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Abstract8

This paper is a contribution to the search for efficient and high-level mathematical tools to specify9

and reason about (abstract) programming languages or calculi. Generalising the reduction monads10

of Ahrens et al., we introduce transition monads, thus covering new applications such as 𝜆𝜇-calculus,11

𝜋-calculus, Positive GSOS specifications, differential 𝜆-calculus, and the big-step, simply-typed, call-12

by-value 𝜆-calculus. Finally, we design a notion of signature for transition monads that generates13

all our examples.14
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1 Introduction18

The search for a mathematical notion of programming language goes back at least to Turi19

and Plotkin [24], who coined the name “Mathematical Operational Semantics”, and ex-20

plained how known classes of well-behaved rules for structural operational semantics, such21

as GSOS [6], can be categorically understood and specified via distributive laws and bial-22

gebras. Their initial framework did not cover variable binding, and several authors have23

proposed variants which do [11, 10, 23], treating examples like the 𝜋-calculus. However,24

none of these approaches covers higher-order languages like the 𝜆-calculus.25

In recent work, following previous work on modules over monads for syntax with bind-26

ing [15, 2], Ahrens et al. [3] introduce reduction monads, and show how they cover several27

standard variants of the 𝜆-calculus. Furthermore, as expected in similar contexts, they28

propose a mechanism for specifying reduction monads by suitable signatures.29

Our starting point is the fact that already the call-by-value 𝜆-calculus does not form30

a reduction monad. Indeed, in this calculus, variables are placeholders for values but not31

for 𝜆-terms; in other words, reduction, although it involves general terms, is stable under32

substitution by values only.33

In the present work, we generalise reduction monads to what we call transition monads.34

The main new ingredients of our generalisation are as follows.35

We now have two kinds of terms, called placetakers and states: variables are placeholders36

for our placetakers, while reductions relate states. Typically, in call-by-value, small-step37

𝜆-calculus, placetakers are values, while states are general terms.38

We also have a set of types for placetakers, and a possibly different set of types for states.39

Typically, in call-by-value, simply-typed 𝜆-calculus, both sets of types coincide and are40

given by simple types, while in 𝜆𝜇-calculus, we have two placetaker types, one for terms41

and one for stacks, and one state type, for processes.42

We in fact have two possibly different kinds of states, source states and target states, so43

that a transition now relates a source state to a target state. Typically, in call-by-value,44

big-step 𝜆-calculus, source states are general terms, while target states are values.45
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XX:2 Modules over monads and operational semantics

The relationship between placetakers and states is governed by two functors 𝑆1 and 𝑆2,46

as follows: given an object 𝑋 (for variables), we have an object 𝑇(𝑋) of placetakers47

(‘with free variables in 𝑋’), and the corresponding objects of source and target states are48

respectively 𝑆1(𝑇(𝑋)) and 𝑆2(𝑇(𝑋)) (see §2.2).49

Reduction monads correspond to the untyped case with 𝑆1 = 𝑆2 = Id𝐒𝐞𝐭.50

In §2.1, after giving a ‘monadic’ definition of transition monads in terms of relative51

monads [4], we provide a ‘modular’ definition (in terms of modules over monads), which52

we prove equivalent in Proposition 7. From the modular point of view, a transition monad53

consists of a placetaker monad 𝑇 , two state functors 𝑆1, 𝑆2, a transition 𝑇-module 𝑅, and54

two 𝑇-module morphisms 𝑠 ∶ 𝑅 → 𝑆1 ∘ 𝑇 and 𝑡 ∶ 𝑅 → 𝑆2 ∘ 𝑇 . Such a triple (𝑅, 𝑠, 𝑡) is thus an55

object of the slice category of 𝑇-modules over (𝑆1 ∘ 𝑇) × (𝑆2 ∘ 𝑇).56

In §2.2, we present a series of examples of transition monads: 𝜆𝜇-calculus, simply-typed57

𝜆-calculus (in its call-by-value, big-step variant), 𝜋-calculus (as an unlabelled reduction58

system), and differential 𝜆-calculus.59

Finally, in §2.3, we organise transition monads into categories. For the category of60

transition monads over a fixed triple (𝑇, 𝑆1, 𝑆2), we take the slice category of 𝑇-modules61

alluded to above, and we wrap together all these ‘little’ slice categories into what we call a62

record category of transition monads.63

We then proceed to the main concern of this work: the specification of transition monads64

via suitable signatures.65

For this, we start in §3 by proposing a new, abstract notion of semantic signature over66

a category 𝐂. A semantic signature 𝑆 = (𝐄,𝑈) over 𝐂 consists of a category 𝐄 of algebras,67

together with a forgetful functor 𝑈 ∶ 𝐄 → 𝐂, such that 𝐄 has an initial object 𝑆⊛: we68

think of such a semantic signature as specifying the object 𝑆∗ ≔ 𝑈(𝑆⊛) underlying the69

initial algebra. For instance, if 𝐂 is cocomplete, each finitary endofunctor on 𝐂 generates a70

semantic signature via its algebras. Abstracting over this generating procedure, we introduce71

registers of signatures in §3. A register 𝑅 for the category 𝐂 consists of a class 𝐒𝐢𝐠𝑅 of72

signatures, together with a map associating to each signature 𝑆 a semantic signature ⟦𝑆⟧𝑅,73

say 𝐔𝑆 ∶ 𝑆 -alg → 𝐂. Just as for semantic signatures, ommitting ⟦−⟧𝑅 for readability, we74

think of a signature 𝑆 as specifying the object 𝑆∗ = 𝐔𝑆(𝑆⊛).75

We may now state our goal properly: construct a register for transition monads, contain-76

ing signatures specifying the desired examples.77

Towards this goal, we start in §4 by exploiting Fiore and Hur’s equational systems [8] to78

design registers for monads and functors. This will allow us to efficiently specify the base79

components (𝑇, 𝑆1, 𝑆2) of the desired example transition monads, separately.80

We continue in §5 by presenting some general constructions on registers, whose combin-81

ation will yield a register for transition monads. First, the product construction allows us82

to group the signatures of 𝑇 , 𝑆1, and 𝑆2 into a single signature for the triple (𝑇, 𝑆1, 𝑆2).83

Then, we introduce in §4.2 a register for a slice category of modules over a monad. This84

yields a register for transition monads over a fixed triple (𝑇, 𝑆1, 𝑆2), since these form such85

a slice category. Finally, in §5 we address the task of grouping into a single signature the86

signatures for the triple (𝑇, 𝑆1, 𝑆2) and for the transition module (𝑅, 𝑠, 𝑡) over it. For this,87

we propose a record construction for registers, which binds together registers on the base88

and on the fibers of a record category. Applying this to the previously constructed registers89

for our base product of three categories and our fibre slice categories of modules, we give90

in Example 53 our final register for the category of transition monads (with fixed sets of91

types). This register covers all examples of transition monads from §2.2. We emphasize in92

particular in §6 the subtle case of differential 𝜆-calculus.93
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Related work94

Beyond the already evoked related work [3, 24, 8], there is a solid body of work on categorical95

approaches to rewriting with variable binding [13, 16, 1], which only covers transition rela-96

tions that are stable under arbitrary contexts. Furthermore, Hirschowitz [18] proposes an97

alternative categorical approach to operational semantics, which is however only equipped98

with an insufficiently expressive specification technique [17], and has not yet been shown to99

apply to higher-order languages.100

Regarding signatures, some authors [9, 5, 12] use notions of signatures involving some101

form of type dependency, which may be amenable to describing the dependency of transitions102

on terms and states. However, to our knowledge, these notions have never been applied to103

general operational semantics.104

Finally, most of the material presented here is extracted from the third author’s PhD105

thesis [19].106

Notations107

In the following, 𝐒𝐞𝐭 denotes the category of sets, [𝐒𝐞𝐭𝑃, 𝐒𝐞𝐭𝑄] denotes the locally small108

category of finitary functors 𝐒𝐞𝐭𝑃 → 𝐒𝐞𝐭𝑄 for any sets 𝑃 and 𝑄.109

The category of finitary monads on 𝐂 is denoted by 𝐌𝐧𝐝(𝐂). Given a monad 𝑇 on 𝐂,110

the category of 𝐃-valued 𝑇-modules is denoted by 𝑇 -Mod(𝐃), where we recall [15] that111

such a 𝑇-module consists of a functor 𝑀∶ 𝐂 → 𝐃 equipped with a right 𝑇-action 𝑀∘𝑇 → 𝑀112

satisfying some coherence conditions. If 𝐹 is a functor 𝐂 → 𝐃, we denote by 𝐹 the ‘free’113

