ν̄ = (±ν,±ν).

We denote the last connection by Φ(∇).

Figure 1. Steps of the transformation Φ. The canonical sections cor-
responding to L,L−1 in P(L ⊕ L−1) come from a multisection SΣ in
P(OP1 ⊕OP1). This is explained in Remark 7.2.

Remark 3.1. The transformation Φ preserves µ̄-stability for the underlying parabolic bun-
dles, as long as we use the weight vectors defined in Definition 3.1 (cf. [Fer16, Section 6]).
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Therefore, the correspondence ∇ 7→ Φ(∇) induces a map between moduli spaces

Φ: Conµ̄ν̄ (P1, D) −→ Conµ̄ν̄ (C, T ).

We will use the same notation for the geometric transformation defined in this section and
the induced map between moduli spaces.

4. Genericity assumptions

In this section we will briefly describe the geometry of the moduli spaces of parabolic
bundles we work with. We will explain which families of bundles are particularly special,
and define a generic bundle to be one not belonging to these families. We begin with
bundles over P1.

Let λ, t ∈ P1\{0, 1,∞} be different points, and let D be the divisor D = 0+1+λ+∞+t.
We are interested in µ̄-semistable parabolic bundles of degree zero over the marked curve
(P1, D). For the weights defined in Definition 3.1, all parabolic bundles are in fact µ̄-
stable and have a trivial underlying bundle. Moreover, the moduli space Bunµ̄(P1, D) is
isomorphic to a Del Pezzo surface of degree 4, which we denote S [Fer16, Proposition 6.1].
The surface S is a smooth projective surface that is obtained by blowing-up 5 particular
points Di ∈ P2. It is well-known that this surface S has exactly 16 rational curves of
self-intersection −1. Namely, the five exceptional divisors from the blow-up Ei, the strict
transform of the conic Π passing through the five points, and the strict transform of the
10 lines Li,j passing through every possible pair (Di, Dj).

As shown in [LS15], the coarse moduli space of indecomposable parabolic bundles is a
non-separated variety obtained by gluing together a finite number of spaces Bunµ̄

′
(P1, D)

for suitable choices of weight vectors µ̄′. As the weights vary, the bundles in the special
families {Π, Ei, Li,j} may become unstable, and new bundles that were previously unstable
are now semistable. However, the bundles represented in S \{Π, Ei, Li,j} are always stable
and thus common to every chart. This motivates the following definition.

Definition 4.1. We will say that a parabolic bundle is generic in Bunµ̄(P1, D) ∼= S if
it lies outside the union of the 16 (−1)-curves {Π, Ei, Li,j}. A parabolic connection in
Conµ̄ν̄ (P1, D) will be called generic if the underlying parabolic bundle is itself generic.
We denote by Bunµ̄(P1, D)0 and Conµ̄ν̄ (P1, D)0 the open subsets of generic bundles and
connections, respectively.

By blowing down 4 out of the 16 (−1)-curves in the surface S, we arrive to P1×P1. This
latter space can be endowed with a pair of affine coordinates (uλ, ut), as will be explained
later in Remark 5.1. For the most part of this article we will use P1

uλ
× P1

ut as a birational
model for Bunµ̄(P1, D).

Let us now move on to parabolic bundles over (C, T ). As shown in [Fer16, Theorem A],
the moduli space Bunµ̄(C, T ) is isomorphic to P1 × P1. With respect to the coordinate
system (z, w) ∈ P1

z × P1
w introduced in the latter paper, the map Φ: Bunµ̄(P1, D) →

Bunµ̄(C, T ) transforms the special (−1)-curves of S to either horizontal or vertical lines
defined by z = 0, 1, λ,∞, and w = 0, 1, λ,∞. Our definition of generic bundle will exclude
these special lines, together with two more curves that we describe below.

Definition 4.2. We denote the ramification locus of Φ by Σ ⊂ Bunµ̄(P1, D), and by
Σ = Φ(Σ) ⊂ Bunµ̄(C, T ) the branch locus.
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Figure 2. The non-generic curves on P1
z × P1

w and (some of) their coun-
terparts in P1

uλ
× P1

ut .

The curves Σ and Σ are smooth curves isomorphic to the elliptic curve C. More-
over, according to [Fer16, Section 6.4], Σ coincides with the strictly µ̄-semistable locus
of Bunµ̄(C, T ). This is a curve of bidegree (2, 2) in P1

z × P1
w, and it is isomorphic to the

elliptic curve C itself. We remark that the ramification locus Σ represents bundles that
are µ̄-stable. These only become semistable once pulled-back to the elliptic curve.

Finally, for technical reasons, we need to exclude the vertical line Λ = {z = t}. This
corresponds to another vertical line Λ ⊂ P1

uλ
× P1

ut . See Figure 2.

Definition 4.3. We will say that a parabolic bundle is generic in Bunµ̄(C, T ) ∼= P1
z × P1

w

if it lies outside the following loci:

• The union of the 8 lines z = 0, 1, λ,∞, and w = 0, 1, λ,∞,
• The strictly µ̄-semistable locus Σ,
• The vertical line Λ defined by z = t.

A parabolic connection in Conµ̄ν̄ (C, T ) will be called generic if the underlying parabolic
bundle is itself generic. We denote by Bunµ̄(C, T )0 and Conµ̄ν̄ (C, T )0 the open subsets of
generic bundles and connections, respectively.

5. Recap of previously known results

In this section we will further recall several facts from [LS15, Fer16] in order to make
our results precise and to put them into context. We restrict ourselves to the cases that
are relevant to us. We refer the reader to the original papers cited for a detailed treatment
and for more general cases. Some basic definitions and results about parabolic bundles
and connections can be found on Section 2.

5.1. Moduli spaces of parabolic bundles. In the previous section we have discussed
that the moduli space Bunµ̄(P1, D) is isomorphic to a Del Pezzo surface, which we continue
to denote S. Below we note two birational models we can use to describe such a surface
in coordinates.
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Remark 5.1. There are two coordinate systems we can use to describe the set Bunµ̄(P1, D)0.
The first one is based on the fact that S is defined as the blow-up of P2 at five points, so
there is a canonical birational map P2 99K S. Since Bunµ̄(P1, D)0 excludes (together with
other curves) the exceptional divisors of the blow-up, this map defines a one-to-one map
between an open subset of P2 and Bunµ̄(P1, D)0. Fixing homogeneous coordinates [b0 :
b1 : b2], the space P2

b defines a coordinate system for Bunµ̄(P1, D)0. The second alternative
relies on the fact that every element of Bunµ̄(P1, D)0 has the trivial bundle OP1 ⊕ OP1

as underlying bundle [Fer16, Proposition 6.1]. Let us introduce an affine coordinate ζ
on the fibers of the projectivized bundle. In the generic case and after a fractional linear
transformation, we may assume that the parabolic structure over the points 0, 1,∞ is given
by ζ = 0, 1,∞, respectively. Under this situation, any parabolic bundle is completely
determined by uλ, ut ∈ P1, the parabolic structures over t and λ. This assignment defines
a birational map Bunµ̄(P1, D)0 99K P1

uλ
× P1

ut .

Now, let C ⊂ P2 be an elliptic curve such that in some fixed affine chart it is given by
the equation

y2 = x(x− 1)(x− λ), λ ∈ C \ {0, 1}.

As described in [Fer16], a parabolic bundle on P1 can be lifted to C using the elliptic
covering π : C → P1. After a series of transformations we obtain a parabolic bundle on C
with parabolic structure supported over the divisor T = π∗(t). This defines a map

Φ: Bunµ̄(P1, D)→ Bunµ̄(C, T )

between moduli spaces (see Section 3 for details). The map Φ is a 2 : 1 smooth cover-
ing, which ramifies over a smooth divisor. The domain space is the Del Pezzo surface S
discussed above, and the target space is proved to be isomorphic to P1 × P1 in [Fer16,
Theorem A]. With respect to the coordinate system (z, w) used in [Fer16, Section 4.3] for
the latter space, and using the coordinate chart P2

b in Remark 5.1, the map Φ is explicitly
given by

[b0 : b1 : b2] 7−→
(
b1t− b2
b0t− b1

,−b1
b0λ− b1λ− b1 + b2

b21 − b0b2

)
∈ P1

z × P1
w.

Definition 5.1. We define τ ∈ Aut(S) as the involution of S ∼= Bunµ̄(P1, D) which
permutes the two sheets of the map Φ and fixes every point in the ramification divisor.

The above involution is a lift of a de Jonquières automorphism of P2
b (a birational

automorphism of degree 3 that preserves a pencil of lines through a point, and a pencil
of conics through four other points). The curve Σ ⊂ S in Definition 4.2 is precisely the
curve of fixed points of τ . A detailed description of this involution can be found in [Fer16,
Section 6].

Remark 5.2. The moduli space Bunµ̄(P1, D) is endowed with an involution τ , in such a
way that the quotient of Bunµ̄(P1, D) by the action of τ is precisely Bunµ̄(C,D). Because
of this, the involution τ will play a crucial role in the present work.

Remark 5.3. Given a parabolic bundle of degree zero over (P1, D), we may perform the
following birational modifications: an elementary transformation at each of the parabolics
over the divisor W = 0 + 1 + λ +∞, and a twist by the bundle OP1(−2). The resulting
parabolic bundle is again of degree zero, and so this defines an automorphism on the
space Bunµ̄(P1, D). It is shown in [Fer16, Proposition 6.5] that this automorphism is
precisely τ . Note that this construction naturally extends to parabolic connections if we
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twist by a suitable fixed rank 1 connection (OP1(−2), ξ) in the last step. Following the
same convention we have adopted for the transformation Φ (cf. Remark 3.1), we will use
the symbol τ to denote both the geometric transformation defined above and the induced
self-map on the moduli space Bunµ̄(P1, D).

