
HAL Id: hal-02338144
https://hal.science/hal-02338144v1

Preprint submitted on 29 Oct 2019 (v1), last revised 1 Sep 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modules over monads and operational semantics
André Hirschowitz, Tom Hirschowitz, Ambroise Lafont

To cite this version:
André Hirschowitz, Tom Hirschowitz, Ambroise Lafont. Modules over monads and operational se-
mantics. 2019. �hal-02338144v1�

https://hal.science/hal-02338144v1
https://hal.archives-ouvertes.fr

Modules over monads and operational semantics

André Hirschowitz1, Tom Hirschowitz2, and Ambroise Lafont3

1 Université Côte d’Azur, CNRS, France, ah@unice.fr
2 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry,

France, tom.hirschowitz@univ-smb.fr
3 IMT Atlantique, Inria, LS2N CNRS, 44307, Nantes, France,

ambroise.lafont@inria.fr

Abstract. This paper is a contribution to the search for efficient and
high-level mathematical tools to specify and reason about (abstract)
programming languages or calculi. Generalising the reduction monads
of Ahrens et al., we introduce operational monads, thus covering new
applications such as the 𝜋-calculus, Positive GSOS specifications, and
the big-step, simply-typed, call-by-value 𝜆-calculus. Finally, we design a
notion of signature for operational monads that covers all our examples.

1 Introduction

The search for a mathematical notion of programming language goes back at
least to Turi and Plotkin [33], who coined the name “Mathematical Operational
Semantics”, and explained how known classes of well-behaved rules for structural
operational semantics, such as GSOS [10], can be categorically understood and
specified via distributive laws and bialgebras. Their initial framework did not
cover variable binding, and several authors have proposed variants which do [16,
15, 31], treating examples like the 𝜋-calculus. However, none of these approaches
covers higher-order languages like the 𝜆-calculus.

In recent work, following previous work on modules over monads for syntax
with binding [20, 4], Ahrens et al. [5] introduce reduction monads, and show how
they cover several standard variants of the 𝜆-calculus. Furthermore, as expected
in similar contexts, they propose a mechanism for specifying reduction monads
by suitable signatures.

Our starting point is the fact that already the call-by-value 𝜆-calculus does
not form a reduction monad. Indeed, in this calculus, variables are placeholders
for values but not for 𝜆-terms; in other words, reduction concerns general terms
but is stable under substitution by values only.

In the present work, we generalise reduction monads to what we call op-
erational monads4. Let us explain the basic intuitions. Monads have long been
recognised as a suitable notion for modelling syntax with substitution, especially
in the presence of binding, so a monad 𝑇 is thought of as modelling terms of
the considered language. Reductions, however, are of a different nature, as their
4 Our operational monads are markedly different from Turi and Plotkin’s [33, §5]

2 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

variables are placeholders for terms (as opposed to reductions): they form what
is called a 𝑇-module 𝑅. Such considerations led Ahrens et al. to define a reduction
monad to consist of a monad 𝑇, equipped with a span 𝑇 𝑠←− 𝑅 𝑡−→ 𝑇 of 𝑇-module
morphisms, where 𝑠 and 𝑡 give the source and target of any reduction.

Our generalisation is quite mild: an operational monad is a span 𝑆1 ← 𝑅 → 𝑆2
of 𝑇-modules, where 𝑆1 and 𝑆2 should be free, in the sense of being of the form
𝑆𝑖 ∘ 𝑇, for some functors 𝑆𝑖, 𝑖 = 1, 2, called the configuration functors. Reduction
monads are obtained by taking 𝑆1 and 𝑆2 to be just 𝑇. In the case of the call-by-
value 𝜆-calculus, 𝑇 is the monad of values, and 𝑆1 and 𝑆2 both are the module
of 𝜆-terms (in big-step style, 𝑆2 is the module of values, see §7). As a first result,
we prove that, just like reduction monads, operational monads can be seen as
relative monads (Theorem 2).