𝐃-valued 𝑇-module defined by 𝐹(𝑐) = 𝐹(𝑇(𝑐)).114

For any sequence 𝑝1, …, 𝑝𝑛 in a set ℙ, for any monad 𝑇 on 𝐒𝐞𝐭ℙ and 𝐃-valued 𝑇-module 𝑀,115

we denote by 𝑀(𝑝1,…,𝑝𝑛) the 𝐷-valued 𝑇-module defined by 𝑀(𝑝1,…,𝑝𝑛)(𝑋) = 𝑀(𝑋+𝐲𝑝1+…+𝐲𝑝𝑛 ),116

where 𝐲∶ ℙ → 𝐒𝐞𝐭ℙ is the Yoneda embedding, i.e., 𝐲𝑝(𝑞) = 1 if 𝑝 = 𝑞 and ∅ otherwise. If ℙ117

is a singleton, we abbreviate this to 𝑀(𝑛).118

2 Transition monads119

2.1 Definition of transition monads120

Definition of transition monads In this section, we introduce the main new mathem-121

atical notion of the paper, transition monads, which was already motivated by the case of122

call-by-value, simply-typed 𝜆-calculus in §1. The notion of transition monad is quite elab-123

orate. We first describe the various components of a transition monad. Then we give the124

monadic definition. And finally we give a modular description, which is better suited for125

later use.126

Placetakers and states In standard 𝜆-calculus, we have terms, variables are placeholders127

for terms, and reductions relate a source term to a target term. In a general transition128

monad we still have variables and reductions, but placetakers for variables and endpoints of129

reductions can be of a different nature, which we phrase as follows: variables are placeholders130

for placetakers, while reductions relate a source state with a target state.131

The categories for placetakers and for states In standard 𝜆-calculi, we have a set132

𝕋 of types for terms (and variables); for instance in the untyped version, 𝕋 is a singleton.133

Accordingly, terms form a monad on the category 𝐒𝐞𝐭𝕋.134

Similarly, in a general transition monad we have a set ℙ of placetaker types, and a set 𝕊135

of state types. And at least placetakers form a monad on the category 𝐒𝐞𝐭ℙ.136
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Notation 1. In the following, ℙ denotes a (fixed) set of placetaker types. Similarly, 𝕊137

denotes a (fixed) set of state types.138

The object of variables In our (monadic) view of the untyped 𝜆-calculus, there is a139

(variable!) set of variables and everything is parametric in this ‘variable set’. Similarly, in a140

general transition monad, there is a ‘variable object’ 𝑉 in 𝐒𝐞𝐭ℙ and everything is functorial141

in this variable object. In particular, we have a placetaker object 𝑇(𝑉) in 𝐒𝐞𝐭ℙ and a source142

(resp. target) state object in 𝐒𝐞𝐭𝕊, both depending upon the variable object.143

The state functors 𝑆1 and 𝑆2 While in the 𝜆-calculus, states are just the same as144

placetakers, in a general transition monad, they may differ, and more precisely the two state145

objects are derived from the placetaker object by applying the state functors 𝑆1, 𝑆2 ∶ 𝐒𝐞𝐭ℙ →146

𝐒𝐞𝐭𝕊.147

The reductions In standard 𝜆-calculi, there is a (typed!) set of reductions, which yields148

a graph on the set of terms. That is to say, if 𝑉 is the variable object, and 𝐿𝐶(𝑉) the term149

object, there is a reduction object 𝑅𝑒𝑑(𝑉) equipped with two morphisms 𝑠𝑟𝑐, 𝑡𝑟𝑔 ∶ 𝑅𝑒𝑑(𝑉) →150

𝐿𝐶(𝑉). Note that we consider ‘proof-relevant’ reductions here, in the sense that two different151

reductions have the same source and target.152

In a general transition monad 𝑅, we still have the variable object 𝑉 in 𝐒𝐞𝐭ℙ and the153

corresponding object of placetakers 𝑇𝑅(𝑉) also in 𝐒𝐞𝐭ℙ, while the reduction object 𝑅𝑒𝑑𝑅(𝑉)154

and the two state objects 𝑆1(𝑇𝑅(𝑉)) and 𝑆2(𝑇𝑅(𝑉)) live in 𝐒𝐞𝐭𝕊 so that 𝑠𝑟𝑐 and 𝑡𝑟𝑔 form a155

span 𝑆1(𝑇𝑅(𝑉)) ← 𝑅𝑒𝑑𝑅(𝑉) → 𝑆2(𝑇𝑅(𝑉)).156

The 𝑆-graph of reductions Now we rephrase the previous status of reductions in terms157

of a graph-like notion which we call 𝑆-graph: here 𝑆 ≔ (𝑆1, 𝑆2) is the pair of state functors.158

In the untyped 𝜆-calculus, 𝑅𝑒𝑑(𝑉) and the maps 𝑠𝑟𝑐 and 𝑡𝑟𝑔 turn the term object 𝐿𝐶(𝑉) into159

a graph (which depends functorially on the variable object 𝑉).160

For an analogous statement in a general transition monad, we will use the following161

notion:162

Definition 2. For any pair 𝑆 = (𝑆1, 𝑆2) of functors 𝐒𝐞𝐭ℙ → 𝐒𝐞𝐭𝕊, an 𝑆-graph over an object163

𝑉 ∈ 𝐒𝐞𝐭ℙ consists of164

an object 𝐸 (of edges) in 𝐒𝐞𝐭𝕊, and165

a span 𝑆1(𝑉) ← 𝐸 → 𝑆2(𝑉), which we alternatively view as a morphism 𝜕∶ 𝐸 → 𝑆1(𝑉) ×166

𝑆2(𝑉).167

Now we can say that in a general transition monad, reductions form an 𝑆-graph over the168

placetaker object (the whole thing depending upon the variable object…).169

The category of 𝑆-graphs A reduction monad [3] (in particular the untyped 𝜆-calculus)170

is just a monad relative to the ‘discrete graph’ functor from sets to graphs. In order to171

have a similar definition for transition monads, the last missing piece is the category of172

𝑆-graphs, which we now describe. A morphism 𝐺 → 𝐺′ of 𝑆-graphs consists of a morphism173

for vertices 𝑓 ∶ 𝑉𝐺 → 𝑉𝐺′ together with a morphism for edges 𝑓 ∶ 𝐸𝐺 → 𝐸𝐺′ making the174

following diagram commute. 𝐸𝐺 𝐸𝐺′

𝑆1(𝑉𝐺) × 𝑆2(𝑉𝐺) 𝑆1(𝑉𝐺′ ) × 𝑆2(𝑉𝐺′ )

𝑔

𝜕𝐺

𝑆1(𝑓 )×𝑆2(𝑓 )

𝜕𝐺′

175

Proposition 3. For any pair 𝑆 = (𝑆1, 𝑆2) of functors 𝐒𝐞𝐭ℙ → 𝐒𝐞𝐭𝕊, 𝑆-graphs form a category176

𝑆-𝐆𝐩𝐡.177



Hirschowitz, Hirschowitz, and Lafont XX:5

Monadic definition of transition monad Now we are ready to deliver a first, monadic178

definition of transition monad.179

Definition 4. A transition monad consists of180

two finitary functors 𝑆1, 𝑆2 ∶ 𝐒𝐞𝐭ℙ → 𝐒𝐞𝐭𝕊, and181

a finitary monad relative to the functor 𝐽𝑆 for 𝑆 = (𝑆1, 𝑆2), mapping an object 𝑉 to the182

𝑆-graph 𝐽𝑆(𝑉) on 𝑉 with no edges.183

Let us recall briefly that a relative monad consists of184

an object mapping 𝑇 ∶ 𝐨𝐛(𝐒𝐞𝐭ℙ) → 𝐨𝐛(𝑆-𝐆𝐩𝐡), together with185

morphisms 𝐽𝑆(𝑋) → 𝑇(𝑋), saying that variables in 𝑋 are vertices of 𝑇(𝑋), and186

for each morphism 𝑓 ∶ 𝐽𝑆(𝑋) → 𝑇(𝑌), morally mapping variables in 𝑋 to vertices in 𝑇(𝑌),187

a lifting 𝑓 ⋆ ∶ 𝑇(𝑋) → 𝑇(𝑌), which provides substitution for vertices and transitions at188

the same time.189

Remark 5. There is a full, reflective subcategory category 𝑆-𝐑𝐞𝐥 ↪ 𝑆-𝐆𝐩𝐡 consisting of190

subobjects 𝐸 ↪ 𝑆1(𝑉) × 𝑆2(𝑉). So because relative monads are stable under composition191

with left adjoints, transition monads map to a proof-irrelevant variant, which is perhaps192

closer to most of the literature. We stick to the proof-relevant definition for simplicity.193

