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Numerical and analytical methods at both micro- and mesoscales are used to study how the
electrical resistivity and the high frequency tortuosity of solid foam are modi�ed by the presence of
membranes that partially or totally close the cell windows connecting neighbor pores. Finite element
method (FEM) simulations are performed on two pores connected by a single-holed membrane and
on well-ordered Kelvin foam. For two pores connected by a single-holed membrane, we show that
the equation for pore access resistance obtained by Sahu and Zwolak (Phys. Rev. E 98, 012404,
2018) can predict, after a few modi�cations, the electrical resistivity at the membrane scale for a
large range of membrane apertures. In the second part, considering these analytical results, we build
a pore-network model by using two kinds of conductances at the pore scale - inter-pore conductance
and intra-pore conductance. Local inter-pore resistances govern foam electrical conductivity at
small membrane aperture size, but when the membrane aperture has the same order of magnitude
as the pore size, the intra-pore resistances are no longer negligible. An important success of this
pore-network model is that it can be used to study the e�ects of percolation on the foam electrical
conductivity by using pore-network simulations on larger samples containing a few thousands of
pores and having di�erent proportions of closed membrane randomly distributed over the sample.
The tortuosity is found to be drastically larger than one in foam containing membranes with small
apertures or a signi�cant fraction of closed membranes.

I. INTRODUCTION

When an acoustic wave propagates through a viscous
�uid-saturated porous media having a motionless skele-
ton (rigid frame), the relative displacement between �uid
and frame generates �uid shear at the surface of the pore
walls. This results in a viscous dissipation and an at-
tenuation of the sound. Due to its di�usive propagation,
any vorticity generated at the pore walls decays to zero
as one moves away from the pore wall into the bulk of
the pore [1]. Therefore, viscous dissipation occurs in a
boundary layer located at the surface of the pore and
of thickness δ. This length δ, called viscous skin depth,
is frequency dependent: δ ≈

√
µ/(ρff) where µ and ρf

are respectively the dynamic viscosity and density of the
�uid, and f is the frequency. In the limit of high frequen-
cies, the viscous skin depth becomes much smaller than
any characteristic pore size, and the �uid tends to be-
have as an ideal �uid having no viscous e�ect (except
in the thin boundary layer). More generally, the dy-
namic behavior of �uid-saturated porous media is due
to a balance between the power developed by the �uid
pressure gradient and both the viscous dissipative power
and the inertial power developed in the �uid [2, 3]. The
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viscous dissipative power dominates the inertial power
at low frequency and inversely at high frequency. The
visco-intertial frequency fv de�ning the transition be-
tween low- and high-frequency behaviour, corresponds to
the frequency for which the viscous dissipated and kinetic
(inertial) powers are equal [3]. Likewise, the distinction
between the low- and high-frequency behaviour depends
also on whether the viscous skin depth is large or small
compared to a characteristic pore size [1]. An estimate of
fv follows from this phenomenological description, and is
given by fv = µ/(Kα∞ρf ); where K is the permeabil-
ity, a parameter associated with the low frequency be-
havior; α∞ is the tortuosity, a parameter associated with
the high-frequency behavior. In the high-frequency limit,
the e�ective density ρe only depends on the tortuosity,
ρe = α∞ρf .

The tortuosity is a key parameter describing disper-
sion of microscopic velocities with respect to the average
value of microscopic velocities (Eq. A4). Because at high
frequency, the potential �ow is formally identical to elec-
tric conduction assuming that the porous solid is insu-
lating [4], the tortuosity can be experimentally estimated
by electrical conductivity measurement or calculated for
speci�c pore geometries by solving the electrical bound-
ary value problem (Appendix A, Sec. Inertial �ow, Eq.
A3). Several properties of α∞ are important to mention.
(1) α∞ is a scale invariant parameter (i.e. remaining un-
changed if the sample is uniformly dilated or contracted
by a scale factor) and is greater than or equal to one. (2)
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α∞ is dependent on the shape of the solid matrix, for
example it accounts for both sinuosity and converging-
diverging pore geometry. (3) In the theory proposed by
Biot, α∞ is a "structure constant" de�ned as a purely
geometric parameter, independent of material parame-
ters, which relates an inertial �uid-solid coupling density
ρa to the density of the �uid �lling the pore space ρf ,
ρa = (α∞ − 1)ρf [2, 4, 5]. This coupling term is related
to the force applied to a �uid to prevent its displacement
when the solid is accelerated. (4) At high frequency, the
e�ective sound speed is proportional to 1/

√
α∞, meaning

that the e�ective distance of travel for the wave between
two points is increased by

√
α∞ due to the tortuous path

[6].

Foam is a dispersion of gas in a liquid or solid matrix.
Its structure consists of membranes (also called �lms for
liquid foams), ligaments or Plateau's borders (junction
of three membranes) and vertices or nodes (junction of
four ligaments). Whereas closed membranes are neces-
sary to ensure the mechanical stability of liquid foam [7],
they can be open or totally absent in solid foam allow-
ing for the foam cells (pores) to be connected through
windows. The closed membranes have drastic e�ects on
transport phenomena, such as �uid �ow or electric cur-
rent: open windows participate in the transport through
the material, whereas closed windows stop it. Therefore
the fraction of closed windows is crucial for several ap-
plications (�ltering or sound absorption). The e�ects of
membrane on acoustical properties are now the subject
of active research [3, 8�11]. It has been shown that closed
membranes can increase the e�ective density of foam [8]
and therefore, in agreement with the work of Jonhson et
al. [1], the foam tortuosity α∞ [10]. Moreover, closed
membranes imply some percolation e�ects at the meso-
scale which can drastically reduce the foam permeability
K as shown in [9].