5.2. Moduli spaces of connections over P1. Recall that the space Conµ̄ν̄ (P1, D) car-
ries a natural symplectic structure in such a way that the map Bun: Conµ̄ν̄ (P1, D) →
Bunµ̄(P1, D) is a Lagrangian fibration. In [LS15] it is shown that the so-called apparent
map defines a dual Lagrangian fibration. Given a connection ∇ on a bundle E and a rank
1 subbundle L ⊂ E, the apparent map is defined by the zero divisor of the composite map

L E E ⊗ Ω1
P1(D) (E/L)⊗ Ω1

P1(D).∇

Note that the apparent map is defined geometrically as the set of points of tangency be-
tween the Riccati foliation defined by ∇ on P(E) and the section induced by the subbundle
L.

For a generic connection of degree −1, the underlying bundle is E = OP1 ⊕ OP1(−1).
This bundle has a unique trivial subbundle L = OP1 , which provides a canonical choice for
the apparent map. In this case we obtain a rational map

App: Conµ̄ν̄ (P1, D) 99K |OP1(n− 3)| ∼= Pn−3,

where n denotes the number of singularities (in our particular case n = 5). For generic
connections of degree zero the underlying bundle is OP1 ⊕ OP1 , and we may perform an
elementary transformation to replace it by OP1 ⊕OP1(−1). After this, we may proceed as
above. This extends the definition of the apparent map to bundles of degree zero.

The Lagrangian fibrations provide a description of the geometric structure of the space of
connections. Indeed, over the space of generic connections (and under a simple assumption
on the residual eigenvalues) the morphism

App×Bun: Conµ̄ν̄ (P1, D) −→ P2 × P2 (5.1)

defines an open embedding [LS15, Theorem 4.2] (moreover, a suitable compactification of
the space of generic bundles makes the above map an isomorphism).

5.3. A universal family of connections. Another result that we try to imitate is the
construction of a universal family for Conµ̄ν̄ (P1, D). By this we mean a family of connec-
tions, which we denote U , that represent every (generic) isomorphism class in Conµ̄ν̄ (P1, D).
This is done in such a way that the correspondence is one-to-one (ie. no two elements of
the family are isomorphic).

As pointed out in Remark 5.1, a generic parabolic bundle (E, ¯̀) of degree zero and polar
divisor D = 0 + 1 + λ +∞ + t has E = OP1 ⊕ OP1 as underlying bundle, and we may
assume the parabolic structure is given by ¯̀= (0, 1, uλ,∞, ut), for some uλ, ut ∈ P1.

In [LS15, Section 5.1], the authors provide explicitly a connection ∇0(uλ, ut) and two
parabolic Higgs bundles Θ1(uλ, ut),Θ2(uλ, ut), in such a way that any connection on a
generic parabolic bundle (defined by the parameters uλ, ut) is written uniquely as

∇ = ∇0(uλ, ut) + c1Θ1(uλ, ut) + c2Θ2(uλ, ut), (5.2)
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for some (c1, c2) ∈ C2. Note that the above description defines a birational map

Conµ̄ν̄ (P1, D) 99K P1
uλ
× P1

ut × C2
(c1,c2).

This provides an alternative description of the geometry of the moduli space of connections.
Moreover, this map provides, over the space of generic bundles, a trivialization of the affine
C2-bundle Conµ̄ν̄ (P1, D) → Bunµ̄(P1, D). In these coordinates, the symplectic structure is
given by the 2-form

ω = dc1 ∧ dut + dc2 ∧ duλ.

Remark 5.4. In general, the moduli space of parabolic Higgs bundles is naturally identified
with the total space of the cotangent bundle to the moduli space of parabolic bundles
[AL97a, AL97b]. As explained in [LS15, Section 5.1], under this correspondence we have
Θ1 7→ dut, Θ2 7→ duλ. Note that the 1-form ω given above corresponds with the canonical
symplectic form on the cotangent bundle T ∗Bunµ̄(P1, D).

6. Statement of the main results

We begin with the map Φ: Bunµ̄(P1, D)→ Bunµ̄(C, T ) between moduli spaces of para-
bolic bundles. Our main objective is to describe the map Φ obtained by extending Φ to the
moduli spaces of connection. We know little about the space Conµ̄ν̄ (C, T ), except it is an
affine C2-bundle over the space Bunµ̄(C, T ). However, as explained in Section 1, we know
beforehand that the extended map Φ is dominant and generically 2 : 1 [DL15]. Therefore
our strategy is to understand Conµ̄ν̄ (C, T ) as a quotient of Conµ̄ν̄ (P1, D) by the involution
τ that permutes the two sheets of this double cover (this, at least, in some Zariski open
subset).

6.1. A “double” universal family of connections. In this and in the forthcoming
sections we will use extensively the transformation τ and the involution it induces on
the moduli spaces. The reader may consult Definition 5.1 and the discussion around
Remark 5.3.

Note that we can use the transformation Φ described in Section 3 to pull the universal
family of connections U on (5.2) from P1 to C. This is a one-to-one correspondence that
yields a family of connections on C with poles over T , which we denote UC . This family of
connections represents almost every generic class in the moduli space Conµ̄ν̄ (C, T ), but each
class has two representatives in UC . Indeed, if ∇ is a connection on P1, then Φ(∇) and
Φ(τ∇) are two different connections on C yet they are isomorphic. Hence representing the
same equivalence class in the moduli space. Because of this, the natural correspondence
UC → Conµ̄ν̄ (C, T ) is a generically 2 : 1 dominant map.

It is important to note that (the image of) the original basis ∇0(uλ, ut), Θ1(uλ, ut),
Θ2(uλ, ut) in (5.2) is not the most suitable for describing the family UC . Indeed, these are
not equivariant with respect to the involution τ , which is a key player in the description of
Conµ̄ν̄ (C, T ) (cf. Remark 5.2). Let us precise the above claim. The action τ is defined by the
same series of transformations for parabolic bundles, connections and Higgs bundles. Given
a parabolic bundle defined by u = (uλ, ut), it is not true in general that τ∇0(u) = ∇0(τu)
nor τΘ1(u) = Θ1(τu) (incidentally, Θ2 is always equivariant). We now seek for a basis
that is equivariant. This will descend well as a basis to the quotient U/τ ∼= Conµ̄ν̄ (C, T ).
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Remark 6.1. The connection τ∇0(u) is a parabolic connection whose underlying parabolic
structure is given by τu. Since U is a universal family, the latter connection can be
expressed uniquely as ∇0(τu)+c1Θ1(τu)+c2Θ2(τu), for some coefficients c1, c2. However,
the claim is that the coefficients c1, c2 are not both zero. Equivalently, we could state that
τ∇0(τu) 6= ∇0(u), even though both left hand side and right hand side are connections
with parabolic structure given by τ(τu) = u.

Note that because τ∇0(τu) is a connection with underlying parabolic structure u, the
mean 1

2(∇0(u) + τ∇0(τu)) also has u as its parabolic structure. Moreover, this average is
equivariant with respect to τ .

Definition 6.1. We define the following elements of U :

∇τ0(u) =
1

2
(∇0(u) + τ∇0(τu)), Θτ

i (u) =
1

2
(Θi(u) + τΘi(τu)), i = 1, 2,

and of UC :
∇τ

0(u) = Φ(∇τ0(u)), and Θτ
i (u) = ΦΘτ

i (u), i = 1, 2,

and we call them the equivariant bases for U and UC , respectively.

By construction, all the above are equivariant with respect to τ . The underlying para-
bolic structure of ∇τ0(u) is precisely u, and the parabolic structure of ∇0(u) is Φ(u).

By combining Θτ
1 and Θτ

2 in a suitable manner, we arrive to a new equivariant basis
∇τ

0 ,Θz,Θw, defined in Definition 8.1. We shall refer to this as the canonical basis (it comes
from the canonical identification of the moduli space of parabolic Higgs bundles and the
cotangent bundle of Bunµ̄(C, T ), cf. Corollary 6.1). This is the basis we will use to describe
the family UC (alas it is only well defined for generic connections). Being a basis, each
generic element of UC can be written uniquely as a linear combination ∇τ

0(u) +κ1Θz(u) +
κ2Θw(u). The change of basis (c1, c2) 7→ (κ1, κ2) is given by an affine transformation that
depends rationally on u.

Note that even though the connections on UC are defined over C, they are partly
parametrizied by the moduli space of parabolic bundles over P1. More precisely, we have
that UC ∼= Bunµ̄(P1, D)× C2

(κ1,κ2).

The family UC is a double cover of Conµ̄ν̄ (C, T ). Let us denote by τ the transformation
that permutes the fibers, which corresponds to the action of τ on U . It follows that

Conµ̄ν̄ (C, T ) ∼= UC/τ . (6.1)

This is analogous to the description of Bunµ̄(C, T ) in Remark 5.2. However, we remark
that, unlike the case of parabolic bundles, the fixed-point set of τ has codimension bigger
than one, making the space Conµ̄ν̄ (C, T ) singular. This is discussed in Theorem 6.3 below.

Because of equivariance of the basis ∇τ
0 , Θz, Θw, we have that τ acts only on the first

factor of Bunµ̄(P1, D)× C2
(κ1,κ2). Namely,

τ (∇τ
0(u) + κ1Θz(u) + κ2Θw(u)) = ∇τ

0(τu) + κ1Θz(τu) + κ2Θw(τu),

and so, in coordinates, τ : (u, κ1, κ2) 7→ (τu, κ1, κ2). We conclude that

UC/τ ∼= Bunµ̄(P1, D)/τ × C2
(κ1,κ2). (6.2)
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From the description of the moduli space of parabolic bundles in [Fer16], we have that

Bunµ̄(P1, D)/τ ∼= Bunµ̄(C, T ) ∼= P1
z × P1

w. (6.3)

Finally, combining (6.1)–(6.3) we obtain

Conµ̄ν̄ (C, T ) ∼= P1
z × P1

w × C2
(κ1,κ2). (6.4)

Note that in particular this gives a local trivialization of the affine C2-bundle Bun over
some open and dense set.