Modular definition of transition monad The monadic definition just given does not194

mention explicitly one crucial feature we had mentioned earlier: the monad of placetakers.195

In order to clarify this point, we give an alternative ‘modular’ definition.196

Definition 6. A modular transition monad over (ℙ, 𝕊) consists of197

two finitary functors 𝑆1, 𝑆2 ∶ 𝐒𝐞𝐭ℙ → 𝐒𝐞𝐭𝕊198

a finitary monad 𝑇 on 𝐒𝐞𝐭ℙ, called the placetaker monad,199

a finitary 𝑇-module 𝑅, called the transition module,200

a source 𝑇-module morphism 𝑠1 ∶ 𝑅 → 𝑆1 ∘ 𝑇,201

a target 𝑇-module morphism 𝑠2 ∶ 𝑅 → 𝑆2 ∘ 𝑇.202

This is the definition that we use in the following.203

Proposition 7. Modular and monadic transition monads are in one-to-one correspondence.204

Proof. The proof consists merely in unfolding and comparing the definitions, considering205

𝑇-modules as functors from the Kleisli category of 𝑇 .206

2.2 Examples of transition monads207

2.2.1 𝜆𝜇-calculus208

Let us start with an example with several placetaker types. Consider the 𝜆𝜇-calculus of [14].209

Its grammar is given by210

Processes
𝑐 ⩴ ⟨𝑒|𝜋⟩

Programs
𝑒 ⩴ 𝑥 | 𝜇𝛼.𝑐 | 𝜆𝑥.𝑒

Stacks
𝜋 ⩴ 𝛼 | 𝑒 ⋅ 𝜋,

211

where 𝛼 and 𝑥 range over two disjoint sets of variables, called stack and program variables212

respectively. Both constructions 𝜇 and 𝜆 bind their variable in the body. There are two213

reduction rules: ⟨𝜇𝛼.𝑐|𝜋⟩ → 𝑐[𝛼 ↦ 𝜋] ⟨𝜆𝑥.𝑒|𝑒′ ⋅ 𝜋⟩ → ⟨𝑒[𝑥 ↦ 𝑒′]|𝜋⟩.214

Let us show how this calculus gives rise to a transition monad. First of all, there are two215

placetaker types, for programs and stacks, so ℙ = 2 = {𝐩, 𝐬}. A variable object is an element216

of 𝐒𝐞𝐭ℙ, that is, a pair of sets: one gives the available free program variables, and the other217

the available free stack variables. The syntax may be viewed as a monad 𝑇 ∶ 𝐒𝐞𝐭2 → 𝐒𝐞𝐭2:218
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given a variable object 𝑋 = (𝑋𝐩, 𝑋𝐬) ∈ 𝐒𝐞𝐭2, the placetaker object (𝑇(𝑋)𝐩, 𝑇(𝑋)𝐬) ∈ 𝐒𝐞𝐭2219

consists of the sets of program and stack terms with free variables in 𝑋. As usual, monad220

multiplication is given by substitution.221

For transitions, source and target states are processes, so there is only one state type:222

𝕊 = 1. Furthermore, processes are pairs of a program and a stack, so that, setting 𝑆1(𝐴) =223

𝑆2(𝐴) = 𝐴𝐩 × 𝐴𝐬, we get 𝑆1(𝑇(𝑋)) = 𝑇(𝑋)𝐩 × 𝑇(𝑋)𝐬 as desired. Finally, transitions with free224

variables in 𝑋 form a graph with vertices in 𝑇(𝑋)𝐩 × 𝑇(𝑋)𝐬, which we model as a pair of225

functions 𝜕𝑋 ∶ 𝑅(𝑋) → (𝑇(𝑋)𝐩 × 𝑇(𝑋)𝐬)2. This family is natural in 𝑋 and commutes with226

substitution, hence forms a 𝑇-module morphism. We thus have a transition monad.227

2.2.2 The 𝜋-calculus228

For an example involving equations on placetakers, let us recall the following simple variant229

of 𝜋-calculus [22]. The syntax for processes is given by 𝑃,𝑄 ∶∶= 0 | (𝑃|𝑄) | 𝜈𝑎.𝑃 | 𝑎⟨𝑏⟩.𝑃 | 𝑎(𝑏).𝑃,230

where 𝑎 and 𝑏 range over channel names, and 𝑏 is bound in 𝑎(𝑏).𝑃. Processes are considered231

equivalent up to structural congruence, the smallest equivalence relation ≡ stable under232

context and satisfying 0|𝑃 ≡ 𝑃 𝑃|𝑄 ≡ 𝑄|𝑃 𝑃|(𝑄|𝑅) ≡ (𝑃|𝑄)|𝑅 (𝜈𝑎.𝑃)|𝑄 ≡ 𝜈𝑎.(𝑃|𝑄),233

where in the last equation 𝑎 should not occur free in 𝑄. Reduction is then given by the234

inductive rules
𝑎⟨𝑏⟩.𝑃|𝑎(𝑐).𝑄 ⟶ 𝑃|(𝑄[𝑐 ↦ 𝑏])

𝑃 ⟶ 𝑄
𝑃|𝑅 ⟶ 𝑄|𝑅

𝑃 ⟶ 𝑄
𝜈𝑎.𝑃 ⟶ 𝜈𝑎.𝑄

.235

The 𝜋-calculus gives rise to a transition monad as follows. Again, we consider two placetaker236

types, one for channels and one for processes. Hence, ℙ = 2 = {𝐜, 𝐩}. Then, the syntax may237

be viewed as a monad 𝑇 ∶ 𝐒𝐞𝐭2 → 𝐒𝐞𝐭2: given a variable object 𝑋 = (𝑋𝐜, 𝑋𝐩) ∈ 𝐒𝐞𝐭2, the238

placetaker object 𝑇(𝑋) = (𝑋𝐜, 𝑇(𝑋)𝐬) ∈ 𝐒𝐞𝐭2 consists of the sets of channels and processes239

with free variables in 𝑋. Note that 𝑇(𝑋)𝐜 = 𝑋𝐜 as there is no operation on channels.240

Reductions relate processes, so we take 𝕊 = 1 and 𝑆1(𝑋) = 𝑆2(𝑋) = 𝑋𝐩. Transitions are241

stable under substitution, hence form a transition monad.242

2.2.3 Positive GSOS rules243

An example involving labelled transitions (and 𝑆1 ≠ 𝑆2) is given by Positive GSOS rules [6].244

They specify labelled transitions 𝑒
𝑎
−→ 𝑓 . For any set 𝑂 of operations with arities in ℕ,245

Positive GSOS rules have the shape
𝑥𝑖

𝑎𝑖,𝑗
−−→ 𝑦𝑖,𝑗

𝑜𝑝(𝑥1, …, 𝑥𝑛)
𝑐
−→ 𝑒

, where the variables 𝑥𝑖 and 𝑦𝑖,𝑗 are all246

distinct, 𝑜𝑝 ∈ 𝑂 is an operation with arity 𝑛, and 𝑒 is an expression potentially depending247

on all the variables.248

This yields a transition monad with ℙ = 1, because we are in an untyped setting, and249

𝕊 = 1 because states are terms. The syntax is given by the term monad 𝑇 on 𝐒𝐞𝐭. For250

transitions, in order to take labels into account, we take 𝑆1(𝑋) = 𝑋 and 𝑆2(𝑋) = 𝔸 × 𝑋,251

where 𝔸 denotes the set of labels. Transitions thus form a subset of 𝑋 × (𝔸×𝑋) as desired.252

2.2.4 Differential 𝜆-calculus253

The differential 𝜆-calculus [7] provides a further example with 𝑆1 ≠ 𝑆2. Its syntax may [25,254

§6] be defined by 𝑒, 𝑓 ∶∶= 𝑥 | 𝜆𝑥.𝑒 | 𝑒 𝑈 | 𝐷𝑒 ⋅ 𝑓 (terms)
𝑈,𝑉 ∶∶= ⟨𝑒1, …, 𝑒𝑛⟩ (multiterms),

255

where ⟨𝑒1, …, 𝑒𝑛⟩ denotes a (possibly empty) multiset, i.e., the ordering is irrelevant.256