Addressing the percolation issue of the electric con-
ductivity of porous media requires numerical simula-
tions with large samples involving a few thousand pores
[12]. As the size of samples increases, the computational
costs for the major numerical methods (�nite element,
�nite volume and boundary element methods) become
prohibitive, so that alternative approaches are prefer-
able. Such methods involve determining the �ow behav-
ior at the local scale (i.e. a throat between two linked
pores) by numerical simulations or analytical solutions
(e.g. Hagen-Poiseuille equation), then pore-network sim-
ulations at the mesoscopic scale are performed [13, 14].
This intermediate scale between micro- and macro- scales
is necessary to capture collective e�ects such as percola-
tion behavior. Such a method was used by Johnson et al.

to study the electrical conductivity of porous media. In
their simple model, the pores are connected by tubes for
which the electrical resistance is perfectly known. The
electrical conductivity of the porous media is determined
by calculating the equivalent resistance of the tube net-
work. Moreover, it was recently shown that the pore-
network method can successfully predict the e�ects of

closed membranes on foam permeability, and can be used
to validate a model of e�ective permeability [9]. As the
problem of foam electrical conductivity and the one of
foam permeability share some similarities [15], it is ap-
pealing to check if the method used to estimate the ef-
fective permeability of foam could be transposed to com-
pute the e�ective electric conductivity and the tortuosity
of foam with membrane.
In this paper, we use a multi-scale approach to study

the electrical conductivity of solid foam with various win-
dow con�gurations. Firstly, we deal with the case of two
pores separated by a thin membrane having a circular
hole. We calculate both the electrical conductance and
the �uid �ow conductance by using FEM. Then, we con-
sider a more realistic pore geometry by using a Kelvin
partition of space. We conduct FEM simulations on pe-
riodic unit cells (PUC) containing two interconnected
pores with various open membrane fractions. The two
previous steps are used to build a pore-network model
able to reproduce the FEM results. Then, mesoscopic
e�ects induced by the structure of the pore network are
studied by pore-network simulations on large (16×16×32
pores) networks of electrical resistances.

II. FLUID PERMEABILITY AND ELECTRICAL

CONDUCTION IN POROUS MEDIA

In this section, we recall the de�nition of the macro-
scopic parameters involved in this paper: permeability
for the issue of Newtonian �uid �ow through the pore
space, and electrical conductivity for the issue of elec-
trical current through a conducting �uid �lling the pore
space.
Permeability K can be determined by measuring the

rate of �uid �ow Q through a surface of porous media
when the latter is subjected to a pressure di�erence ∆Psp
between its opposite faces[15, 16]:

K = [µQHsp] / [Asp∆Psp] (1)

where µ is the dynamic viscosity of the �uid, Hsp the
thickness of the sample and Asp its cross-section area.
E�ective electrical conductivity σe is determined by

measuring the total current I passing through a surface of
porous media when this one is subjected to an electrical
potential di�erence ∆Vsp applied across the system:

σe = [IHsp] / [Asp∆Vsp] (2)

As shown in [4], the high frequency tortuosity α∞ is
related to the electrical conductivity as follows:

φ

α∞
=
σe
σf

=
1

F
(3)
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Figure 1. Two pores connected by a single perforated mem-
brane. Depending on the physical problem under study, the
boundary conditions are di�erent. For the �uid �ow case,
a pressure drop is applied between the top and the bottom
faces, a �no slip� condition is applied over the membrane and
a �slip� condition is applied on the lateral faces. For the elec-
trical conductivity case, an electrical potential di�erence is
applied between the top and bottom faces, and the electrical
�eld is parallel to all the others faces (membrane and lateral
faces).

where φ is the porosity, σf the electrical conductivity
of the �uid �lling the pore space, F the formation factor
(like α∞, a scale invariant property).
The macroscopic behavior of porous media regarding

the transport of viscous �uid and electrical current, re-
sults from the cumulative e�ects of speci�c local mech-
anisms. In the case of foam permeability [9], the domi-
nating local mechanism of viscous �uid �ow corresponds
to the �ow passing through a single membrane aper-
ture. Hereafter, we reexamine local mechanisms govern-
ing electrical conduction properties in order to elaborate
on the simplest description that provides a reliable es-
timate of the tortuosity α∞ in micro-macro models of
partially closed foam.

III. TWO PORES CONNECTED BY A SINGLE

PERFORATED MEMBRANE

In this section, we consider the simplest model of foam:
two pores connected by a thin membrane containing a
circular hole of radius ro (Fig. 1). Periodic conditions
are applied on the lateral faces of the pore space. By
using FEM simulation, we determine the e�ective �uid
�ow conductance Gfl (de�ned as the ratio of the �uid
�ow to the pressure di�erence applied between the op-
posite faces of the pore space volume) and the e�ective
electrical conductance Ge (de�ned as the ratio of the to-
tal current to the electrical potential di�erence applied
between the opposite faces of the pore space volume).
A commercial code, Comsol Multiphysics v5.2, was used
("creeping �ow" and "electrostatic" modules). Details of
the boundary value problems solved for each fundamen-
tal case are given in appendix A.
Figure 2 shows that the �uid �ow conductance is

Figure 2. Fluid �ow conductance Gfl of two inter-connected
pores as a function of the membrane aperture size for various
aspect ratio H/Db. Dots are the FEM results. Full line is
plotted by using Sampson's equation.

strongly dependent on the membrane aperture and quite
insensitive to the aspect ratio H/Db of the pore space.
This result shows that the viscous losses are essentially
dominated by a mechanism acting in the vicinity of the
membrane aperture. Indeed, when the membrane disap-
pears (2ro/Db −→ 1), the viscous loss disappears and the
�uid �ow conductance diverges (Fig. 2b). Moreover, as
shown in [9], the �uid �ow conductance can be estimated
by a Sampson law [17]:

Gfl =
r3
o

3µ
(4)

Figures 3 and 4 show that the electrical conductance
increases when the membrane aperture size increases.
For low membrane aperture sizes, the electrical conduc-
tance exhibits a linear dependence with the aperture size
(inset graph of Fig. 3b). Note that, when the membrane
thickness is taken into account, this linear dependence is
no longer observed at very low membrane aperture sizes.
If the electrical conductivity and the permeability fol-
low the same trend as previously described, they have a
di�erent behavior when the membrane aperture reaches
the lateral side of the pore space. Indeed, unlike perme-
ability, the electrical conductance tends to a �nite value
equal to D2

bσf/H where σf is the electrical conductivity
of the �uid. This result is fundamental because it reveals
that the whole pore space, and not only a part located
in the vicinity of the membrane aperture, contributes to
the electrical conductivity.
In the last century, the e�ect of constrictions on elec-

tric conductance (Fig. 5) was studied by several authors
coming from di�erent scienti�c communities. Hall [18]
showed that the electrical resistance Re (the inverse of
the electrical conductance Ge) due to a circular aperture
in an isolating membrane immersed in a conducting �uid
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Figure 3. Cylindrical pores: electrical conductance Ge =
1/Re of two inter-connected pores normalized by the elec-
trical conductance without membrane (D2

bσf/H) as a func-
tion of the membrane aperture size for various aspect ratios
H/Db. (a) Comparison between FEM results (dots), predic-
tions of Eq. 6 from Sahu & Zwolak (dashed lines) and Eq.
7 (full lines). (b) Comparison between FEM results (dots),
predictions of Eq. 5 from Rosenfeld and Timsit (dashed lines)
and Eq. 7 (full lines). The same data are used in graph (b)
and in its inset graph.

having an in�nite size (electrodes are located at in�n-
ity) is given by 1/Re = 2σfro. Earlier, in the context
of electrical conduction through two conducting bodies
in contact, several authors [20�22] showed that electrical
resistance for low area of contact between bodies is given
by 1/Re = 2σfrc where rc is the contact radius. Later,
Rosenfeld and Timsit [19] found the exact solution for the
electrical resistance of a long constricted cylinder (cylin-
der length � constriction radius = membrane aperture
radius): Re = (H/σfAc) + Rs where Ac is the cross-
sectional surface of the tube (Ac = πD2

b/4 where Db is
the cylinder diameter). The �rst term H/σfAc corre-
sponds to the resistance of the cylinder without constric-
tion, and the second term Rs is the spreading resistance
due to the constriction e�ect. As the exact solution found
by Rosenfeld and Timsit implies an in�nite sum of terms,
the authors gave a compact expression for the spreading
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Figure 4. Rectangular pores: normalized electrical conduc-
tance Ge = 1/Re of two inter-connected pores as a function
of the membrane aperture size for various aspect ratios H/Db.
Dots are the FEM results. Dashed and full lines are plotted
by using, respectively, Eq. 6 and Eq. 7.

resistance Rs. The total resistance is then given by:

Re =
H

Acσf
+Rs =

H

Acσf
+

1

2σfro
P

(
r0

Db

)
(5)

where P (x) =
[
1 + C1x+ C2x

2 + C3x
3 + C4x

4
]
with

C1 = −2.83162, C2 = 0.25288, C3 = 1.22088, C4 =
3.19968.
Note that the polynomial P is built with the con-

straints, P (1/2) = 0 and P (0) = 1 with the aim of recov-
ering the asymptotic solutions (ro → Db/2 corresponds
to a �nite uniform cylinder and ro → 0 corresponds to
an in�nite constricted cylinder).
Recently, Sahu and Zwolak [23] have studied the re-

sistance of two interconnected pores having cylindrical
or rectangular shape and �nite size with various aspect
ratios H/Db. The authors break down the pore volume
into several parts, each contributing to the electrical con-
ductance of the pore space (Fig. 5). The �rst subpart,
only observed for long cylinders (H > Db), is located far
from the membrane aperture where the current stream-
lines are almost parallel to the external electrical �eld
as in a uniform conductor. The third subpart is located
in the vicinity of the membrane aperture where the cur-
rent streamlines converge to the aperture. The second
subpart is a transition region between the �rst and the
third, where the current streamlines change their behav-
ior. The fourth subpart corresponds to the small chan-
nel inside the membrane thickness itself. The �rst and
fourth subparts can be approximated by uniform con-
ductors having a known resistance (RI = (H − L2) /σfA
with L2 ≈ Db/2 and RIV = hm/πσfr

2
o respectively).

For the third subpart, Sahu and Zwolak use an approx-
imation based on the Taylor expansion of the analyti-
cal solution for the access resistance with a spheroidal
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electrode: RIII = 1
2σfro

(
1− 2r0

πL1
+O

([
r0
L1

]3))
where

L1 ≈ Db/2 is the size of the spheroid region (Fig.5). For
the transition region, the authors consider a contribution
proportional to RII = 1/σfDb. Therefore, by consider-
ing a series connection of the sub-part resistances and
after some calculations, the total resistance Re is given
by:

Re =
H

ΨσfD2
b

+

[
1

σf

(
1

2ro
− fl

ΨDb
+
hm
πr2
o

)]
(6)

where Ψ and fl are coe�cients depending on the geomet-
ric details of the cell: Ψ = 1 and fl ≈ 1.2 for rectangular
pores, or Ψ = π/4 and fl = 1.0 for cylindrical pores [24].
Note that the authors determined the coe�cients fl by
adjusting the equation's predictions to their numerical
simulation results.
The term in brackets in Eq. 6 corresponds to the

spreading resistance Rs as de�ned by Rosenfeld and Tim-
sit. Similarly to the case of long constricted cylinder,
the spreading resistance of a �nite constricted cylinder
should be equal to zero when the membrane aperture
is equal to the cross-section radius or, more precisely,
when the surface of the membrane aperture is equal to
the cross-section surface (2ro = Db for cylindrical pores,
and