We recall the reader that Conµ̄ν̄ (C, T )0 denotes the moduli space of connections whose
underlying parabolic bundle is generic, as specified in Definition 4.3 (see also Definition 4.1
for connections on P1).

Theorem 6.1. The family of connections ∇τ
0 in Definition 6.1 defines a global section

∇τ
0 : Bunµ̄(C, T )0 → Conµ̄ν̄ (C, T )0, thus identifying the affine bundle Conµ̄ν̄ (C, T )0 →

Bunµ̄(C, T )0 to the vector bundle Higgsµ̄(C, T )0 → Bunµ̄(C, T )0. Moreover, the section
is Lagrangian, making the above identification symplectic with respect to the natural sym-
plectic structures on the moduli spaces of connections and Higgs bundles. Finally, the latter
vector bundle is analytically trivial, thus

Conµ̄ν̄ (C, T )0 ∼= Bunµ̄(C, T )0 × C2.

Theorem 6.2. Let Σ,Λ ⊂ Bunµ̄(C, T ) be the strictly-semistable locus and the exceptional
line introduced in Definition 4.3, and let Σ,Λ ⊂ Bunµ̄(P1, D) be their preimages under
Φ. The morphism Φ: Conµ̄ν̄ (P1, D) → Conµ̄ν̄ (C, T ) is well defined and holomorphic on
Conµ̄ν̄ (P1, D)0 \ Bun−1(Σ ∪ Λ). When restricted to this set, the map Φ is an unramified
double cover. Explicit expressions for this map in terms of the coordinates defined by (6.4)
are given in Section 8.

Under the canonical identification between T ∗Bunµ̄(C, T ) and Higgsµ̄(C, T ), we have the
correspondence dz 7→ Θz, dw 7→ Θw. Therefore, the symplectic structure of Conµ̄ν̄ (C, T )
is given by the 2-form

ωC = dκ1 ∧ dz + dκ2 ∧ dw.

The explicit formulas found in the previous theorem allow us to conclude the following.

Corollary 6.1. The map Φ: Conµ̄ν̄ (P1, D)→ Conµ̄ν̄ (C, T ) is symplectic.

The map Φ is globally well defined as a morphism of quasi-projective varieties, but our
coordinate systems cannot be used to describe this map. In fact, the coordinate system
fails to describe the space Conµ̄ν̄ (C, T ) precisely because the latter it is singular over Σ.
Recall that our description of the moduli space Conµ̄ν̄ (C, T ) is based on the fact that such
space can be realized as the quotient of the family UC by the involution τ .

Theorem 6.3. The set of fixed points Fix(τ ) is a codimension 2 subvariety of UC . In
fact, it defines a subbundle of rank 1 on the affine C2 bundle Bun |Σ. A connection
(∇,E, {`1, `2}) ∈ Conµ̄ν̄ (C, T ) belongs to Fix(τ ) if and only if it decomposes as a direct
sum (

∇,E, ¯̀
)

=
(
ζ,L, `

)
⊕ ι∗

(
ζ,L, `

)
,

where ζ is a rank 1 connection with a single pole at either t1 or t2, L is a line bundle of
degree zero, and ι : C → C is the elliptic involution.
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We remark that the fact that the fixed-point set of τ has codimension bigger than one
causes the space Conµ̄ν̄ (C, T ) to have singularities at Φ(Fix(τ )). The next theorem gives
the local description of the singular set.

Theorem 6.4. Around a generic point of the singular locus Φ(Fix(τ )), the moduli space
Conµ̄ν̄ (C, T ) is locally isomorphic to the hypersurface in C5

x̄ given by the equation x2
1 = x2x3.

Thus, locally, the singularities look like the product of a quadratic conic singularity and a
bidisk.

6.2. The apparent map in the elliptic case. Consider the projectivization of the trivial
bundle P(OP1 ⊕OP1). In [LS15] the apparent map is defined with respect to the constant
horizontal section σ∞, defined by ζ =∞ with respect to an affine coordinate ζ on the fiber.
After applying the transformation τ , the section σ∞ becomes a section of self-intersection
+2, which we denote στ . In general, the tangencies of a connection with σ∞, and with
στ occur at different points. This means that the apparent map is not invariant under
τ . If we want to use Φ to push the concept of the apparent map from Conµ̄ν̄ (P1, D) to
Conµ̄ν̄ (C, T ), we need to redefine the apparent map in such a way that it becomes invariant
under τ . To do this, we consider both the tangency loci of the connection with σ∞ and
with στ simultaneously. This defines an element of P2 × P2. The action of τ permutes
these factors, so we need to pass to the symmetric product Sym2(P2).

Definition 6.2. We define the apparent map as the unique map AppC : Conµ̄ν̄ (C, T ) →
Sym2(P2) that completes the following commutative diagram:

Conµ̄ν̄ (P1, D) P2 × P2

Conµ̄ν̄ (C, T ) Sym2(P2)

App×(App ◦τ)

Φ Sym

∃! AppC

Note that, unlike the case for P1, the above map is defined between spaces of the same
dimension. Therefore, the map cannot be Lagrangian. It is a generically finite map, but
the correspondence is not one-to-one.

In section Section 9 we discuss some properties of the map AppC and the closely related
map

AppC ×Bun: Conµ̄ν̄ (C, T ) Sym2(P2)× P1
z × P1

w,

and we show that the latter is generically injective.

7. Geometric description of a generic parabolic bundle

In this section we want to describe some geometric aspects of parabolic bundles in
Bunµ̄(C, T )0.

We begin with a generic parabolic connection (E,∇, ¯̀) of degree zero and polar divisor
D = 0 + 1 + λ +∞ + t over P1. As we have pointed out before, in the generic case we
can assume E = OP1 ⊕OP1 . Introducing an affine coordinate ζ on the fibers of P(E), the
parabolic structure is given by ¯̀= (0, 1, uλ,∞, ut), for some uλ, ut ∈ P1 \ {0, 1, λ,∞}. We
denote by σ∞ the constant horizontal section ζ = ∞. This section plays a central role,
since it is used to define the apparent map and the universal family U (cf. Section 5.2
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Figure 3. The sections σ∞ and στ under Φ.

and Section 5.3). The birational involution τ defined in Remark 5.3 preserves the trivial
bundle E and transforms σ∞ into a section στ of self-intersection +2. This section passes
through the parabolic points over 0, 1, λ but not ∞. The sections σ∞ and στ intersect
(transversally) over a unique point x = p.

Now we apply the transformation Φ to obtain a parabolic connection on (C, T ) with
trivial determinant. This time the underlying vector bundle E will not be trivial, and it
depends on the parabolic structure of (E, ¯̀). Generically, it is of the form E = L ⊕ L−1,
where L is a line bundle of degree zero. As such, there exists a unique point p1 ∈ C such
that L = OC(p1 −w∞). The other summand is given by L−1 = OC(p2 −w∞), in such
a way that p1,p2 is a pair of points in involution. Moreover, these points project to the
point p defined at the end of the last paragraph (ie. π−1(p) = {p1,p2}). The bundle E
contains two sections S∞, Sτ , which are the images of σ∞, στ , respectively. These sections
are exchanged by an automorphism of the bundle E, which we denote τ , making the
following diagram commute.

E E

E E

Φ

τ τ

Φ

Remark 7.1. Note that the involution τ , which acts on P(OP1 ⊕ OP1), has four points of
indeterminacy: one at each of the parabolic points above 0, 1, λ,∞. Thus τ is merely
birational and not a bundle automorphism. The transformation Φ pulls the bundle to the
elliptic curve, and then blows-up the former points of indeterminacy. As a consequence,
the involution τ acting on P(E) does not have points of indeterminacy and is thus a
holomorphic bundle automorphism. This is the reason why a pair of connections ∇, τ∇
represent different classes in Conµ̄ν̄ (P1, D), while Φ(∇) and Φ(τ∇) represent the same point
in Conµ̄ν̄ (C, T ).

Remark 7.2. The subbundles L,L−1 do not come from subbundles of E in P1. Rather,
there exists a curve SΣ in P(E) ∼= P1

x × P1
ζ of bidegree (2, 2) projecting down to P1

x as a
double cover ramified at the points x = 0, 1, λ,∞ (hence isomorphic to the elliptic curve
C itself). In fact, this curve is defined by the fixed points of the transformation τ . Once
pulled back to C via π, this curve splits into two different sections S+

Σ , S
−
Σ of P(π∗(E)) that

intersect over the points w0,w1,wλ,w∞. After the elementary transformations dictated by
Φ, the sections no longer intersect in P(E). The action of Φ on SΣ can be seen in Figure 1,
Section 3.
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The curve SΣ passes through the parabolic points above 0, 1, λ,∞. In general, it does not
pass through the parabolic above t. When it does, the parabolic structure is unchanged
by τ . Therefore the fixed points of τ ∈ Birat(P1

uλ
× P1

ut) are precisely those for which
(t, ut) ∈ SΣ. Moreover, if the curve SΣ passes through the parabolic point above t in
P1, then, after performing the transformation Φ, the parabolics over T are in either L or
L−1. The elliptic involution permutes the summands L⊕L−1. Since the parabolic bundles
that come from P1 via Φ are invariant under the elliptic involution, we conclude that each
direct summand contains exactly one parabolic point. In such case we have a direct sum
decomposition (E, {`1, `2}) = (L, {`1}) ⊕ (L−1, {`2}). Thus we conclude that the generic
elements of Σ are precisely the decomposable parabolic bundles.