Reductions relate terms to multiterms, and is based on two intermediate notions:257
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1. Unary multiterm substitution 𝑒[𝑥 ↦ 𝑈] in a term 𝑒, where a term variable 𝑥 is replaced258

with a multiterm 𝑈, and which returns a multiterm (not to be confused with the monadic259

substitution, which handles the particular case where 𝑈 is a mere term).260

2. Partial derivation 𝜕𝑒
𝜕𝑥 ⋅ 𝑈 of a term 𝑒 w.r.t. a term variable 𝑥 along a multiterm 𝑈. This261

again returns a multiterm.262

Both are defined by induction on 𝑒 and induce 𝑇-module morphisms 𝑇 (1) × ! ∘ 𝑇 → ! ∘ 𝑇 , for263

the term monad 𝑇 on 𝐒𝐞𝐭 underlying the transition monad, where ! is the functor sending a264

set 𝑋 to the set of (finite) multisets over 𝑋.265

Unary multiterm substitution and partial derivation are used to define the reduction266

relation as the smallest relation closed under context and satisfying the rules below where267

capture-avoiding substitution is defined by induction as usual.268

(𝜆𝑥.𝑒) 𝑈 → 𝑒[𝑥 ↦ 𝑈] 𝐷(𝜆𝑥.𝑒) ⋅ 𝑓 → 𝜆𝑥. 
𝜕𝑒
𝜕𝑥 ⋅ 𝑓 269

The second rule relies on the abbreviation 𝜆𝑥.⟨𝑒1, …, 𝑒𝑛⟩ ≔ ⟨𝜆𝑥.𝑒1, …, 𝜆𝑥.𝑒𝑛⟩. We work with270

ℙ = 𝕊 = 1, i.e., only one placetaker and state type; 𝑆1 is the identity; and 𝑆2 = !.271

Reduction is stable under substitution by terms, hence we again have a transition monad.272

2.2.5 Call-by-value, simply-typed 𝜆-calculus, big-step style273

Let us finally organise simply-typed, call-by-value, big-step 𝜆-calculus into a transition274

monad. The subtlety lies in the fact that variables are only placeholders for values.275

Because variables and values are indexed by simple types, we take ℙ = 𝕊 to be the set of276

simple types (generated from some fixed set of type constants). The monad 𝑇 over 𝐒𝐞𝐭ℙ is277

then given by values: given a variable object 𝑋 ∈ 𝐒𝐞𝐭ℙ, the placetaker object 𝑇(𝑋) ∈ 𝐒𝐞𝐭ℙ278

assigns to each simple type 𝜏 the set 𝑇(𝑋)𝜏 of values of type 𝜏 taking free (typed) variables279

in 𝑋.280

In big-step semantics, reduction relates terms to values. Hence, we are seeking state281

functors 𝑆1, 𝑆2 ∶ 𝐒𝐞𝐭ℙ → 𝐒𝐞𝐭ℙ such that 𝑆1(𝑇(𝑋))𝜏 is the set of 𝜆-terms of type 𝜏 with free282

variables in 𝑋, and 𝑆2(𝑇(𝑋))𝜏 is the set of values. For 𝑆2, we should clearly take the identity283

functor. For 𝑆1, we first observe that 𝜆-terms can be described as application binary trees284

whose leaves are values (internal nodes being typed applications). Thus, we define 𝑆1(𝑋)𝜏285

to be the set of application binary trees of type 𝜏 with leaves in 𝑋.286

Finally, reduction is stable under value substitution, so we obtain a transition monad.287

2.3 Categories of transition monads288

Our goal in the sequel is to generate the example transition monads of the previous section289

from more basic data. For this, we follow the recipe of initial semantics; this requires as input290

a category of models and outputs the carrier of the initial model (of course, the existence291

of an initial model is also required). In order to do this for transition monads, we need to292

organise them into a category. We start with a particular case.293

Definition 8. For any sets ℙ and 𝕊, monad 𝑇 over 𝐒𝐞𝐭ℙ, and functors 𝑆1, 𝑆2 ∶ 𝐒𝐞𝐭ℙ → 𝐒𝐞𝐭𝕊,294

let 𝐎𝐌𝐧𝐝ℙ,𝕊(𝑇, 𝑆1, 𝑆2) denote the slice category 𝑇 -Mod /(𝑆1 ∘ 𝑇) × (𝑆2 ∘ 𝑇).295

This gives a first family of categories of transition monads, that we will integrate through296

a simple construction1:297

1 There is a more comprehensive construction, obtained by observing that the assignment (𝑇, 𝑆1, 𝑆2) ↦
𝐎𝐌𝐧𝐝ℙ,𝕊(𝑇, 𝑆1, 𝑆2) forms a pseudofunctor and applying the so-called Grothendieck construction.
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Definition 9. A record category 𝐾 is a category of the form ∑𝑏 𝐏𝑏 where 𝑏 ranges over the298

objects of a base category 𝐁𝐾 , and each 𝐏𝑏, called the fibre over 𝑏, is a category. In other299

words, it is given by a (base) category 𝐁𝐾 equipped with a map 𝐏∶ 𝐨𝐛(𝐁𝐾 ) → 𝐂𝐀𝐓.300

The relevant example for the present work is the following.301

Definition 10. Given two sets ℙ and 𝕊, let 𝐎𝐌𝐧𝐝ℙ,𝕊 denote the record category 𝐎𝐌𝐧𝐝ℙ,𝕊302

of transition monads with ℙ and 𝕊 as sets of types for placetakers and states:303

it has as its base category the product 𝐌𝐧𝐝(𝐒𝐞𝐭ℙ)×[𝐒𝐞𝐭ℙ, 𝐒𝐞𝐭𝕊]2 of the category of monads304

on 𝐒𝐞𝐭ℙ with two copies of the functor category [𝐒𝐞𝐭ℙ, 𝐒𝐞𝐭𝕊];305

the fibre over a triple (𝑇, 𝑆1, 𝑆2) is the category 𝐎𝐌𝐧𝐝ℙ,𝕊(𝑇, 𝑆1, 𝑆2) of Definition 8.306

3 Semantic signatures and registers307

The rest of the paper is devoted to the specification of transition monads via suitable sig-308

natures. More concretely, each of our example transition monads may be characterised as309

underlying the initial object in some suitable category of models.310

We start in §3.1-3.2 by introducing a general notion of semantic signature over a category.311

In §3.3, we define registers of signatures as families of distinguished semantic signatures.312

Our main goal (achieved in Example 58) consists in proposing a register for the category of313

transition monads.314

3.1 Semantic signatures315

Our notion of semantic signature is an abstract counterpart of usual signatures.316

Definition 11. A semantic signature 𝑆 over a given category 𝐂 consists of317

a category 𝑆 -alg of models of 𝑆 (or algebras), which admits an initial object, denoted by318

𝑆⊛, and319

a forgetful functor 𝐔𝑠 ∶ 𝑆 -alg → 𝐂.320

Terminology 12. Given a semantic signature 𝑆 over a category 𝐂, we say that 𝑆 is a321

signature for 𝑆∗ ≔ 𝐔𝑆(𝑆⊛), or alternatively that 𝑆 specifies 𝑆∗.322

Notation 13. When convenient, we introduce a semantic signature over 𝐂 as 𝑢∶ 𝐄 → 𝐂, to323

be understood as the semantic signature 𝑆 with 𝑆 -alg ≔ 𝐄 and 𝐔𝑆 ≔ 𝑢.324

Example 14. For a given category 𝐂, an object 𝑐 ∈ 𝐂 is always specified by the following325

signatures:326

the functor 1 → 𝐂 mapping the only object of the final category (with one object and327

one morphism) to 𝑐;328

the codomain functor 𝑐/𝐂 → 𝐂 from the coslice category.329

Example 15. Consider the standard endofunctor 𝐹 ∶ 𝐒𝐞𝐭 → 𝐒𝐞𝐭 with 𝐹(𝑋) = 𝑋 + 1. We330

define a semantic signature for which the category of models is the category of 𝐹-algebras, and331

the forgetful functor sends any 𝐹-algebra to its carrier. In order to complete the definition332

of this example, we should prove that the category of 𝐹-algebras has an initial object. This333

is well-known and the carrier of the initial model is ℕ.334

Notation 16. We denote by 𝑈𝑅𝐂 the class of semantic signatures over the category 𝐂 (𝑈𝑅335

stands for ‘universal register’, as later justified by Definition 20, Section 3.3).336
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3.2 The external product of semantic signatures337