√
πr0 = Db for rectangular pores). However, the

equation given by Sahu and Zwolak do not satisfy this
constraint since fl 6= Ψ for cylindrical pores and Db = H.
Therefore by comparison with FEM results, we show in
Fig. 3a that Eq. 6 cannot predict the electric resistance
for high membrane aperture size (2r0 → Db).
Because we aim at generating an expression enabling

us to recover bulk and membrane e�ects for the whole
range of membrane aperture sizes (and not only for tiny
holes corresponding to graphene nanopores) with great
accuracy, a modi�cation of Eq. 6 is further proposed in
order to improve the transition region mixing the access
and bulk like behavior:

Re =
H

ΨσfD2
b

+
1

σf

[
1

2ro

(
1 + C1

ro
Db

+ C3

(
ro
Db

)3
)

+
hm
πr2
o

]
(7)

with C1 = −2.89 and C3 = −8
(
1 + 1

2C1

)
for cylindri-

cal pores; C1 = −2.52 and C3 = −π1.5
(

1 + 1√
π
C1

)
for

rectangular pores.
Note that C1 is determined by �tting the equation's

predictions to our numerical simulation results ; and C3

is chosen with the aim of recovering the resistance with-
out membrane Reσf = H

ΨD2
b
(by neglecting the mem-

brane thickness term). The relative di�erence between
FEM simulations results and resistances calculated by
using Eq. 7 does not exceed 1% as long as the aspect
ratios H/Db are superior to 0.75 and the aperture size ro
is inferior to 0.9Db. Figure 3a shows that Eq.7 predicts
FEM results for a wide range of membrane aperture size

with a better accuracy than Eq. 6. Moreover, Figure 3b
compares the prediction of Eq. 7 to the solution given
by Rosenfeld and Timsit (Eq. 5 ). Both equations have
identical values of resistance except when the membrane
aperture size is close to the radius of the cylinder. In
this case, predictions of Rosenfeld and Timsit equation
are slightly better even for short cylinders. However, for
very short cylinders (H/Db ≤ 0.25), all equations fail in
their predictions. Finally, in Fig. 4, we compare both the
predictions given by Sahu and Zwolak (Eq. 6) and pro-
vided by Eq. 7 to FEM results on rectangular pores. As
observed for the case of cylindrical pores, Eq. 7 predicts
FEM results for a wide range of membrane aperture size
with a better accuracy than the Sahu and Zwolak expres-
sion.
Before moving to the next section, we brie�y discuss

the golden aspect ratio introduced by Sahu and Zwolak
[23, 24]. For this special aspect ratio (H/Db)

∗, �nite
size e�ects should be eliminated in numerical simula-
tions (i.e. for any L or Db such as H/Db = (H/Db)

∗
,

Re = lim{L/Db}→∞ (Re)). According to Eqs. 5 or
7, it is possible to �nd a particular aspect ratio for
which the �rst term of the spreading resistance expan-
sion, 1

2ro
C1

ro
Db

, and the bulk resistance H
ΨD2

b
cancel each

other out. The golden aspect ratio is then given by
(H/Db)

∗
= −C1Ψ/2 , and is equal to 1.26 for rectan-

gular pores, and 1.13 for cylindrical pores (or 1.11 if the
Rosenfeld and Timsit equation is used for the spreading
resistance). As these values of golden aspect ratios are
in the range of aspect ratios where Eqs. 5 and 7 give
accurate predictions, our calculation is justi�ed. Note
that Sahu and Zwolak [23] �nd 1.2 for rectangular pores,
and 1.07 for cylindrical pores from FEM simulations and
molecular dynamics simulations. Finally, �nite e�ects
are cancelled as long as the higher terms in the expan-
sion of the spreading resistance are negligible compared
to one. From Rosenfeld and Timsit equation's (Eq. 5),
this condition is veri�ed with a relative error inferior to
1% if 2ro < 0.28Db.

IV. ORDERED KELVIN FOAM

In this section we describe the properties of high poros-
ity ordered foam exempli�ed by a Kelvin structure. As
shown in Fig. 6, a periodic unit cell (PUC) of charac-
teristic size Db is used to represent the pore structure in
foam samples [10, 25]. The number of pores, Np, con-
tained within the unit cell is equal to 2. The cell is based
on the Kelvin partition and is a 14-sided polyhedron (8
hexagonal and 6 square faces) corresponding to windows
shared with the Nv = 14 neighbors. The cell skeleton is
made of idealized ligaments having length L = Db/(2

√
2)

and an equilateral triangular cross section of edge length
r = 0.58Db(1 − φ)0.521, where φ is the gas volume frac-
tion. The thickness of the membranes is taken equal to
hm/L = 0.001, such that the e�ect of the channel in-
side the membrane thickness can be neglected (because
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Figure 5. Shape of current streamlines in a pore associated
to four regions: I. bulk like, II. transition region, III. access
region and IV. membrane thickness channel. Note that the
�rst region is observed only if the pore is long enough (H &
Db).

Figure 6. Periodic unit cell based on the Kelvin structure
(φ = 0.995). Depending on the physical problem considered,
the boundary conditions are di�erent.

hm � ro). As we are interested in the e�ect of partial
closure of the cell windows by membranes, we partially
close the windows by adding holed membranes having a
circular aperture of radius ro. Note that, in the refer-
ence con�guration K0 (Figs. 6 and 7a), the 14 windows
are fully open (i.e. contain no membrane). However, we
study how closed membranes modify the electrical con-
ductivity by testing PUC con�gurations containing dif-
ferent repartitions of closed membranes as shown on Fig.
7.