8. Computations in coordinates

Consider the universal family U of connections on P1 defined by (5.2). As explained
in Section 6.1, the universal family U , and so also UC , is birationally parametrized by
Bunµ̄(P1, D) × C2

(c1,c2). Using the canonical basis introduced in Definition 8.1, which is
equivariant with respect to τ , instead of the original basis defined in [LS15] allows us to
identify

UC/τ ∼= Bunµ̄(C, T )× C2
(κ1,κ2).

We have the following diagram:

Conµ̄ν̄ (P1, D) U Bunµ̄(P1, D)× C2
(c1,c2) P1

uλ
× P1

ut × C2
(c1,c2)

Conµ̄ν̄ (C, T ) UC/τ Bunµ̄(C, T )× C2
(κ1,κ2) P1

z × P1
w × C2

(κ1,κ2).

Φ Φ

All the horizontal arrows are birational isomorphisms. In order to describe the left-most
vertical map Φ between moduli spaces, we will compute explicitly the right-most arrow Φ
in the given coordinates.

Let us split the map Φ as follows: Φ = (Φ,Ψ), where Φ is the map between moduli spaces
of parabolic bundles, and Ψ determines the change of basis (c1, c2) 7→ (κ1, κ2). The map
Φ: Bunµ̄(P1, D) → Bunµ̄(C, T ) has already been explicitly described both in coordinates
and in geometric terms in [Fer16].

Proposition 8.1 ([Fer16]). The map Φ: P1
uλ
×P1

ut → P1
z×P1

w is given by (uλ, ut) 7→ (z, w),
where

z =
λ(uλ − 1)

uλ − λ
, w =

λut(λut − tuλ + t− λ− ut + uλ)

tλut − tλuλ − tutuλ + λutuλ − λut + tuλ
(8.1)

8.1. The canonical basis. As explained in Section 6.1, in order to have good coordinates
on the quotient U/τ we need to replace the basis (∇0,Θ1,Θ2) by one that is equivariant
with respect to τ . In principle, any equivariant basis would do. However, there is a canoni-
cal identification between the spaces Higgsµ̄(C, T ) and the contangent bundle T ∗(P1

z×P1
w),

so we seek for the parabolic Higgs bundles Θz,Θw that correspond to dz, dw under this
identification. In fact, we know that the elements Θ1,Θ2 in the original basis correspond
to dut, duλ under the analogous identification.
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Consider the pullback of the forms dz, dw under Φ.

Φ∗dz =
∂z

∂ut
dut +

∂z

∂uλ
duλ, Φ∗dw =

∂w

∂ut
dut +

∂w

∂uλ
duλ.

We use these formulas to introduce the following parabolic Higgs bundles.

Definition 8.1. We define the following family of parabolic Higgs bundles, which are
parametrized by (uλ, ut):

Θz =
∂z

∂ut
Θ1 +

∂z

∂uλ
Θ2, Θw =

∂w

∂ut
Θ1 +

∂w

∂uλ
Θ2.

We denote their images under Φ by Θz and Θw. We will refer to the triples (∇τ0 ,Θz,Θw)
and (∇τ

0 ,Θz,Θw) as the canonical bases for U and UC , respectively.

Proposition 8.2. The parabolic Higgs bundles defined above are equivariant with respect
to τ , ie. τΘi(u) = Θi(τu), for i = z, w, and u ∈ P1

uλ
× P1

ut. Moreover, with respect to the
equivariant basis in Definition 6.1, they can be expressed as

Θz =
(z − λ)2

λ(1− λ)
Θτ

2 , Θw =
2(z − λ)

z − t
Θτ

1 +
(wt− wλ− tλ+ λ)(z − λ)

(z − t)(λ− 1)λ
Θτ

2 , (8.2)

where z, w are the functions given in (8.1).

As explained in the proof of Corollary 6.1, given in Section 8.5, the elements Θz,Θw

correspond to dz, dw under the canonical identification of the moduli space of parabolic
Higgs bundles and the cotangent space to the moduli space of parabolic bundles. Given
the nature of the canonical basis, it is of course expected that Θz,Θw should be equi-
variant respect to τ . A rigorous proof follows from the formulas in (8.2), since they are
combinations of equivariant elements with τ -invariant coefficients. We delay the proof of
such formulas until we have explicit expressions for the base change going from the original
basis to the equivariant one.

8.2. The involution τ and exceptional curves in coordinates.

Proposition 8.3. The involution τ ∈ Birat(P1
uλ
× P1

ut) is given by (uλ, ut) 7→ (uλ, ūt),
where ūt is given by

ūt =
tuλ(λut − tuλ + t− λ− ut + uλ)

tλut − tλuλ − tutuλ + λutuλ − λut + tuλ
. (8.3)

Proof. Let (z, w) = Φ(uλ, ut). We know that (z, w) has another preimage under Φ, which
by definition is τ(uλ, ut). Therefore, we need to solve Φ(u′λ, u

′
t) = (z, w) for u′λ, u

′
t. From

(8.1) we can see that z is uniquely determined by uλ, and that fixing the value for w
imposes a quadratic condition on ut. Solving the equation we recover (8.3). �

Remark 8.1. The polynomial

PΠ = tλut − tλuλ − tutuλ + λutuλ − λut + tuλ, (8.4)

which appears as the denominator of (8.3) defines a rational curve in P1
uλ
× P1

ut , which
corresponds to the rational curve Π ⊂ S introduced in Section 4 (and corresponds to the
conic b21 − b0b2 in the birational model P2

b discussed in Remark 5.1). The involution τ
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permutes this curve with the line ut =∞, thus the former appears as a pole of ūt. These
rational curves correspond to the two (−1)-curves in the Del Pezzo surface S that are
mapped by Φ to the horizontal line w = ∞. Therefore, the polynomial Π also appears in
the denominator of the formula for w in (8.1). Indeed, comparing (8.1) to (8.3), we can
see that w = λ

tuλ
ut ūt.

The last equation above shows that we can write the product utūt in terms of w. We
can further express uλ in terms on z. Moreover, we can also write ut + ūt in terms of z, w.
We have the following:

ut + ūt =
zw + (z − w)t− λ

z − λ
, utūt =

wt(z − 1)

z − λ
.

We conclude that any rational function on uλ, ut that is invariant under τ can be expressed
as a rational function on z, w.

Remark 8.2. In the chart P1
uλ
×P1

ut the curve Σ which was defined as the ramification locus
of Φ is defined by the zeros of the following polynomial:

PΣ = tλu2
t − 2tλutuλ − tu2

tuλ + λu2
tuλ + t2u2

λ − λu2
t − t2uλ + tλuλ + 2tutuλ − tu2

λ. (8.5)

Remark 8.3. We have defined Λ ⊂ P1
z × P1

w to be the vertical line given by z = t, and
Λ = Φ−1(Λ) ⊂ Bunµ̄(P1, D). In our chart P1

uλ
×P1

ut , the curve Λ is defined by the vertical
line uλ = λ(1− t)/(λ− t), or equivalently, by the zeros of the polynomial

PΛ = λuλ − tuλ + λt− λ. (8.6)

The special curves discussed in the above remarks can be seen in Figure 2, Section 4.

8.3. Geometry of the apparent map. Before we move on, let us recall the geometric
picture of the universal family U on P1. As usual, we consider parabolic bundles on (P1, D)
with trivial underlying bundle. We assume that, with respect to an affine coordinate ζ on
P(OP1 ⊕ OP1), the parabolic structure is given by ¯̀ = (0, 1, uλ,∞, ut) (cf. Remark 5.1).
For each parabolic bundle represented in P1

uλ
× P1

ut , we define a connection ∇0(uλ, ut).
This connection is characterized as the unique connection compatible with the parabolic
structure such that the divisor of the apparent map is given by App(∇0) = λ+ t. In fact,
every connection ∇ ∈ U is completely determined by its parabolic structure and its image
under the apparent map. Recall that the apparent map is defined by the tangencies of the
Riccati foliation with the section σ∞ = {ζ =∞}.

Now, in order to understand the family UC we need to understand the action of τ
defined in Remark 5.3. For generic bundles, τ acts on the trivial bundle in such a way that
it exchanges σ∞ with the (+2)-section στ .

Proposition 8.4. Assume (uλ, ut) defines a generic parabolic bundle. Then τ transforms
σ∞ into the section στ : P1 → P(OP1 ⊕OP1) ∼= P1

x × P1
ζ defined by

στ (x) =

(
x,

uλ(1− λ)x

(uλ − λ)x− λ(uλ − 1)

)
.

Proof. Recall that τ is defined as the transformation obtained by blowing up the parabolic
points above the divisorW = 0+1+λ+∞, and subsequently a twist by the bundleOP1(−2).
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Since σ∞ is a section of degree zero (constant) passing only through the parabolic above
x =∞, we conclude that στ must be a section of self-intersection +2 passing through the
parabolics above 0, 1, λ (but not ∞). A simple computation shows that there is a unique
such section and it is given by the expression above. �

Remark 8.4. Let ∇ ∈ U be defined by the parabolic structure (uλ, ut) and divisor Z for
the apparent map. Then τ∇ is the unique connection with parabolic structure τ(uλ, ut) =
(uλ, ūt) and whose tangencies with the section στ are exactly given by the divisor Z.

In order to be more explicit, let us denote App∞ the usual apparent map with respect
to the constant section σ∞. Now that we have a formula for στ , we can compute the
tangencies of this section with a given connection. Let us detail this construction.