A first basic construction of semantic signatures is for a product of categories. The applic-338

ation we have in mind is the product category 𝐌𝐧𝐝(𝐒𝐞𝐭ℙ) × [𝐒𝐞𝐭ℙ, 𝐒𝐞𝐭𝕊]2 (Definition 10),339

which is the base category of our record category of transition monads.340

Lemma 17. Given a set 𝐼 and functors 𝑈𝑖 ∶ 𝐄𝑖 → 𝐂𝑖 for 𝑖 ∈ 𝐼, if each 𝐄𝑖 has an initial341

object, then so does the product ∏𝑖 𝐄𝑖.342

Definition 18. Given a family (𝐂𝑖)𝑖∈𝐼 of categories, and a corresponding family of semantic343

signatures 𝑢𝑖 ∶ 𝐸𝑖 → 𝐂𝑖, the product ∏𝑖 𝑢𝑖 ∶ ∏𝑖 𝐸𝑖 → ∏𝑖 𝐂𝑖 is a semantic signature. This344

defines our external product of signatures ∏𝐼 ∶ ∏𝑖 𝑈𝑅𝐂𝑖 → 𝑈𝑅∏𝑖 𝐂𝑖 .345

3.3 Registers of signatures346

In this section, we introduce registers of signatures for a category 𝐂, which are (possibly347

large) families of semantic signatures over 𝐂. Roughly speaking, each register allows to write348

down specific signatures, gives the recipe for the corresponding semantic signature, hence,349

last but not least, ensures (once and for all) that there is an initial model.350

Definition 19. A register 𝑅 for a given category 𝐂 consists of351

a class 𝐒𝐢𝐠𝑅 (of signatures), and352

a map ⟦−⟧𝑅 ∶ 𝐒𝐢𝐠𝑅 → 𝑈𝑅𝐂.353

We can now motivate the notation 𝑈𝑅𝐶 above:354

Definition 20. For a given category 𝐂, the universal register 𝑈𝑅𝐂 is defined as follows:355

its signatures are semantic signatures for 𝐂, and356

the map ⟦−⟧𝑈𝑅𝐂 is the identity (on 𝑈𝑅𝐂).357

Notation 21. When convenient, we introduce a register as 𝑢∶ 𝑆 → 𝑈𝑅𝐂 to be understood358

as the register 𝑅 with 𝐒𝐢𝐠𝑅 ≔ 𝑆 and ⟦−⟧𝑅 ≔ 𝑢. Moreover, we sometimes omit ⟦−⟧𝑈𝑅𝐂 , thus359

identifying any 𝑠 ∈ 𝐒𝐢𝐠𝑅 with its associated semantic signature ⟦𝑠⟧𝑅.360

We can now translate the slogan Endofunctors are signatures with a register, using a361

well-known initiality result [21, §2, Theorem]362

Definition 22. For a given cocomplete category 𝐂, the universal endofunctorial register363

𝑈𝐸𝐹𝐂 is defined as the map [𝐂,𝐂] → 𝑈𝑅𝐂 sending any finitary endofunctor 𝐹 to the364

forgetful functor 𝐹 -alg → 𝐂 from its category of algebras.365

Let us now define simple constructions on registers.366

Proposition 23. For any register 𝑅 for 𝐂 and functor 𝐹 ∶ 𝐂 → 𝐃, postcomposition of367

semantic signatures with 𝐹 induces a register ∑𝐹(𝑅) for 𝐃.368

Example 24. As an easy application, by Remark 5, any register 𝑅 for transition monads369

induces one for the proof-irrelevant variant.370

Proposition 25. For any register 𝑅 for 𝐂 and map 𝑓 ∶ 𝐒 → 𝐒𝐢𝐠𝑅, precomposition with 𝑓371

induces a register Δ𝑓 (𝑅) for 𝐂 whose signatures are elements of 𝐒.372

Here is an important application.373

Definition 26. We deem endofunctorial all registers of the form Δ𝑓 (𝑈𝐸𝐹𝐂), for some map374

𝑓 ∶ 𝐒 → 𝐒𝐢𝐠𝑈𝐸𝐹𝐂 .375
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A useful fact is that endofunctorial registers are closed under the family construction, as376

follows.377

Definition 27. For any endofunctorial register 𝑅 = Δ𝑓 (𝑈𝐸𝐹𝐂), let 𝑅∗ denote the endo-378

functorial register whose signatures are families of signatures in 𝐒𝐢𝐠𝑅, and whose semantics379

maps any family to the coproduct of associated endofunctors.380

A final basic construction on registers is the external product.381

Definition 28. The product of a family (𝑢𝑖 ∶ 𝑆𝑖 → 𝑈𝑅𝐂𝑖 )𝑖∈𝐼 of registers is obtained by post-382

composing ∏𝑖 𝑢𝑖 with the product of semantic signatures: ∏𝑖 𝑆𝑖
∏𝑖 𝑢𝑖−−−−→ ∏𝑖 𝑈𝑅𝐂𝑖

∏𝐼−−→ 𝑈𝑅∏𝑖 𝐂𝑥 .383

Example 29. The product register 𝑂𝑀𝑛𝑑𝑏 ≔ 𝐌𝐨𝐧𝐑𝐞𝐠(𝐒𝐞𝐭ℙ) × 𝐸𝑞𝑆𝑦𝑠[𝐒𝐞𝐭ℙ, 𝐒𝐞𝐭𝕊]2 for384

monads and state functors allows us to specify the base components of our transition monads.385

3.4 Equational registers386

In this section, we show that equational systems [8] on any category 𝐂 define a register
𝐸𝑞𝑆𝑦𝑠(𝐂) for 𝐂, which refines endofunctorial register 𝑈𝐸𝐹𝐂 (Definition 22) with equations.
In order to explain them, the starting point is the observation that for any (nice) endofunctor
Σ, any term 𝑒 ∈ Σ⋆(𝑛) for the monad generated by Σ generates a functor Σ -alg → (−)𝑛 -alg
preserving the carrier, mapping any 𝜌∶ Σ(𝑋) → 𝑋 to the composite

𝑋𝑛
⟨𝑒!,Σ⋆

𝑛,𝑋 ⟩
−−−−−−−→ Σ⋆(𝑛) × [Σ⋆(𝑛), Σ⋆(𝑋)]

𝑒𝑣
−→ Σ⋆(𝑋) → 𝑋,

viewed as a (−)𝑛-algebra. Generalizing equations as pairs of terms in Σ⋆(𝑛), an equation387

may be modelled as a pair of such functors.388

Furthermore, this technique generalises to families (𝑡𝑖 = 𝑢𝑖)𝑖 of equations, with each389

𝑡𝑖, 𝑢𝑖 ∈ Σ⋆(𝑛𝑖), by replacing (−)𝑛 with the coproduct functor ∑𝑖(−)𝑛𝑖 . This works even for the390

empty family of course.391

Equational systems are obtained by abstracting over this situation.392

Definition 30 ([8, Definition 3.3]). For any endofunctors Σ, Γ on a category 𝐂, a metaterm393

of type Γ is a functor 𝐿∶ Σ -alg → Γ-alg preserving carriers, i.e., such that 𝐔Γ ∘ 𝐿 = 𝐔Σ,394

where 𝐔Σ and 𝐔Γ are the forgetful functors.395

An equational system 𝔼 = (Σ ⊳ Γ ⊢ 𝐿 = 𝑅) over 𝐂 consists of an endofunctor Γ, together396

with two metaterms 𝐿 and 𝑅 of type Γ.397

Definition 31. Given an equational system 𝔼 = (𝐂 ∶ Σ ⊳ Γ ⊢ 𝐿 = 𝑅), a model for 𝔼, or an398

𝔼-algebra, is a Σ-algebra 𝜌∶ Σ(𝑋) → 𝑋 for which 𝐿(𝑋, 𝜌) = 𝑅(𝑋, 𝜌).399

Lemma 32 (cf. [8, Theorem 5.1]). Let 𝔼 = (𝐂 ∶ Σ ⊳ Γ ⊢ 𝐿 = 𝑅) be a well-behaved equational400

system, in the sense that 𝐂 is locally presentable, and Σ and Γ preserve epimorphisms and401

colimits of 𝜔-chains. Then the forgetful functor 𝐔𝔼 ∶ 𝔼 -alg → 𝐂 has a left adjoint.402

Proposition 33. For any category 𝐂, there is a register 𝐸𝑞𝑆𝑦𝑠(𝐂) whose signatures are well-403

behaved equational systems, and which maps any 𝔼 to the forgetful functor 𝐔𝔼 ∶ 𝔼 -alg → 𝐂.404

Let us now present equational systems for some state functors from our examples.405

Example 34. The identity functor on 𝐒𝐞𝐭 is specified by the equational system on [𝐒𝐞𝐭, 𝐒𝐞𝐭]406

defined by Σ(𝐹)(𝑋) = 𝑋 and no equation. Indeed, algebras are functors 𝐹 equipped with a407

natural transformation 𝑋 → 𝐹(𝑋), i.e., pointed endofunctors. The initial one is thus clearly408

the identity.409
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Example 35. The state functor 𝑆(𝑋) = 𝑋𝐩 × 𝑋𝐬 from §2.2.1 is specified by the equational410

system defined on [𝐒𝐞𝐭2, 𝐒𝐞𝐭] by Σ(𝐹)(𝑋) = 𝑋𝐩 × 𝑋𝐬 and no equation. Algebras are functors411