In perfect agreement with the previous results of ref.
[9], Figure 8 shows that the permeabilities of the simu-
lated PUCs follow the power-law given in Sec. III (Eq.4).
Moreover, because most of the pressure drop is located in
the vicinity of the membrane aperture, a simpli�ed cal-
culation of the permeability based on the pore-network
hypothesis is possible. In this framework, a value of �uid
pressure is associated with each pore and the �ow be-
tween two connected pores is based on the Sampson �uid
�ow conductance (Fig. 9a&b). The foam permeabil-

y

z

x

Figure 7. Top view from the median plane of the tested con-
�gurations showing the positions of the closed membranes.
Note that the horizontal median plane is a plane symmetry.

ity calculation based on a pore-network model needs to
compute the amount of �ow passing through the median
plane of the PUC, as shown in Fig. 10. Due to the
symmetries of the PUC con�gurations, the pressure dif-
ference associated to the �ow passing through the square
windows is twice the one associated to the hexagonal win-
dows. Therefore it is straightforward to show that the
permeability of the studied PUC is given by:

K =
µ

Db

[
nsqGfl,sq +

1

2
nhexGfl,hex

]
(8)

where Gfl,sq and Gfl,hex are the �uid �ow conductance
associated with each window; nsq and nhex are the num-
bers of open square and hexagonal windows. Note that

from the FEM simulations, Gfl,sq = Gfl,hex =
r3o
3µ .

It can be checked that this formula has the ability
to predict the whole FEM results as shown by Fig. 8,
whichever way the membranes are distributed through-
out the PUC.
We further focus on the calculation of foam electrical

conduction. As has been shown for the case of two inter-
connected pores, we also demonstrate here that the elec-
trical conductivity increases with the membrane aperture
size and the degree of interconnections between pores (see
Fig. 11). For small membrane apertures, the electrical
conductivity exhibits a linear dependence on the aperture
size. As noticed for the case of two interconnected pores,
this behavior also reveals that the membrane aperture
governs most of the electrical resistivity for small aper-
tures. In that case, the electrical conduction is dominated
by a mechanism acting at the scale of the membrane aper-
ture just as observed for the permeability. Based on this
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Figure 8. Permeability K of PUC having di�erent con�gura-
tions of closed membranes for various membrane apertures.
Dots are the FEM results. Full and dashed lines are plotted
by using Eq.8.

cross-property relation, it seems therefore possible to em-
ploy the structure of Eq. 8 in order to calculate the elec-
trical conductivity σe. As a result, K is replaced by σe,

µ by 1 and Gfl by Ge = σf

[
1

2ro
+ hm

πr2o

]−1

. Fig. 11a

shows that this approach allows us to estimate the elec-
trical conductivity for small aperture, 2ro/Db < 0.1. By
contrast, for higher membrane aperture sizes, the contri-
bution of the pore volume is no longer negligible.

We now focus on the elaboration of a pore-network
model able to describe most of the electrical conduc-
tion e�ects in foam. As the whole pore volume must be
considered in the electrical conduction issue, the general
scheme used for permeability, which only accounts for
inter-pore conductances (Fig. 9b), does not apply in this
case. Additional intra-pore conductances must be intro-
duced in the network as shown in Fig. 9c. Compared to
the pore-network model for permeability which uses only
one node for each cell, we introduce 14 nodes per cell in
the pore-network model for electrical conduction. The
nodes are associated with the di�erent windows of the
cell, and are linked to the neighbor windows' nodes shar-
ing the same cell by the intra-pore conductance, and to
a node of a neighbor cell by the inter-pore conductance
if the membrane separating the cells is opened. More-
over, the neighborhoods of windows are not equivalent:
the hexagonal windows within a cell have two kinds of
neighbor windows, squares and hexagons, whereas the
square windows have only hexagons as possible neigh-
bors. Consequently, we introduce two intra-pore conduc-
tances: Gi,sh which links square to hexagon, and Gi,hh
which links hexagon to hexagon. For the inter-pore con-
ductance Gep, we consider the term due to the membrane
aperture in Eq. 7 with appropriate values of C1 and C3:

1
Gep

= 1
2σfro

(
1 + C1

ro
di

+ C3

(
ro
di

)3
)

where di = 1/
√

2π

a b

c

d

}

Figure 9. (a) Flow pattern and (b) its equivalent pore-network
scheme. (c) Pore-network scheme to solve the electrical con-
duction problem by using two kinds of conductances: inter-
pore conductance and intra-pore conductances. (d) Intra-pore
conductances for square and hexagonal windows of a Kelvin
cell.

Figure 10. Fluid �ow passing through the K0 con�guration
of the PUC (Fig. 7a). Color lines correspond to the active
bond in the pore-network model for foam permeability (Fig.
9b).

for square windows and
(
31.5/4π

)0.5
for hexagonal win-

dows. We do not take into account the term involving
the thickness of membrane as its e�ect is negligible in the
range of membrane aperture sizes and thicknesses that
we investigate (ro � hm). The coe�cients, C1 and C3,
and the intra-pore conductances are chosen to best �t
the results of FEM simulations. As shown in Fig. 11a,
a good agreement between both numerical methods is
achieved with: Gi,sh/Dbσf = 0.16, Gi,hh/Dbσf = 0.30,



8

C1 = −2.53 and C3 = 1.32. Finally, from a practical
point of view, it is possible to estimate the electrical con-
ductivity for the reference con�guration K0 with a good
accuracy (error < 2% with φ = 0.995) by using the fol-
lowing equation:

σe,K0
= 4σf

[
Db

2ro
+
hmDb

πr2
o

]−1
[

1 + 2.7
ro
Db

+ 5.1

(
ro
Db

)2
]−1

(9)
Fig. 11b shows the tortuosities of each PUC con-

�guration for various membrane aperture sizes. When
the membrane aperture size is high, the tortuosity is
closed to 1. However, when the membrane aperture
size or the number of open windows decreases, the tor-
tuosity increases. Tortuosity can be signi�cantly larger
than one in foam containing membranes with small aper-
ture. Therefore this model predicts a signi�cant increase
of the dynamic e�ective density of the e�ective �uid in
the high frequency inertial regime. To reach the inertial
regime, the frequency has to be higher than the visco-
inertial characteristic frequency fv. Fig. 12 shows the
visco-inertial characteristic frequency fv as a function
of the membrane aperture size for each con�guration.
For a fully open foam K0, the membrane aperture size
for which the tortuosity is higher than 10 is equal to
ro/Db ≈ 0.0125. For foam having millimetric pores and
�lled with air, the corresponding visco-inertial character-
istic frequency fv is approximately equal to 100kHz which
is higher than the audible frequency range. However, for
foam containing a fraction of closed membrane as in the
con�guration K3 and with Db ≈ 2mm, the visco-inertial
characteristic frequency can reach the audible frequency
range (fv ≈5000Hz).
As the porosity is a parameter which is involved in

the relationship between the tortuosity and the electri-
cal conductivity, we evaluated the e�ect of porosity on
each parameter by performing FEM simulations on K0
con�gurations for various values of φ. As shown on Fig.
13, the dependence of the electrical conductivity on φ is
low when compared to the dependence of the tortuosity
on φ. This is due to the fact that the e�ective electrical
conductivity σe is only depending on r0 when r0 → 0
(bulk e�ects are vanishing, Eq. 6) whereas the tortuosity
involves a factor φ to account for the scaling from the
�uid phase to the overall volume of the porous aggregate
(Eq. 3).

V. ELECTRICAL CONDUCTION IN FOAM

WITH RANDOMLY DISTRIBUTED CLOSED

MEMBRANES

E�ects of pore network features on electrical conduc-
tivity are studied on lattices having a structure similar to
Kelvin's structure: each pore is surrounded by Nv = 14
neighbor pores. The samples have a size L2Hsp = 163

(Db units) and contain 8192 pores. As we are interested
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Figure 11. (a) Electrical conductivity σe and (b) tortuosity
α∞of the PUCs as a function of the membrane aperture size
for various con�gurations of closed membranes (K0, K1, K2,
K3) with φ = 0.995. The same data are used to the inset
graph of (a). Dots correspond to the FEM results. Dashed
lines are plotted by using Eq. 8 taking into account only inter-
pore electrical conductances (Fig. 9b). Full lines are plotted
by using pore-network calculations taking into account both
intra- and inter-pore electrical conductances (Fig. 9c). Due
to the symmetries of the PUC con�gurations, analytical ex-
pressions for e�ective conductivity can be found for each con-
�guration (see appendix B).

in the e�ect of closed membranes on electrical conduc-
tion, we close a part of the windows by randomly can-
celling some electrical bonds between two nodes connect-
ing two pores. The values of intra-pore conductances,
Gi,sh and Gi,hh, found previously on Kelvin foam hav-
ing φ = 0.995 are used in this pore-network calculation.
Boundary e�ects are avoided by resorting to periodic con-
ditions imposed in the directions perpendicular to the
macroscopic gradient. Details of the calculations of elec-
trical conductivity are given in appendix B.

Fig. 14 shows the electrical conductivity calculated
with simulations performed on large samples having ran-
dom positions of closed windows and various open win-
dow fractions xow having identical membrane aperture
sizes. Below a critical concentration xow < xp ≈ 0.1 ≈
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Figure 12. Visco-inertial characteristic frequency fv of Ki

con�guration as a function of the aperture size calculated from
FEM results: on the left abscissa, the frequency is normalized,
and on the right abscissa, the frequency corresponds to the
case of foam �lled by air with Db = 1mm and φ ≈ 1.
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Figure 13. Electrical conductivity σe and tortuosity α∞of K0

con�guration as a function of the porosity.

1.5/Nv, the network of interconnected pores does not
connect the top of the sample to the bottom. There-
fore the open porosity (porosity of the percolating pore
space) is null and no electrical conduction through the
foam is possible. In the range [0.1, 0.2] of open window
fraction, on the one hand the fraction of open poros-
ity increases from 0 to 0.93, and on the other hand, the
electrical conductance gently rises. For xow > 0.2, the
electrical conduction gradually increases as the fraction
of open windows rises. For low aperture size, the electri-
cal conduction exhibits a quasi-a�ne dependence on the
open window fraction xow similar to the one observed
in [9] for permeability. As we previously saw, the �uid
�ow conductance corresponds to an inter-pore conduc-
tance, Therefore as the inter-pore resistance dominates
the electrical conduction at low membrane apertures, a
similar behavior between electric conductivity and per-

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

10
0

10
1

10
2

0 0.2 0.4 0.6 0.8 1

0.025

0.05

0.1

0.2

0.3

0.4

{

Figure 14. Pore-network simulations on random Kelvin foam
with various fractions of open windows and identical mem-
brane aperture size (φ = 0.995): (a) electrical conductance
σe and fraction of open porosity φo/φ as a function of open
window fraction, xow, and ratio σe(1)/σe(xow) as a function of
the open window fraction xow and (b) ratio σe(1)φo/σe(xow)φ
as a function of the open window fraction xow. Note that (b)
leads to the ratio α∞ (xow) /α∞ (1) in considering for the pore
space volume to use in the de�nition of the tortuosity, the
open pore space. Moreover, σe(1) = σe,K0 can be calculated
by using Eq.9.

meability was expected for low membrane apertures. In
that case, electrical conductivity and tortuosity can be
estimated by using the e�ective model for foam perme-
ability of Langlois et al. [9] (see appendix C).