Definition 8.2. Given a connection ∇ ∈ U , define the vector v(x) = (1, στ (x))>. Let
v1 = v(x) and v2 = ∇v1. We define Appτ (∇) as the numerator of the rational expression
det
(
v1, v2

)
. We call the map ∇ 7→ Appτ (∇) the apparent map with respect to στ .

Explicit expressions for App∞ in terms of the variables uλ, ut, c1, c2 are given in [LS15,
Section 6]. We omit those for Appτ here since they are considerably more intricate.

8.4. The base change map. Below we compute the map Ψ: P1
uλ
× P1

ut × C2
(c1,c2) →

C2
(κ1,κ2), given by the base change from the original basis into the canonical one. We need

to describe in coordinates the base change from the original basis into the equivariant basis.
The passage from the equivariant basis to the canonical one is dictated by Proposition 8.2.
Note that it is enough to work directly with the universal family U (and not on UC). We
begin by describing in (c1, c2)-coordinates the action of the involution τ on Bunµ̄(P1, D).
To do so we will exploit the idea presented in Remark 8.4.

Let ∇ ∈ U have parabolic structure Bun(∇) = (uλ, ut), and assume that with respect
to the original basis for U it is written as ∇ = ∇0(uλ, ut) + c1Θ1(uλ, ut) + c2Θ2(uλ, ut).
Following Remark 8.4, we seek for the unique connection ∇′ such that

Bun(∇′) = (uλ, ūt), and Appτ (∇′) = App∞(∇).

The connection ∇′ is precisely the image of ∇ under τ . A straight forward computation
allows us to find coefficients c′1, c′2 as functions of uλ, ut, c1, c2, such that

∇′ = ∇0(uλ, ūt) + c′1Θ1(uλ, ūt) + c′2Θ2(uλ, ūt).

If we hold the parabolic structure fixed, the coefficients c′1, c′2 are affine functions of c1, c2.
This means that there exists a 3× 3 matrix T(uλ, ūt) such that 1

c′1
c′2

 = T(uλ, ūt)

 1
c1

c2

 .

Proposition 8.5. The matrix T = T(uλ, ut) is given as follows:

T =

 1 0 0
T10/δ T11/δ 0
T20/δ T21/δ 1

 ,
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where δ,Tij are functions of uλ, ut given by

δ = t(t− 1)(t− λ)uλ(uλ − 1)(uλ − λ),

T10 = −2ν(tλut − tλuλ − tutuλ + λutuλ − λut + tuλ)(tλ− tuλ + λuλ − λ),

T20 = νt(t− 1)(2λ2ut − 2tλuλ + tu2
λ − λu2

λ + tλ− λ2 − 2λut + 2λuλ),

T11 = −(tλut − tλuλ − tutuλ + λutuλ − λut + tuλ)2,

T21 = −t(t− 1)(−λ2u2
t + 2tλutuλ − tλu2

λ − tutu2
λ + λutu

2
λ − tλut

+ λ2ut + λu2
t − 2λutuλ + tu2

λ).

Note that the factors that appear in T10 are PΠ and PΛ (defined in Section 8.2), and that
T11 = −P 2

Π.

The above proposition is just the result of the computations mentioned earlier. We re-
mark that the first row of T had to be that way in order to map connections to connections.
The last column of T takes this form since the Higgs bundle Θ2(uλ, ut) is equivariant with
respect to τ . This in turn is a consequence of the fact that uλ is unaffected by τ (cf. Propo-
sition 8.3).

Remark 8.5. The fact that τ is an involution translates to the identity T(uλ, ut) =
T(uλ, ūt)

−1, which can be easily verified from the above expressions.

The equivariant basis is defined by the conditions:

∇τ0(u) =
1

2
(∇0(u) + τ∇0(τu)), Θτ

i (u) =
1

2
(Θi(u) + τΘi(τu)), i = 1, 2.

From these, we deduced that the matrix 1
2 (Id + T(uλ, ūt)) dictates the base change from

the equivariant basis to the original basis (it tells us how ∇τ0 ,Θτ
i are written in terms of

∇0,Θi). The base change that we seek to define Ψ is its inverse. Namely

B(uλ, ut) = 2 (Id + T(uλ, ūt))
−1 .

Proposition 8.6. The explicit expressions for B are as follows:

B =

 1 0 0
B10/β B11/γβ 0

B20/αβ B21/γβ 1

 ,

where the numerators are

B10 = 2ν(tλut − tλuλ − tutuλ + λutuλ − λut + tuλ),

B20 = −ν(−2tλ2u2
tuλ + 3tλu2

tu
2
λ + 2t2λu3

λ − 2tλutu
3
λ − tu2

tu
3
λ + λu2

tu
3
λ − t2u4

λ + tλ2u2
t

+ 2tλ2utuλ − tλu2
tuλ + λ2u2

tuλ − 3t2λu2
λ − 3λu2

tu
2
λ + t2u3

λ − tλu3
λ + 2tutu

3
λ

+ tu4
λ − λ2u2

t + t2λuλ − tλ2uλ − 2tλutuλ + 2λu2
tuλ + 3tλu2

λ − 2tu3
λ),

B11 = 2(tλut − tλuλ − tutuλ + λutuλ − λut + tuλ)2,

B21 = −t(t− 1)(λ2u2
t − 2tλutuλ + tλu2

λ + tutu
2
λ − λutu2

λ + tλut − λ2ut

− λu2
t + 2λutuλ − tu2

λ),
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and the denominators are given by

α = 2uλ(uλ − 1)(uλ − λ),

β = tλu2
t − 2tλutuλ − tu2

tuλ + λu2
tuλ + t2u2

λ − λu2
t − t2uλ + tλuλ + 2tutuλ − tu2

λ,

γ = λuλ − tuλ + λt− λ.

Comparing with the polynomials introduced in Section 8.2, we have β = PΣ, and γ = PΛ.
The polynomial PΠ appears again in B10 and B11.

Proof of Proposition 8.2. We have three bases to describe the universal family U , and with
them the following base-change matrices:

(1) B going from the original basis to the equivariant one,
(2) J going from the canonical basis to the original one,
(3) C going from the canonical basis to the equivariant one.

The matrix B is given by the above proposition. The matrix J is given by putting together
the first column of B−1 = 1

2 (Id + T(uλ, ūt)) (which defines the connection ∇τ0), and the
(transposed) Jacobian matrix ∂(z,w)

∂(ut,uλ) , which defines the parabolic Higgs bundles Θz,Θw.
More precisely,

J =

 1 0 0

c0
1

∂z
∂ut

∂w
∂ut

c0
2

∂z
∂uλ

∂w
∂uλ

 ,

where ∇τ0 = ∇0 + c0
1Θ1 + c0

2Θ2. The matrix C = BJ is the one we are interested in. Having
explicit expressions for both B and J, we can compute the explicit expressions for C. It
is straightforward to check that the entries of this matrix are invariant under τ , and in
fact can be rewritten in terms of the τ -invariant functions z, w that appear in (8.1). These
expressions coincide with the coefficients given in (8.2). In particular, this proves that
the parabolic Higgs bundles Θz and Θw are equivariant with respect to τ , since they are
expressed as a linear combination of the τ -equivariant bundles Θτ

1 ,Θ
τ
2 , with τ -invariant

coefficients. �

For future reference, we provide here an explicit expression of the matrix C−1.

C−1 =

1 0 0
0 K11 K12

0 K21 0

 ,

where

K11 =
wt− wλ− tλ+ λ

2(z − λ)2
, K21 =

z − t
2(z − λ)

, K12 =
λ(1− λ)

(z − λ)2
. (8.7)

We arrive finally to a complete description of the map Φ in coordinates:

Proposition 8.7. The map

Φ: P1
uλ
× P1

ut × C2
(c1,c2) P1

w × P1
z × C2

(κ1,κ2)
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decomposes as Φ = (Φ,Ψ) where Φ: P1
uλ
× P1

ut → P1
w × P1

z is given by (8.1), and Ψ: P1
uλ
×

P1
ut × C2

(c1,c2) → C2
(κ1,κ2) is defined by 1

κ1

κ2

 = J(uλ, ut)
−1

 1
c1

c2

 ,

where J(uλ, ut)
−1 is given by the product J−1 = C−1B. The explicit expression of the

matrix B appears in Proposition 8.6, and the entries of C−1 are given in (8.7).

8.5. Final details on the map Φ. We conclude this section by filling in details to estab-
lish Theorem 6.1, Theorem 6.2, and Corollary 6.1.

Proof of Theorem 6.1 and Theorem 6.2. The coordinate system Conµ̄ν̄ (C, T ) 99K P1
z×P1

w×
C2

(κ1,κ2) and the map Φ are defined in terms of the canonical family ∇τ
0 ,Θz,Θw. There-

fore, in order to prove both theorems it is enough to establish that, when the underlying
parabolic bundle belongs to Bunµ̄(C, T )0, the canonical family ∇τ

0 ,Θz,Θw is well defined
(thus holomorphic), and that the parabolic Higgs bundles Θz,Θw are linearly indepen-
dent. We will prove these properties for the canonical family ∇τ0 ,Θz,Θw. According to
Proposition 8.7, we need to focus on the base change J−1 = C−1B which converts the
original family ∇0,Θt,Θλ used in [LS15] into the canonical one.

First, let us note the following. The map S 99K P1
uλ
× P1

ut is obtained by contracting
four of the sixteen (−1)-curves in S. Therefore, the space of generic bundles Bunµ̄(P1, D)0

is in one-to-one correspondence with an open subset of P1
uλ
× P1

ut (the complement of
the remaining twelve rational curves we did not contract). This means that every generic
bundle is represented in P1

uλ
×P1

ut . We remark that our genericity assumptions also exclude
the lines uλ = ∞, ut = ∞ (these are mapped by Φ to z = λ and w = ∞, respectively).
Therefore the affine coordinates we are using in P1

uλ
× P1

ut suffice for all computations.