𝐹 equipped with a natural transformation 𝑋𝐩 × 𝑋𝐬 → 𝐹(𝑋), so the initial algebra is clearly412

𝑋𝐩 × 𝑋𝐬 itself.413

Example 36. The first state functor of call-by-value, simply-typed 𝜆-calculus could be414

specified by taking Σ(𝐹)(𝑋) = 𝑆1(𝑋), with 𝑆1 as in §2.2.5, and no equation. However, let us415

observe that it may also be specified by the simpler endofunctor Σ(𝐹)(𝑋)𝑡 = 𝑋𝑡+∑𝑡′ 𝐹(𝑋)𝑡′→𝑡×416

𝐹(𝑋)𝑡′ with no equation.417

4 Registers for monads and slice module categories418

In this section, we recast results from the literature as registers for functors and monads.419

4.1 A register for monads420

In order to specify monads through equational systems, we first specify them as endofunctors,421

and then refine the result into a register for monads.422

Proposition 37. For any locally presentable category 𝐂, finitary monads on 𝐂 are the423

algebras of an equational system 𝔼𝑀𝑛𝑑(𝐂) = (Σ𝑀𝑛𝑑 ⊳ Γ𝑀𝑛𝑑 ⊢ 𝐿𝑀𝑛𝑑 = 𝑅𝑀𝑛𝑑) over [𝐂,𝐂].424

Proof. This is a particular case of [8, §3.3(4)]. Briefly, we take Σ𝑀𝑛𝑑(𝐹) = Id𝐂 +𝐹 ∘ 𝐹 to425

specify the unit and multiplication, and then encode the monad equations.426

In order to apply this for specifying our examples, we augment the endofunctor Σ with427

arities for the relevant operations.428

Example 38. For pure 𝜆-calculus, the relevant endofunctor on [𝐒𝐞𝐭, 𝐒𝐞𝐭] is Σ(𝐹)(𝑋) =429

𝑋 + 𝐹(𝐹(𝑋)) + 𝐹(𝑋)2 + 𝐹(𝑋 + 1).430

We furthermore encode the substitution rules for each operation as an equation.431

Example 39. We enforce the usual equation (𝑀 𝑁)[𝜎] = 𝑀[𝜎] 𝑁[𝜎] through the equation432

𝐿 = 𝑅∶ Σ -alg → Γ-alg, where Γ(𝐹)(𝑋) = 𝐹(𝐹(𝑋))2, and the structure maps of 𝐿(Σ(𝐹)
𝜌
−→ 𝐹)433

and 𝑅(Σ(𝐹)
𝜌
−→ 𝐹) at 𝑋 are respectively: 𝐹(𝐹(𝑋))2

@𝐹(𝑋)−−−−−→ 𝐹(𝐹(𝑋))
𝜇𝑋−−→ 𝐹(𝑋) and 𝐹(𝐹(𝑋))2

𝜇2
−−→434

𝐹(𝑋)2
@𝑋−−−→ 𝐹(𝑋). The maps @ and 𝜇 follow from the Σ-algebra structure 𝜌 on 𝐹. E.g., @𝑋 is435

defined as the composite 𝐹(𝑋)2 𝑖𝑛3 Σ(𝐹)(𝑋)
𝜌𝑋−−→ 𝐹(𝑋).436

Finally, if needed, we further encode the remaining equations, such as 𝑃|(𝑄|𝑅) ≡ (𝑃|𝑄)|𝑅437

in 𝜋-calculus, as abstract equations.438

Let us now describe the general pattern, by defining a register for monads. The idea is439

that a signature should be an equational system on endofunctors of the considered category440

𝐂 whose operation endofunctor Σ contains Σ𝑀𝑛𝑑, and whose equations include the monad441

equations. One way of enforcing this consists in asking the endofunctors to have the shape442

Σ𝑀𝑛𝑑 + Σ and Γ𝑀𝑛𝑑 + Γ. For equations, we rely on the following well-known fact.443

Proposition 40. For all endofunctors 𝐹,𝐺 on 𝐂, (𝐹 + 𝐺) -alg is a pullback of 𝐹 -alg and444

𝐺 -alg over 𝐂.445
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Thus, given functors 𝐿1 ∶ 𝐃 → 𝐹 -alg and 𝐿2 ∶ 𝐃 → 𝐺 -alg mapping objects and morph-446

isms of 𝐃 to the same underlying objects and morphisms of 𝐂, we may form their pairing447

⟨𝐿1, 𝐿2⟩ ∶ 𝐃 → (𝐹 + 𝐺) -alg. Denoting by ↓𝐹 the forgetful functor (𝐹 + 𝐺) -alg → 𝐹 -alg, we448

state:449

Definition 41. A monadic signature on 𝐂 is an equational system on [𝐂,𝐂] extending450

𝔼𝑀𝑛𝑑, i.e., that has the shape (Σ𝑀𝑛𝑑 +Σ) ⊳ (Γ𝑀𝑛𝑑 +Γ) ⊢ ⟨𝐿𝑀𝑛𝑑∘ ↓Σ𝑀𝑛𝑑 , 𝐿⟩ = ⟨𝑅𝑀𝑛𝑑∘ ↓Σ𝑀𝑛𝑑 , 𝑅⟩.451

Because monadic signatures extend 𝔼𝑀𝑛𝑑, their models are, in particular, monads:452

Proposition 42. Given a monadic signature 𝔼 on 𝐂, the forgetful functor 𝔼 -alg → [𝐂,𝐂]453

factors through 𝐌𝐧𝐝(𝐂) → [𝐂,𝐂]. Thus, any monadic signature defines a semantic signature454

on 𝐌𝐧𝐝(𝐂).455

Definition 43. We define the monadic register 𝐌𝐨𝐧𝐑𝐞𝐠(𝐂) for 𝐌𝐧𝐝(𝐂) consisting of456

monadic signatures.457

4.2 Registers for slice module categories458

In this section, we fix two sets ℙ and 𝕊, a monad 𝑇 on 𝐒𝐞𝐭ℙ, and a 𝐒𝐞𝐭𝕊-valued 𝑇-module459

𝑀. We then define an endofunctorial register 𝐑𝐮𝐥𝐞∗𝑇,𝑀 for the category 𝑇 -Mod /𝑀. Later460

on, we will use this register with 𝑀 ≔ (𝑆1 ∘ 𝑇) × (𝑆2 ∘ 𝑇), i.e., for the category of transition461

monads over (𝑇, 𝑆1, 𝑆2).462

The naive register We start by defining a much simpler endofunctioral sub-register,463

𝑁𝑅𝑢𝑙𝑒𝑇,𝑀. A signature in 𝑁𝑅𝑢𝑙𝑒𝑇,𝑀 consists of464

a metavariable module 𝑉 ,465

a conclusion module morphism 𝑡 ∶ 𝑉 → 𝑀𝜏 for some conclusion state type 𝜏 ∈ 𝕊, and466

a list of premise module morphisms of the form 𝑠 ∶ 𝑉 → 𝑀𝜎, for some premise state types467

𝜎 ∈ 𝕊.468

Example 44. For the left application congruence rule of pure 𝜆-calculus
𝑒 → 𝑒′

𝑒 𝑓 → 𝑒′ 𝑓
, there469

are three metavariables 𝑒, 𝑒′, and 𝑓 , so the metavariable module 𝑉 is 𝑇3. The conclusion470

and premise are respectively defined as the module morphisms471

𝑇3 → 𝑇2

(𝑒, 𝑒′, 𝑓 ) ↦ (𝑒 𝑓 , 𝑒′ 𝑓 ) and 𝑇3 → 𝑇2

(𝑒, 𝑒′, 𝑓 ) ↦ (𝑒, 𝑒′).472

The endofunctor Σ𝑆 associated to any signature 𝑆 ≔ (𝜏, 𝑉, 𝑡, (𝜎𝑖, 𝑠𝑖)𝑖∈𝑛) is a composite473