VI. CONCLUSION

In order to study the e�ects of both the fraction of
open windows and their aperture sizes on both electric
conductivity and high frequency tortuosity of foam, we
performed simulations at di�erent scales: 1) FEM sim-
ulations computing the �ow of electric current at the
pore scale and on ordered Kelvin foam; and at the higher
scale, 2) pore-network simulations capturing the physics
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at the lower scale without describing the entire veloc-
ity �eld. E�ects of the membrane aperture size and the
open window fraction on the permeability are recalled to
highlight the di�erence between permeability and elec-
trical conductivity. The FEM simulations at pore scale
were useful to identify the mechanisms of electric con-
duction through a single pore. The analysis reported in
this paper shows that, for low membrane aperture size,
the foam electrical conductivity can be described by a
mechanism acting at the scale of the membrane aperture.
However, when the membrane aperture size is compara-
ble to the pore size, another mechanism acting on the
whole pore volume must be considered. By considering
these results, we build a pore-network model at the pore
scale by using two kinds of conductance: inter-pore con-
ductance and intra-pore conductance. By using appro-
priate conductances, we show that pore-network model
can reproduce the FEM results performed on ordered
Kelvin foam having di�erent con�gurations of closed
membranes. Pore-network simulations on large samples
having random position of closed windows show that per-
colation occurs when the fraction of open windows is close
to xp = 1.5/Nv (≈0.11 for Kelvin foam having Nv = 14)
and that the fraction of closed windows can signi�cantly
increase high frequency tortuosity.

An experimental con�rmation of this numerical study
would require the production of well-controlled mono-
disperse foam having a known (controlled or measured)
fraction of closed membranes. Emulsion and foam tem-
plating techniques can be used to produce tailor-made
porous polymers, see for instance Ref.[26] and references
therein. In particular, experimental results were reported
[27] to generate porous polyurethane by a sphere tem-
plating method as an attempt to control the interconnec-
tion size for a given bead diameter (bead sintering). We
are not aware of any experimental setup able to produce
well-de�ned (geometrically) polymeric structures having
closed and open pores of di�erent ratios. Milli�uidic tech-
niques were, however, employed to generate monodis-
perse foams with various membrane contents [10]; (ge-
ometrically) characterized according to the proportions
of closed and open windows and aperture size. While
tortuosity estimates were reported using acoustical mea-
surements [28] by Trinh et al. [10], the acoustical method
failed to provide tortuosity results when the membrane
content was too high. This suggests that the acousti-
cal method is not appropriate for the characterization of
foam having a large proportion of fully closed membranes
and/or very low membrane aperture sizes due to the low
amplitude of signal transmitted through the sample at
the third microphone and the high values of the visco-
inertial frequency (i.e. the inertial regime is out of the
audible frequency range). Moreover, in all treatments of
acoustical characterization it is assumed that the �uid
motion is completely decoupled from the solid motion.
This is certainly not true if the tortuosity is much larger
than one. For example, in the case of porous media
with soft and/or lightweight frame, sound propagation

through �uid can induce frame resonance at speci�c fre-
quencies as observed in [8]. It should be possible in the
future to see a comparison between the predictions of the
current model and the results from direct experiments
using alternative techniques, such as (i) electrical con-
ductivity measurements [4, 29], (ii) super�uid acoustics
(He II) taking advantage of the fact that the acoustics of
He II can become identical with the acoustics of an ideal
�uid [29, 30], or (iii) ultrasonic measurements of velocity
dispersion in porous media saturated by various �uids
[31].
We conclude this section with a summary of this main

results:
(1) A uni�ed set of viscous �uid �ow and electrical con-

duction calculations have been carried out on a family of
idealized three-dimensional model foams with emphasis
on membrane e�ects.
(2) We �rst studied ordered cellular foams, for which

excellent analytical estimates of the permeability K and
tortuosity α∞were provided. More particularly, the
structure of the equations predicting K and α∞ is de-
termined based on phenomenological considerations and
the relevant coe�cients �tted against numerical results.
Moreover, the radius of a perforated membrane r0 is the
most important geometrical parameter governing the vis-
cous �uid �ow and electrical conduction properties. This
is especially true when r0/Db → 0.
(3) Estimates of α∞ were derived based on a bulk and

a membrane e�ect contribution, the later mechanisms
dominating the overall e�ective properties of the �ow of
the electric current when r0/Db → 0.

(4) The relationK/D2
b ∝ (r0/Db)

3
based on the Samp-

son law appears to be valid over the entire range of mem-
brane aperture with di�erent con�gurations of closed
membranes in Kelvin cells.
(5) These analytical results then enabled the use of

pore-network simulations to study the behavior of the
tortuosity, including percolation e�ects in foams contain-
ing large number of cells (∼ 163) having randomly dis-
tributed closed membranes. It is quite interesting to see
that this leads to a drastic increase of the tortuosity α∞
with the closed window fraction, 1− xow.
(6) Finally, we examine the relationship between per-

meability K and tortuosity α∞ when both the aper-
ture size r0/Db and the membrane thickness hm are very

small: K/D2
b ∝ (r0/Db)

3
and α∞ ∝ φ/ (r0/Db).