Next, we recall that the map Φ: S → P1
z×P1

w is everywhere well defined and holomorphic.
Our formula for w in (8.1) has points of indeterminacy precisely at the four points obtained
by contracting (−1)-curves in S, but these points are not in Bunµ̄(P1, D)0.

Finally, we analyze the poles of the entries of the matrices B and C−1, as well as the zeros
of their determinants. Let us start with B. The polynomial α in Proposition 8.6 vanishes
at the lines uλ = 0, uλ = 1, uλ = λ. These are among the rational curves excluded by
Bunµ̄(P1, D)0. They are mapped by Φ to the curves z = 1, z = 0, z = ∞, respectively.
The polynomial β is exactly the polynomial PΣ defining the ramification locus Σ in (8.5).
Lastly, the polynomial γ coincides with PΛ which defines the special line Λ in (8.6). Since
the matrix is triangular we evidently have det B = B11/γβ. The denominators we have
discussed, and the numerator is precisely 2P 2

Π, where PΠ was given in (8.4). Since this is
another rational curve excluded by Bunµ̄(P1, D)0, we conclude that det B is never zero for
a generic parabolic bundle. From the equations (8.7) it is straightforward that the poles
of C−1 are given by z = λ and the determinant only vanishes at z = t. Again, these lines
are excluded by our genericity assumptions.

We conclude that over Bunµ̄(P1, D)0\(Σ∪Λ) the canonical family ∇τ0 ,Θz,Θw is well de-
fined and Θz,Θw linearly independent. As a consequence, the canonical family∇τ

0 ,Θz,Θw

enjoys the same properties over Bunµ̄(C, T )0. �
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Remark 8.6. All our constructions are well defined for parabolic bundles in Bunµ̄(P1, D)0,
except that the base-change matrix J−1 has poles over Σ. This is because the Jacobian
matrix ∂(z,w)

∂(ut,uλ) drops rank over Σ. Thus, the canonical basis introduced in Definition 8.1 is
not a true basis: it spans only a one-dimensional linear space when the underlying parabolic
bundle belongs to Σ (see also Remark 8.9). Finally, this means that the coordinate system
Conµ̄ν̄ (C, T ) 99K P1

z × P1
w × C2

(κ1,κ2) cannot be used to describe connections with such
underlying parabolic bundles. The equivariant basis also has lower rank over Λ, thus for
technical reasons we have avoided such curve, although the final base change J−1 doesn’t
have poles over Λ.

Proof of Corollary 6.1. As explained in [LS15, Section 6], the parabolic Higgs bundles
Θ1,Θ2 are chosen in such way that, under the natural identification, they correspond to
the 1-forms dut, duλ in T ∗Bunµ̄(P1, D). Because of this, the symplectic structure of the
space Conµ̄ν̄ (P1, D) is given by the 2-form

ω = dc1 ∧ dut + dc2 ∧ duλ,

which gives the canonical symplectic structure on the cotangent bundle.

The map Φ: Bunµ̄(P1, D) → Bunµ̄(C, T ) induces a map between the spaces of global
sections

Φ∗ : Γ(T ∗Bunµ̄(C, T )) −→ Γ(T ∗Bunµ̄(P1, D)). (8.8)

We have used this map to find the parabolic Higgs bundles Θz,Θw that correspond to
Φ∗dz, Φ∗dw, respectively. Since these are equivariant with respect to τ , they descend to
the quotient by τ as parabolic Higgs bundles Θz,Θw, which correspond to dz, dw under
the canonical identification. Therefore, as before, the symplectic form on Conµ̄ν̄ (C, T ) is
given by

ωC = dκ1 ∧ dz + dκ2 ∧ dw.

Having explicit expressions for the map Φ, it is straightforward to verify that ω = Φ∗ωC ,
and so the map Φ is symplectic.

Alternatively, we can use the explicit expressions for the involution τ to verify that ω is
invariant under τ , and so it descents to the quotient U/τ = UC/τ . Therefore, it is possible
to express the resulting 2-form in terms of the z, w, κ1, κ2 variables. This can be done by a
straightforward, albeit tedious, computation. In this way, we recover the 2-form ωC given
above. �

Remark 8.7. Fiberwise, the map Φ: Higgsµ̄(P1, D) → Higgsµ̄(C, T ) coincides with (the
inverse of) the map (8.8) on the corresponding fibers. This basically follows from the
definition of the canonical Higgs bundles Θz,Θw. Similarly, it is not hard to show that the
map τ acting on Higgsµ̄(P1, D) coincides with the natural action that τ : Bunµ̄(P1, D)→
Bunµ̄(P1, D) induces on the cotangent bundle T ∗Bunµ̄(P1, D).

8.6. The singular locus on the space of connections. We have described Conµ̄ν̄ (C, T )
as a quotient of Conµ̄ν̄ (P1, D) by the involution τ . As announced in Section 6, the set of
fixed points of τ is a codimension 2 subvariety, which causes the quotient to be singular
at the image of the fixed-point locus. We shall first characterize the fixed-point set in
Conµ̄ν̄ (P1, D), and then describe the singularities of Conµ̄ν̄ (C, T ) locally.
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Proof of Theorem 6.3. We analyze the fixed points of τ in U . This is equivalent to the fixed
points of τ in UC . Any such fixed point must be a connection defined over a parabolic
bundle that is fixed by τ , namely a parabolic bundle (uλ, ut) ∈ Σ. Those connections that
are fixed by τ are the solutions to the linear inhomogeneous system

(T(uλ, ūt)− Id)

 1
c1

c2

 = 0. (8.9)

Because of the particular shape of T (cf. Proposition 8.5), the last column and the first
row of the matrix on the left-hand side of (8.9) are zero. Therefore we are left with two
inhomogeneous equations on c1 only (and so c2 is free to take any value). Recall that the
central entry in T(uλ, ut) is given by T11/δ. We can easily verify that (T11/δ)|Σ ≡ −1.
Indeed, a quick computation shows that

T11

δ
= −1− PΣPΛ

δ
,

where PΠ, PΣ, PΛ are defined in (8.4)–(8.6).

Remark 8.8. The above equations shows that Σ ∪ Λ is precisely the locus where the in-
volution τ acts as Θ1 7→ −Θ1 + kΘ2, where k is a scalar. Because of this, the matrix
1
2(Id + T(uλ, ūt)) used to define the equivariant basis in Definition 8.1 drops rank and we
are unable to define such basis above these parabolic bundles.

The determinant of the bottom-left 2 × 2 minor of the matrix in (8.9) vanishes at Σ,
and the middle row imposes an equation

T10/δ − 2c1 = 0.

We conclude that the linear space of solutions is one-dimensional and defined by

c1 = T10/2δ = ν
PΠPΛ

δ
. (8.10)

In Section 7, parabolic bundles in Σ are characterized as those for which the parabolic
direction belongs to the curve SΣ ⊂ P(OP1⊕OP1). A quick analysis shows that connections
that moreover satisfy (8.10) are precisely those for which the second eigenvector of its
residue over t (corresponding to the eigenvalue −ν) also belongs to the curve SΣ. Further
analysis reveals that in this case the Riccati foliation is indeed tangent to SΣ. After
performing the transformation Φ we recover a connection on a bundle of the form L⊕L−1

for which each summand is invariant. Invariance by the elliptic involution (which exchanges
L and L−1) implies that the connection must be of the form(

∇,E, ¯̀
)

=
(
ζ,L, `

)
⊕ ι∗

(
ζ,L, `

)
.

�

Remark 8.9. We have shown that the equivariant basis fails to describe the universal
family U whenever the underlying parabolic bundle belongs to Σ. This is in fact true
for any equivariant basis, including the canonical one. Indeed, since Σ defines the fixed
points of τ , we have that any equivariant connection ∇, parametrized by u ∈ Bunµ̄(P1, D),
satisfies

τ∇(u) = ∇(τu) = ∇(u), if u ∈ Σ.
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Therefore, if u ∈ Σ equivariance implies invariance under τ . As shown above, for each fixed
parabolic bundle u ∈ Σ, the space of τ -invariant connections is one-dimensional. Thus any
equivariant basis drops rank over Σ.

Proof of Theorem 6.4. Let us choose a generic point u0 ∈ Σ (by generic we mean that
uλ 6= 0, 1, λ,∞), and ∇(u0) a connection fixed by τ . We will describe the space Conµ̄ν̄ (C, T )
around Φ(∇(u0)).

Consider the curve Σ ⊂ P1
uλ
× P1

ut , which is the set of fixed points of the involution τ .
Up to a linear factor, the curve is given by hyperelliptic equation

PΠ =
√
δ, (8.11)

where PΠ and δ are given in (8.4) and Proposition 8.5, respectively. We propose the
following local change of variables

(uλ, ut) 7−→ (uλ, U), where U =
PΠ −

√
δ

PΠ +
√
δ
.

Let us assume that u0 7→ U0, and choose a branch of the square root such that Σ is
given by U = 0 around the point U0. A straightforward computation shows that in these
coordinates the involution τ is given by (uλ, U) 7→ (uλ,−U).

As discussed in Remark 8.8, the matrix T has a an eigenvalue equal to −1 whenever the
underlying parabolic bundle belongs to Σ. Therefore, with respect to a suitably chosen
(non-equivariant) basis Θ̃1,Θ2, the involution τ acts as Θ̃1(u0) 7→ −Θ̃1(u0), and Θ2 is
unchanged by τ .