𝑇 -Mod(𝐒𝐞𝐭)/∏𝑖 𝑀𝜎𝑖 𝑇 -Mod(𝐒𝐞𝐭)/𝑉 𝑇 -Mod(𝐒𝐞𝐭)/𝑀𝜏

𝑇 -Mod(𝐒𝐞𝐭𝕊)/𝑀 𝑇 -Mod(𝐒𝐞𝐭𝕊)/𝑀,
∏𝑖(−)𝜎𝑖

Δ⟨𝑠𝑖⟩𝑖 ∑𝑡

474

of four functors, where475

∏𝑖(𝜕 ∶ 𝑅 → 𝑀)𝜎𝑖 denotes ∏𝑖 𝜕𝜎𝑖 ∶ ∏𝑖 𝑅𝜎𝑖 → ∏𝑖 𝑀𝜎𝑖 ,476

Δ⟨𝑠𝑖⟩𝑖 is defined by pullback along the tupling ⟨𝑠𝑖⟩𝑖 ∶ 𝑉 → ∏𝑖 𝑀𝜎𝑖 of all premises,477

∑𝑖 is defined by postcomposition with the conclusion 𝑡 ∶ 𝑉 → 𝑀𝜏.478

The last functor is the canonical embedding, which maps any 𝑅 → 𝑀𝜏 to 𝑅 · 𝐲𝜏 → 𝑀,479

where 𝑅 · 𝐲𝜏 is defined for all 𝑋 by (𝑅 · 𝐲𝜏)(𝑋)𝜏 = 𝑅(𝑋) and (𝑅 · 𝐲𝜏)(𝑋)𝜎 = ∅ for 𝜎 ≠ 𝜏.480
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Remark 45. The embedding (−) · 𝐲𝜏 is left adjoint to evaluation at 𝜏: (−) · 𝐲𝜏 ⊣ (−)𝜏. Thus481

Σ𝑆 maps any 𝜕∶ 𝑅 → 𝑀 to the transpose of the right-hand composite 𝑞 below.482

∏𝑖 𝑅𝜎𝑖 𝑃

∏𝑖 𝑀𝜎𝑖 𝑉 𝑀𝜏

∏𝑖 𝜕𝜎𝑖

⟨𝑠𝑖⟩𝑖 𝑡

𝑞 (1)483

Proposition 46. The assignment 𝑆 ↦ Σ𝑆 defines a register 𝑁𝑅𝑢𝑙𝑒𝑇,𝑀 for 𝑇 -Mod(𝑆𝑒𝑡𝕊)/𝑀.484

Example 47. Consider the endofunctor associated to the left application rule of Example 44.485

Because 𝕊 = 1, the functor (−) · 𝐲𝜏 is trivial, so the endofunctor maps any 𝜕∶ 𝑅 → 𝑇2:486

to the pullback 𝑃, where 𝑃(𝑋) is the set of 4-tuples (𝑟, 𝑒, 𝑒′, 𝑓 ) ∈ 𝑅(𝑋) × 𝑇(𝑋)3 such that487

𝑟 is a transition 𝑒 → 𝑒′,488

with projection to 𝑇2 mapping any (𝑟, 𝑒, 𝑒′, 𝑓 ) to (𝑒 𝑓 , 𝑒′ 𝑓 ).489

An algebra is thus such a 𝜕∶ 𝑅 → 𝑇2 which, to each such tuple (𝑟, 𝑒, 𝑒′, 𝑓 ) associates a490

reduction over (𝑒 𝑓 , 𝑒′ 𝑓 ), as desired.491

Binding rule registers Let us now refine the naive rules of the previous section. The492

motivation lies in rules whose premises have additional free variables.493

Example 48. Consider the 𝜉 rule of pure 𝜆-calculus:
𝑒 → 𝑓

𝜆𝑥.𝑒 → 𝜆𝑥.𝑓
,494

The metavariable and conclusion may remain the same; the problem is with the premise,495

which cannot be a morphism 𝑉 → 𝑇2, but should rather have type 𝑉 → 𝑇 (1) × 𝑇 (1). We496

thus generalise 𝑁𝑅𝑢𝑙𝑒𝑇,𝑀 to let them have premises of this shape:497

Definition 49. The register 𝑅𝑢𝑙𝑒𝑇,𝑀 is defined by:498

signatures are just as in 𝑁𝑅𝑢𝑙𝑒𝑇,𝑀, except that the premises now have the shape 𝑠 ∶ 𝑉 →499

𝑀(⃗𝑝)
𝜎 , for 𝜎 ∈ 𝕊 and �⃗� a list of placetaker types; and500

the semantics is defined exactly as for naive rules, replacing ∏𝑖 𝑅𝑖 with ∏𝑖 𝑅
(𝑝𝑖)
𝑖 .501

Registers from families of binding rules Recalling Definition 27, we obtain:502

Proposition 50. Families of binding (𝑇,𝑀)-rules (over potentially different types) are the503

signatures of a register 𝑅𝑢𝑙𝑒∗𝑇,𝑀.504

Example 51. The 𝜉 rule is specified by the binding rule with metavariable module given505

by (𝑇 (1))2, whose conclusion is 𝜆2 ∶ (𝑇 (1))2 → 𝑇2, and whose premise is the identity.506

5 Record registers507

The construction on registers introduced in the previous sections allow us to design registers508

for the various components of our transition monad, separately: we may specify the under-509

lying monad 𝑇 and state functors 𝑆1 and 𝑆2 using signatures from the registers for functors510

and monads previously defined. We may even assemble these signatures into a single signa-511

ture Σ for the product register of Definition 28. Then, we may specify the desired transition512

monad as an object of the fibre 𝐎𝐌𝐧𝐝ℙ,𝕊(𝑇, 𝑆1, 𝑆2), using a family 𝐑 of binding (𝑇,𝑀)-rules513

from Proposition 50, with 𝑀 = (𝑆1 ∘ 𝑇) × (𝑆2 ∘ 𝑇).514

In this section, we now want to assemble Σ and 𝐑 into a single signature for some515

compound register for the record category 𝐎𝐌𝐧𝐝ℙ,𝕊. This can be done in general for an516

arbitrary record category. The input for the construction is the following indexed variant of517

registers.518
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Definition 52. An indexed register (𝑅𝑏, 𝑅𝑓 ) for a record category ∑𝑏 𝐏(𝑏), with 𝐏∶ 𝐨𝐛(𝐁) →519

𝐂𝐀𝐓, consists of520

a base register 𝑅𝑏 for 𝐁, together with,521

for each signature 𝐵 in 𝐒𝐢𝐠𝑅𝑏 , a fibre register 𝑅𝑓 (𝐵) for the fibre 𝐏𝐵∗ over the initial522

𝐵-algebra.523

Example 53. Consider the product register 𝑂𝑀𝑛𝑑𝑏 of Example 29 for monads and state524

functors, and define, for all signatures Σ ∈ 𝐒𝐢𝐠𝑂𝑀𝑛𝑑𝑏 , the register 𝑂𝑀𝑛𝑑𝑓 (Σ) ≔ 𝑅𝑢𝑙𝑒𝑇,𝑆1×𝑆2 ,525

where Σ ∗ = (𝑇, 𝑆1, 𝑆2). The pair 𝑂𝑀𝑛𝑑 ≔ (𝑂𝑀𝑛𝑑𝑏, 𝑂𝑀𝑛𝑑𝑓 ) forms an indexed register for526

the record category of transition monads.527

From any fixed indexed register 𝑅 = (𝑅𝑏, 𝑅𝑓 ) for 𝐾, let us now construct a proper register528

∑𝑅, which we call the record register of 𝑅. First of all, let us define the signatures of ∑𝑅.529

Definition 54. A signature record for 𝑅 is a pair (𝐵, 𝐹) with 𝐵 ∈ 𝐒𝐢𝐠𝑅𝑏 and 𝐹 ∈ 𝐒𝐢𝐠𝑅𝑓 (𝐵).530

Example 55. A signature record for the indexed register 𝑂𝑀𝑛𝑑 from Example 53 consists531

of a triple Σ = (Σ0, Σ1, Σ2) of signatures, specifying a monad 𝑇 = Σ ∗
0 and state functors532

𝑆𝑖 = Σ ∗
𝑖 , 𝑖 = 1, 2, together with a family 𝐑 of binding (𝑇, 𝑆1 × 𝑆2)-rules.533

Finally, we construct the record register ∑𝑅 by defining the semantics of signature records.534

Definition 56. Given a signature record (𝐵, 𝐹) for some indexed register for a record category535

𝐾 = ∑𝑏 𝐏𝑏, the semantic signature ∑(𝐵, 𝐹) associated to (𝐵, 𝐹) is 𝐹 -alg
𝐔𝐹−−→ 𝐏𝐵∗ ↪ 𝐾.536

Proposition 57. Given an indexed register 𝑅 = (𝑅𝑏, 𝑅𝑓 ), signature records (𝐵, 𝐹) form the537

signatures of the record register ∑𝑅, whose models are given by Definition 56.538