Appendix A: calculation of transport parameters

In this section, we brie�y introduce the boundary value
problem used for computing the permeability and the
electric conductivity.
Viscous �ow: The low Reynolds number �ow of an

incompressible Newtonian �uid is governed by the usual
Stokes equations in the �uid phase [32]:

η∆v −∇p = −∇pm with ∇.v = 0 in Ωf (A1a)
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v = 0 on ∂Ω (A1b)

v and p are Ω− periodic (A1c)

where ∇pm is the macroscopic pressure gradient acting
as a source term. Symbols v and p are the velocity and
pressure of the �uid, respectively.
It can be shown that the local �eld of the static viscous
permeability is obtained from the local velocity �eld as
v = −k0/η∇pm.
The static viscous permeability k0 is calculated by the

standard de�nitions below,

k0 = φ 〈k0〉 , (A2)

Inertial �ow: At the high frequency range with ω large
enough, the viscous boundary layer becomes negligible
and the �uid tends to behave as perfect, since it has no
viscosity. Consequently, the perfect incompressible �uid
formally behaves according to the electrical conduction
problem [33]:

∇.E = 0 with E = −∇ϕ+ e, in Ωf (A3a)

E.n = 0, in ∂Ωf (A3b)

ϕ is Ω− periodic (A3c)

where e is a given macroscopic electric �eld, E the solu-
tion of the boundary problem having −∇ϕ as a �uctu-
ating part, and n is unit normal to the boundary of the
pore region.
The high frequency tortuosity α∞ is calculated,

α∞ =
〈E2〉
〈E〉2

(A4)

Appendix B: Pore-network simulations

The general principle of calculation of the electric con-
ductivity of a tube network as a model of porous media
can be found in Johnson et al 1987. Details about the
use of pore-network simulation for the calculation of foam
permeability, can be found in [9]. Hereafter, we give some
details about the pore-network simulations for the case
of foam electrical conduction.
In the pore-network model, the details of electrical po-

tential �uctuations within a single pore are not described
in detail. To take into account the current displacement
within a pore, the inner volume of a pore is decomposed
into 14 parts which are each associated with a node in the
electrical pore-network. The nodes are linked by intra-
pore conductance for two neighbor nodes located within
the same pore or by inter-pore conductance for two pores

located in two di�erent pores linked by an open window.
The �rst step is to build the conductance network.
We consider, for each node, a unique value of potential

without calculating its �uctuations inside the pore. At
the local scale, the current Jj→i from node j to node i is
governed by the di�erential electrical potential di�erence
between the nodes ∆Vij = Vj − Vi:
Jj→i = Gij∆Vij

where the coe�cient Gij is the conductance between the
nodes i and j.
At steady state, the sum of current coming

from neighbor nodes is equal to zero, leading to:∑Nv

j=1Gij (Vj − Vi) = 0. To generate a current displace-
ment through the sample, a potential di�erence is im-
posed between the top and bottom faces of the sample
(Vtop = ∆Vsp, Vbot = 0). By considering these boundary
conditions, the previous equation can take a matrix form:

GVi = Si (B1)

where Vi is a vector containing the electrical potential
of nodes (except that the nodes located on top and bot-
tom faces are excluded); G is the matrix de�ned from
local conductances (−

∑
j Gij along diagonal and Gij

elsewhere) and Si is a vector containing zeros except for
nodes located on the top face of the sample as neighbors
where Si = −

∑
jtop

Gijtop∆Vsp.

When the pore network is linked from top to bottom
of the sample, and by considering only the nodes located
in the interconnected pores, Ḡ can be inverted and the
electrical potential in each node can be calculated from
Eq.B1. Finally, the macroscopic current I and the e�ec-
tive conductivity σe can be calculated as follows:

I =
∑
ibot

∑
jv

Jjv→ibot =
∑

ibot,jvi

Gibotjvi∆Vibot,jvi (B2)

σe = IHsp/L
2∆Vsp (B3)

For simple networks, it is possible to derive analytical
expressions for the e�ective electrical conductivity. Due
to the symmetries of the PUC con�gurations (Fig. 7),
their equivalent conductance pore-networks can be sim-
pli�ed as shown in Fig. 15. From these equivalent con-
ductance pore-networks, a calculation of the equivalent
conductance can be performed leading to the e�ective
electrical conductivity given in Tab. I.

Appendix C: E�ective medium model for electric

conductance

Here we present an e�ective medium model for electric
conductivity in the case of small membrane aperture size
(2r0/Db < 0.1). This model is based on the e�ective
medium model of foam permeability detailed in [9].



12

Figure 15. Conductance pore-networks associated to each
PUC con�guration.

Table I. E�ective electrical conductivity σe for each PUC con-
�guration (Fig. 7).

PUC σe

K0

2D−1
b [2G1G2 +Geh (G1 +G2)] [G1 +G2 + 2Geh]

−1

with G1 =
(
G−1

i,sh + 2G−1
es

)−1

and G2 = 2 (Gi,sh +Gi,hh)

K1 4D−1
b

{
2G−1

es +G−1
i,sh + [2Gi,hh + 2Gi,sh]

−1
}−1

K2 D−1
b

{
[2Geh]

−1 + [2 (Gi,sh +Gi,hh)]
−1}−1

K3 D−1
b

{
G−1

eh +
[
3
2
(Gi,sh +Gi,hh)

]−1 −1
}−1

Table II. Coe�cients nw for various lattices and weakly dis-
ordered foam. Note that for SC, BCC or Kelvin lattices, nw

is isotropic.

Structure SC BCC (φ . 0.88) BCC (Kelvin) disordered
Nv 6 8 14 2(n+ 1)
nw 1 2 4 ≈ n

2

The mean local conductance Ḡ is iteratively calculated
from [14, 16]:

1

Ḡ+ nḠ
=
∑
i

xi
Gi + nḠ

(C1)

with xi the fraction of local inter-pore electrical conduc-
tance Gi and n = Nv

2 − 1.
The macroscopic e�ective conductivity σe is then de-

duced from the mean local conductance Ḡ,

σe = nwḠ/Db (C2)

where the coe�cient nw depends on the structure of the
porous medium (Tab. II).
Note that when the fraction of open windows xow is

close to the percolation threshold, it is necessary to mod-
ify these equations to consider the structure of the open-
pore space as shown in [9].
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