Using the coordinates and the basis above, we arrive to local coordinates (uλ, U, c̃1, c2)
in which, locally around ∇(u0), the action of τ is given by

τ : (uλ, U, c̃1, c2) 7−→ (uλ,−U,−c̃1 + . . . , c2),

where multiple dots denote higher order terms. Indeed, the action is not linear, but
by the Bochner linearization theorem, we can find yet another set of local coordinates
(y1, y2, y3, y4) in which the action is indeed linear. Focusing on the coordinates (y2, y3)
where the action is non-trivial, we have that C2

(y2,y3)/τ defines a quadratic conic singularity,
isomorphic to the cone in C3 given by x2

1 = x2x3. �

9. The apparent map

In order to study the apparent map AppC introduced in Definition 6.2, we begin with
connections on P1 and switch from the birational model Conµ̄ν̄ (P1, D) ∼= P1

uλ
×P1

ut×C
2
(c1,c2),

to the model Conµ̄ν̄ (P1, D) ∼= P2
a× P2

b defined by the map (5.1). This is studied in detail in
[LS15]. The first factor, P2

a defines the image of the apparent map. Indeed, the tangencies of
a generic connection∇(a, b) with the section σ∞ are precisely at the roots of the polynomial
App∞(a, b) = a2x

2 + a1x + a0. The second factor, P2
b defines the underlying parabolic

bundle. Explicit formulas to go from one coordinate system to the other are given in
[LS15, Section 6], and so we omit them here.

Recall from Section 4 that the Del Pezzo surface S can be identified with the blow-up
of P2

b at five points, which we call D0, D1, Dλ, D∞, Dt. As shown in [Fer16, Section 6], the
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involution τ is the lift of the de Jonquières automorphism of P2
b preserving the pencil of lines

through Dt and the pencil of conics through D0, D1, Dλ, D∞. The following five rational
curves in P2

b are important for the upcoming discussion: the conic Π through all five points
Di, and the lines Lit passing through the pointsDi andDt, for i = 0, 1, λ,∞. These become
(−1)-curves in S, and so they they are excluded from Conµ̄ν̄ (P1, D)0 (cf. Definition 4.1).
Some of these rational curves have already appeared in previous sections. They correspond
to the curves defined by PΠ in (8.4), and the lines uλ = 0, 1,∞. Only the line Lλ,t is absent
from the P1

uλ
×P1

ut model. In fact, the birational isomorphism P2
b 99K P1

uλ
×P1

ut is obtained
by blowing-up Dλ and Dt, and contracting the line Lλt through them.

Remark 9.1. As always, the involution τ plays a crucial role in the passage from connections
over P1 to connections over C. In these coordinates, the involution acts as τ : (a, b) 7→ (s, b̄).
The action on the parabolic bundles b 7→ b̄ is the de Jonquières automorphism of P2

b
discussed above. Below we seek to understand the correspondence (a, b) 7→ s. This is
given by a matrix Mb, whose entries are parametrized by b. This matrix will be the main
object of study in this section. Note that since a is given by the apparent map App∞, we
have that s = App∞◦ τ .

We now analyze the map App∞×(App∞◦ τ) : Conµ̄ν̄ (P1, D) → P2 × P2, which was in-
troduced in Definition 6.2. Recall we have defined Appτ = App∞◦ τ . Let us introduce
homogeneous coordinates s = [s0 : s1 : s2] on P2 so that App∞ takes values on P2

a, and
Appτ takes values on P2

s. Under these coordinate systems the former map is nothing but

pr1×Appτ : P2
a × P2

b −→ P2
a × P2

s, (9.1)

where pr1 denotes projection onto the first factor P2
a.

We remark that, if we fix b a generic bundle, the map Appτ (_, b) : P2
a → P2

s is holo-
morphic and invertible. Therefore it defines an element of PGL(3,C). It is a straight
forward computation to translate the formula for Appτ mentioned in Section 8 to these
new coordinates. Once this is done, a direct inspection yields the following.

Proposition 9.1. The map Appτ : P2
a × P2

b → P2
s is defined by a 3× 3 matrix Mb via

(a, b) 7−→ Mb

a0

a1

a2

 .

The entries of Mb are homogeneous polynomials on b of degree four. Moreover, its de-
terminant only vanishes along the curves Π and Lit, for i = 0, 1, λ,∞ (each divisor with
multiplicity two).

Remark 9.2. The above proposition implies that the map App∞×(App∞◦ τ) is everywhere
well defined on Conµ̄ν̄ (P1, D)0.

That (9.1) is dominant is straightforward: it is a map between irreducible spaces of
the same dimension, and we can check at a generic point that the derivative has maximal
rank. The fact that the determinant of Mb factors as a product of rational curves makes
it easy to analyze the behavior of this matrix along such divisor (sine we can parametrize
each branch). Below we describe the kernel of Mb at every point where the determinant
vanishes. These are linear subspaces of C3

a which are naturally identified with subsets of
P2
a = P(C3

a).
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(1) At a generic point of the conic Π the matrix Mb has rank 2 and its kernel is a fixed
point D̃t ∈ P2

a.
(2) At a generic point of the line Li,t, for i = 0, 1, λ,∞, the matrix Mb has rank 1 with

a one-dimensional kernel that can be identified with a fixed point D̃i ∈ P2
a.

(3) At the pointDi, for i = 0, 1, λ,∞, the matrix Mb has rank 1 with a two-dimensional
kernel which we identify with the line Lit through D̃t and D̃i in P2

a.
(4) At the point Dt the matrix Mb vanishes identically.

The above description implies that for a generic choice of a ∈ P2
a (namely distinct from

the points D̃i and not on any line Π̃it), the only way in which a ∈ P2
a could be in the kernel

of Mb is if b = Dt. In particular, fixing a, the map Appτ (a,_) : P2
b → P2

s is a rational map
of degree four with a single point of indeterminacy at Dt. A simple analysis shows that
the generic fiber of this map consists of 12 points. This has the following consequence.

Theorem 9.1. The map AppC : Conµ̄ν̄ (C, T ) 99K Sym2(P2) is a rational dominant map
whose generic fiber consists of exactly 12 points. This map is everywhere well defined over
the space Conµ̄ν̄ (C, T )0 of generic connections.

Proof. This theorem readily follows from the fact that the map P2
a×P2

b → P2
a×P2

s in (9.1)
is dominant and generically 12 : 1. Consider the following diagram

Conµ̄ν̄ (P1, D) P2
a × P2

b P2
a × P2

s

Conµ̄ν̄ (C, T ) Sym2(P2)

1:1

2:1

12:1

2:1

12:1

(9.2)

In principle, the bottom arrow, which represents AppC , should be generically 12 : 1.
There is one place where we need to be careful: the first two maps on the top row are not
surjective. This could decrease the cardinality of the fibers once we trace preimages from
right to left.

Take a point [(a, s)] ∈ Sym2(P2) in the image of AppC . Then either (a, s) or (s, a) is in
the image of the map App∞×Appτ . However, the involution τ acts in such a way that if
App∞×Appτ (∇) = (a, s) then App∞×Appτ (τ∇) = (s, a). Hence the image of this map
is invariant under permuting the factors in P2

a × P2
s. Thus both (a, s) and (s, a) are in the

image of such map. From the above discussion, it follows that each of these two points has
12 preimages in P2

a × P2
b . It is shown in [LS15, Theorem 1.1] that the image of the map

Conµ̄ν̄ (P1, D) → P2
a × P2

b coincides with the complement of the incidence variety defined
by a0b0 + a1b1 + a2b2 = 0. By computing a particular example, we are able to confirm
that generically none of the 24 points coming from our original [(a, s)] lie on the incidence
variety. Therefore the composition of the horizontal arrows with the vertical arrow on the
right gives a map which is invariant under τ and generically 24 : 1. Such map descends
to the quotient Conµ̄ν̄ (P1, D)/τ ∼= Conµ̄ν̄ (C, T ). The resulting map, which by definition is
AppC , is thus generically 12 : 1. �

We conclude by showing that the map AppC ×Bun is generically injective. This means
that, generically, a connection is completely defined by its underlying parabolic bundle
and the image of the apparent map AppC . Note however that the domain of this map is
four-dimensional while the target space has dimension six.
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Theorem 9.2. The map

AppC ×Bun: Conµ̄ν̄ (C, T ) Sym2(P2)× P1
z × P1

w

is a generically injective.

Proof. As usual, let us start by analyzing the corresponding map for connections on P1.
Let A : P2

a × P2
b → Sym2(P2) be the map obtained by the composition of the last two

horizontal arrows in (9.2). Let us denote by B : P2
a×P2

b → P1
z ×P1

w the map B = Φ ◦Bun.
Consider the map A×B : P2

a × P2
b → Sym2(P2)× P1

z × P1
w. In order to prove the theorem,

we are going to show that the generic fibers of A × B consist of two points that are in
involution with respect to τ . Therefore, in the quotient Conµ̄ν̄ (P1, D)/τ ∼= Conµ̄ν̄ (C, T ), the
induced map AppC will be generically injective.

Let ∇ be a generic connection defined by (a, b) ∈ P2
a × P2

b . Suppose A(a, b) = [(a, s)] ∈
Sym2(P2). Let Φ(b) = (z, w), and denote b̄ = τ(b). We have the following straightforward
constraints for a point (a′, b′) to be on the fiber of A × B over the point ([(a, s)], (z, w)).
First, b′ must equal either b or b̄, since the map Φ is 2 : 1 and the fiber over (z, w) is
precisely {b, b̄}. For the second, let s′ = Appτ (a′, b′), such that A(a′, b′) = [(a′, s′)]. Since
A(a′, b′) = A(a, b), we must have that either a′ = a and s′ = s, or a′ = s and s′ = a.

At this point, we have shown that the fibers of A × B consist of at most four points
(a′, b′) that satisfy a′ ∈ {a, s}, b′ ∈ {b, b̄}. By design, this map is invariant under τ . Thus,
points that are in involution with respect to τ belong to the same fiber. According to
Remark 8.4, τ(a, b) = (s, b̄). Therefore both (a, b) and (s, b̄) belong to the fiber. We now
need to show that, generically, the points (a, b̄) and (s, b) do not belong to the fiber.