We can now achieve our goal and propose a register for transition monads.539

Example 58. The indexed register 𝑂𝑀𝑛𝑑 defined in Example 53 induces a register ∑𝑂𝑀𝑛𝑑540

for the category of transition monads.541

6 Applications542

All examples from §2.2 may be specified by signatures from the record register ∑𝑂𝑀𝑛𝑑 of543

Example 58. By Example 24, this also holds for the proof-irrelevant variant. For the case of544

Positive GSOS, we can even define a specific register, whose signatures are Positive GSOS545

specifications, the semantics being given by interpreting them as signatures for ∑𝑂𝑀𝑛𝑑.546

In this section, we present in some detail the signature for differential 𝜆-calculus, as547

a transition monad with ℙ = 𝕊 = 1, introduced in §2.2.4. A signature in the register of548

transition monads consists of two components: a (product) signature for the state functors549

and monad, given in §6.1, and a signature for the 𝛽 and 𝜕-reduction rules. Both are straight-550

forwardly modelled by a signature over as explained in §4.2, but they first require us to551

construct some intermediate operations −[𝑥 ↦ −] and 𝜕−
𝜕𝑥 ⋅ −. We tackle this task in §6.2.552

6.1 State functors and monad of differential 𝜆-calculus553

The first state functor is the identity functor Id ∶ 𝐒𝐞𝐭 → 𝐒𝐞𝐭, and thus is specified by the554

signature of Example 34. The second state functor is !, the multiset functor, and is specified555

by an equational system (Σ2 ⊳ Γ2 ⊢ 𝐿2 = 𝑅2) on [𝐒𝐞𝐭, 𝐒𝐞𝐭], where Σ2(𝐹)(𝑋) = 𝑋 + 𝐹(𝑋) ×556

𝐹(𝑋) + 1, so that an algebra of Σ2 is an endofunctor equipped with a binary operation and557
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a constant. Then Γ2, 𝐿2, and 𝑅2 are defined so as to enforce commutativity, associativity,558

and unitality of the constant with respect to the binary operation.559

Next, the monad of differential 𝜆-calculus is specified by a monadic equational system560

((Σ𝑀𝑛𝑑 + Σ) ⊳ (Γ𝑀𝑛𝑑 + Γ) ⊢ ⟨𝐿𝑀𝑛𝑑∘ ↓Σ𝑀𝑛𝑑 , 𝐿⟩ = ⟨𝑅𝑀𝑛𝑑∘ ↓Σ𝑀𝑛𝑑 , 𝑅⟩) on [𝐒𝐞𝐭, 𝐒𝐞𝐭], which we now561

define.562

We take Σ(𝑇) = 𝑇 (1) + 𝑇 × !𝑇 + 𝑇 × 𝑇 , modelling the operations 𝜆𝑥.−, − −, and 𝐷 − ⋅−.563

Then, we choose Γ, 𝐿, and 𝑅 so as to enforce that these operations are compatible with564

monadic substitution, in the sense that they are module morphisms.565

The resulting signature specifies a monad (𝑇, 𝜂, 𝜇) with a module morphism 𝜎∶ Σ(𝑇) → 𝑇 .566

6.2 Intermediate constructions for differential 𝜆-calculus567

Specifying the reduction rules requires two intermediate constructions: unary multiterm568

substitution −[𝑥 ↦ −], and partial derivation 𝜕−
𝜕𝑥 ⋅ −, which we both model as 𝑇-module569

morphisms from 𝑇 (1) × !𝑇 → !𝑇 , or equivalently from 𝑇 (1) → (!𝑇)!𝑇 . 2570

In [25, §6], the underlying maps are defined by induction. Let us briefly upgrade these571

constructions into 𝑇-module morphisms. If the domain was 𝑇 , then we could exploit the572

bijection between module morphisms 𝑇 → 𝑀 and 𝑀(1), for any module 𝑀. More precisely,573

any element 𝑚 ∈ 𝑀({∗}) yields a module morphism 𝑚∶ 𝑇 → 𝑀, mapping any term 𝑡 ∈ 𝑇(𝑋)574

to 𝑚[∗ ↦ 𝑡] ∈ 𝑀(𝑋).575

In our case, the domain of the desired morphisms is 𝑇 (1). We thus propose the following576

general recipe for building a 𝑇-module morphism 𝑇 (1) → 𝑀:577

1. provide an element of 𝑀(0);578

2. equip 𝑀 with Σ↑-algebra structure, where Σ↑ denotes Σ (canonically) viewed as an579

endofunctor on 𝑇-modules;580

3. provide an element 𝑚 ∈ 𝑀(1) such that 𝑚∶ 𝑇 → 𝑀 is compatible with the Σ-algebra581

structures of 𝑇 and 𝑀, that is, 𝑚 upgrades into a Σ-algebra morphism.582

This recipe relies on the following lemma:583

Lemma 59. Let 𝑈 denote the forgetful functor (Σ+1)↑ -alg → Σ↑ -alg. Then, 𝑇 (1), equipped584

with its canonical structure, is initial in the comma category 𝑇 ↓ 𝑈.585

7 Conclusion and perspectives586

We have introduced transition monads as a generalisation of reduction monads, and demon-587

strated that they cover relevant new examples. We have introduced a register of signatures588

for specifying them. In future work, we plan on investigating other forms of state modules.589

E.g., using an arbitrary module covers the subtle labelled transition system for 𝜋-calculus.590

We also consider refining our signatures so as to enlarge the category of models and allow the591

monad and state functors to vary. Finally, it would be relevant to prove general theorems592

about the transition monads that we now know how to generate, typically about sufficient593

conditions for bisimilarity to be a congruence [20].594
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A Proof of Proposition 50684

In this section, we show that given any family (𝜌𝑖)𝑖 of binding (𝑇,𝑀)-rules, the coproduct685

endofunctor ∐𝑖 Σ𝜌𝑖 on 𝑇 -Mod /𝑀 is finitary, where 𝑇 is a fixed monad and 𝑀 a fixed686

𝑇-module.687

As coproducts of finitary functors are finitary, it is enough to show that given one (𝑇,𝑀)-688

rule 𝜌, the endofunctor Σ𝜌 is finitary. Such a rule comes with a conclusion module morphism689

𝑉 → 𝑀𝜏, and a list of premise module morphisms (𝑉 → 𝑀(𝑝𝑖)𝜎𝑖 )𝑖∈𝑛.690

Note that Σ𝜌 = 𝐹 ⋅ 𝐲𝜏, where 𝐹(𝑅
𝜕
−→ 𝑀) is the composite 𝑃 → 𝑉 → 𝑀𝜏 in (1). More691

precisely, let 𝒟 𝜌 ∶ 𝑇0 -Mod(𝐒𝐞𝐭𝕊) → 𝑇0 -Mod(𝐒𝐞𝐭) map any 𝑇0-module 𝑊 to ∏𝑖∈𝑛 𝑊
(𝑝𝑖)𝜎𝑖 . The692

functor 𝐹 is the composite693

𝑇0 -Mod(𝐒𝐞𝐭)/𝒟 𝜌(𝑀) 𝑇0 -Mod(𝐒𝐞𝐭)/𝑉

𝑇0 -Mod(𝐒𝐞𝐭𝕊)/𝑀 𝑇0 -Mod(𝐒𝐞𝐭)/𝑀𝑠.
𝒟𝜌/𝑀

Δ(⟨𝑃𝑖⟩𝑖)𝐸

∑𝐶𝐸
694

where 𝒟 𝜌/𝑀 maps any 𝜕∶ 𝑅 → 𝑀 to 𝒟 𝜌(𝜕) ∶ 𝒟 𝜌(𝑅) → 𝒟 𝜌(𝑀), and Δ and ∑ respectively695

denote pullback and postcomposition functors.696

Now, Σ𝜌 is a composite of four functors, three of which are left adjoints (because we697

restrict to finitary), hence readily finitary. It remains to show that the fourth factor,698

𝒟 𝜌/𝑀, is finitary. Because the domain functors 𝑇0 -Mod(𝐒𝐞𝐭𝕊)/𝑀 → 𝑇0 -Mod(𝐒𝐞𝐭𝕊) and699

𝑇0 -Mod(𝐒𝐞𝐭)/𝒟 𝜌(𝑀) → 𝑇0 -Mod(𝐒𝐞𝐭) create colimits, this reduces to 𝒟 𝜌 being finitary.700

But finitary functors are closed under finite products, so, because colimits are pointwise in701

presheaf categories, this in turn reduces to each (−)(𝑝) being finitary, which follows from their702

being left adjoints. (They may be viewed as precomposition with an endofunctor of 𝐊𝐥(𝑇0),703

hence admit a right adjoint given by right Kan extension.)704
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