Assume that (a, b̄) belongs to the same fiber as (a, b), namely, A(a, b̄) = A(a, b). Let
us consider the matrix Mb that appears on Proposition 9.1 as an element of PGL(3,C).
Since A(a, b) = [(a,Mb(a))], equality A(a, b̄) = A(a, b) means that Mb(a) = Mb̄(a). Note
that because τ is an involution, we must have that the composition Mb̄Mb is the identity
(cf. Remark 8.5). Thus, applying Mb on the left, we have that

M2
b(a) = MbMb̄(a) = a. (9.3)

This implies that a, viewed as a line on C3, is an invariant linear subspace for the matrix
M2
b . This imposes non-trivial polynomial conditions on the space P2

a × P2
b , which are only

satisfied in a proper subvariety of P2
a × P2

b . The case A(s, b) = A(a, b) is treated in the
same way as above (it imposes the same conditions).

We conclude that on a Zariski open subset of P2
a×P2

b , the fibers of the map A×B consists
of two points which are permuted by τ . This implies that AppC ×Bun is generically
injective. �

Remark 9.3. The Zariski closure of the image of AppC ×Bun is a codimension 2 subvariety
X ⊂ Sym2(P2) × P1

z × P1
w. Unfortunately, we were unable to compute the polynomial

equations that define the variety X.

References

[AL97a] D. Arinkin and S. Lysenko, Isomorphisms between moduli spaces of SL(2)-bundles with
connections on P1 \ {x1, · · · , x4}, Math. Res. Lett. 4 no. 2-3 (1997), 181–190. MR 1453052.
https://doi.org/10.4310/MRL.1997.v4.n2.a1.

http://www.ams.org/mathscinet-getitem?mr=1453052
https://doi.org/10.4310/MRL.1997.v4.n2.a1


A MAP BETWEEN MODULI SPACES 30

[AL97b] D. Arinkin and S. Lysenko, On the moduli of SL(2)-bundles with connections on P1 \
{x1, · · · , x4}, Internat. Math. Res. Notices no. 19 (1997), 983–999. MR 1488348. https://
doi.org/10.1155/S1073792897000639.

[Boa01] P. Boalch, Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 no. 2
(2001), 137–205. MR 1864833. https://doi.org/10.1006/aima.2001.1998.

[DL15] K. Diarra and F. Loray, Ramified covers and tame isomonodromic solutions on curves,
Trans. Moscow Math. Soc. (2015), 219–236. MR 3467265. https://doi.org/10.1090/mosc/
247.

[FL18] T. Fassarella and F. Loray, Flat parabolic vector bundles on elliptic curves (to
appear), J. Reine Angew. Math. (2018), arXiv:1707.00820v2. https://doi.org/10.1515/
crelle-2018-0006.

[Fer16] N. Fernández Vargas, Geometry of the moduli of parabolic bundles on elliptic curves (to
appear), Trans. Amer. Math. Soc. (2016), arXiv:1611.05417v1. https://doi.org/10.1090/
tran/7330.

[Gol97] W. M. Goldman, Ergodic theory on moduli spaces, Ann. of Math. (2) 146 no. 3 (1997),
475–507. MR 1491446. https://doi.org/10.2307/2952454.

[HL19] V. Heu and F. Loray, Flat rank 2 vector bundles on genus 2 curves, Mem. Amer. Math. Soc.
259 no. 1247 (2019), 103p. Available at https://bookstore.ams.org/memo-259-1247/.

[Hit95] N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differen-
tial Geom. 42 no. 1 (1995), 30–112. MR 1350695. https://doi.org/10.4310/jdg/1214457032.

[Ina13] M.-A. Inaba, Moduli of parabolic connections on curves and the Riemann-Hilbert correspon-
dence, J. Algebraic Geom. 22 no. 3 (2013), 407–480. MR 3048542. https://doi.org/10.1090/
S1056-3911-2013-00621-9.

[IIS06a] M.-a. Inaba, K. Iwasaki, and M.-H. Saito, Moduli of stable parabolic connections,
Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. I, Publ. Res.
Inst. Math. Sci. 42 no. 4 (2006), 987–1089. MR 2289083. https://doi.org/10.2977/prims/
1166642194.

[IIS06b] M.-A. Inaba, K. Iwasaki, and M.-H. Saito, Moduli of stable parabolic connections,
Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. II, in Moduli
spaces and arithmetic geometry, Adv. Stud. Pure Math. 45, Math. Soc. Japan, Tokyo, 2006,
pp. 387–432. MR 2310256. https://doi.org/10.2969/aspm/04510387.

[LvdPU08] F. Loray, M. van der Put, and F. Ulmer, The Lamé family of connections on the projective
line, Ann. Fac. Sci. Toulouse Math. (6) 17 no. 2 (2008), 371–409. MR 2487859. https://doi.
org/10.5802/afst.1187.

[LS15] F. Loray and M. Saito, Lagrangian fibrations in duality on moduli spaces of rank 2 logarith-
mic connections over the projective line, Int. Math. Res. Not. IMRN no. 4 (2015), 995–1043.
MR 3340345. https://doi.org/10.1093/imrn/rnt232.

[Lor16] F. Loray, Isomonodromic deformations of Lamé connections, the Painlevé VI equation and
Okamoto symmetry, Izv. Ross. Akad. Nauk Ser. Mat. 80 no. 1 (2016), 119–176. MR 3462678.
https://doi.org/10.4213/im8310.

[MV13] M. Mazzocco and R. Vidunas, Cubic and quartic transformations of the sixth Painlevé
equation in terms of Riemann-Hilbert correspondence, Stud. Appl. Math. 130 no. 1 (2013),
17–48. MR 3010489. https://doi.org/10.1111/j.1467-9590.2012.00562.x.

[Nit93] N. Nitsure, Moduli of semistable logarithmic connections, J. Amer. Math. Soc. 6 no. 3 (1993),
597–609. MR 1182671. https://doi.org/10.2307/2152778.

[GitHub] V. Ramirez, Connections on elliptic curves, GitHub repository, 2019. Available at https:
//github.com/valentermz/Connections-on-elliptic-curves.

[Sage] The Sage Developers, The Sage Mathematics Software System (Version 8.7), 2019. Avail-
able at https://www.sagemath.org.

Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France

E-mail address: frank.loray@univ-rennes1.fr · valente.ramirez@univ-rennes1.fr

http://www.ams.org/mathscinet-getitem?mr=1488348
https://doi.org/10.1155/S1073792897000639
https://doi.org/10.1155/S1073792897000639
http://www.ams.org/mathscinet-getitem?mr=1864833
https://doi.org/10.1006/aima.2001.1998
http://www.ams.org/mathscinet-getitem?mr=3467265
https://doi.org/10.1090/mosc/247
https://doi.org/10.1090/mosc/247
http://arxiv.org/abs/1707.00820
https://doi.org/10.1515/crelle-2018-0006
https://doi.org/10.1515/crelle-2018-0006
http://arxiv.org/abs/1611.05417
https://doi.org/10.1090/tran/7330
https://doi.org/10.1090/tran/7330
http://www.ams.org/mathscinet-getitem?mr=1491446
https://doi.org/10.2307/2952454
https://bookstore.ams.org/memo-259-1247/
http://www.ams.org/mathscinet-getitem?mr=1350695
https://doi.org/10.4310/jdg/1214457032
http://www.ams.org/mathscinet-getitem?mr=3048542
https://doi.org/10.1090/S1056-3911-2013-00621-9
https://doi.org/10.1090/S1056-3911-2013-00621-9
http://www.ams.org/mathscinet-getitem?mr=2289083
https://doi.org/10.2977/prims/1166642194
https://doi.org/10.2977/prims/1166642194
http://www.ams.org/mathscinet-getitem?mr=2310256
https://doi.org/10.2969/aspm/04510387
http://www.ams.org/mathscinet-getitem?mr=2487859
https://doi.org/10.5802/afst.1187
https://doi.org/10.5802/afst.1187
http://www.ams.org/mathscinet-getitem?mr=3340345
https://doi.org/10.1093/imrn/rnt232
http://www.ams.org/mathscinet-getitem?mr=3462678
https://doi.org/10.4213/im8310
http://www.ams.org/mathscinet-getitem?mr=3010489
https://doi.org/10.1111/j.1467-9590.2012.00562.x
http://www.ams.org/mathscinet-getitem?mr=1182671
https://doi.org/10.2307/2152778
https://github.com/valentermz/Connections-on-elliptic-curves
https://github.com/valentermz/Connections-on-elliptic-curves
https://www.sagemath.org
mailto:frank.loray@univ-rennes1.fr
mailto:valente.ramirez@univ-rennes1.fr

	1. Introduction
	1.1. Summary of the new results
	1.2. Code repository
	1.3. Related work
	1.4. A note about notation
	1.5. Acknowledgements

	2. General aspects about moduli spaces of connections
	3. The pullback map
	4. Genericity assumptions
	5. Recap of previously known results
	5.1. Moduli spaces of parabolic bundles
	5.2. Moduli spaces of connections over P1
	5.3. A universal family of connections

	6. Statement of the main results
	6.1. A ``double'' universal family of connections
	6.2. The apparent map in the elliptic case

	7. Geometric description of a generic parabolic bundle
	8. Computations in coordinates
	8.1. The canonical basis
	8.2. The involution tau and exceptional curves in coordinates
	8.3. Geometry of the apparent map
	8.4. The base change map
	8.5. Final details on the map Phi
	8.6. The singular locus on the space of connections

	9. The apparent map
	References