We then investigate the issue of specification, or presentation, i.e., the gener-
ation of operational semantics from more basic data. However, specifying an op-
erational monad is quite intricate, as it involves specifying the underlying monad
𝑇, both configurations functors 𝑆1 and 𝑆2, and finally the span 𝑆1 ← 𝑅 → 𝑆2. For
this reason, we introduce a general notion of signature 𝒮 over any category 𝒞 ,
which induces a category 𝒞𝒮 of models and a forgetful functor 𝒰𝒮 ∶ 𝒞𝒮 → 𝒞 .
As in initial semantics [25, 9], the initial object of 𝒞𝒮 , when it exists, is thought
of as presented by 𝒮 and inherits a kind of abstract induction principle. In this
case, 𝒮 is deemed effective.

A crucial point for modelling the dependency of transition rules on the syn-
tax is that signatures compose: denoting by 𝒮 ∶ 𝒞 ℰ the fact that ℰ = 𝒞𝒮 ,

this means that given any 𝒞1
𝒮1 𝒞2

𝒮2 𝒞3, there is a compound signature

𝒞1
𝒮2∘𝒮1 𝒞3. We exploit this in §4.3 through a general contruction, as follows.

We assume given an arbitrary functor 𝑝∶ 𝒳 → ℬ , in our case the forgetful
functor 𝐩 mapping any operational monad to the underlying monad and config-
uration functors, and any effective signature 𝒮 over ℬ . We then show that 𝒮
lifts to a signature, say 𝒮 ′, on 𝒳 , and introduce (𝑝,𝒮)-vertical endofunctors
Σ on 𝒳 𝒮 ′ . We further show that any such pair (𝒮 ,Σ) induces a signature for
𝒳 , and call the class of signatures so obtained vertical. We finally prove that,
under suitable hypotheses which hold in the case of operational monads with 𝐩,
finitary vertical signatures are effective (Theorem 4).

Returning to the announced examples, we now want to specify them by ver-
tical signatures, so we start in §5 by designing classes of effective signatures
𝒮 for monads and configuration functors, exploiting the abundant literature
on this topic. We should then construct a suitable (𝐩,𝒮)-vertical endofunctor
for each example, but such endofunctors are rather abstract, so we introduce in
§6 a notion of transition rule, close in spirit to standard operational semantics.
We further show that any family of transition rules generates a finitary (𝐩,𝒮)-
vertical endofunctor. Thus, calling operational specification any pair of an effec-
tive signature 𝒮 and a family of such transition rules, we obtain (Corollary 1)
that the signature induced by any operational specification is effective. Finally,
we provide operational specifications for the 𝜆𝜇-calculus [19], pure 𝜆-calculus,

Modules over monads and operational semantics 3

the 𝜋-calculus [30] given as a reduction (= unlabelled transition) relation, and
even any Positive GSOS specification [10]. We cover the more advanced case of
call-by-value, simply-typed 𝜆-calculus in big-step style in §7.

Summary of contributions Our main contributions are thus

1. the notion of operational monad for modelling operational semantics;
2. the characterisation of operational monads as relative monads (Theorem 2);
3. the general notion of signature (Definition 10) and the effectiveness result

for vertical signatures (Theorem 4);
4. the notion of operational specification and the associated effectiveness result

(Corollary 1);
5. the detailed treatment of significant examples, notably the call-by-value,

simply-typed 𝜆-calculus in big-step style.

Related work Beyond the already evoked related work [5, 33], we partly build
on the extensive literature on specifying syntax with variable binding [13, 4, 11,
12]. There is also a solid body of work on categorical approaches to rewriting
with variable binding [18, 22, 2], which only covers transition relations that
are stable under arbitrary contexts. Furthermore, Hirschowitz [24] proposes an
alternative categorical approach to operational semantics, which is however only
equipped with an insufficiently expressive specification technique [23], and has
not yet been shown to apply to higher-order languages.

Regarding signatures, some authors [14, 8, 17] use notions of signatures in-
volving some form of type dependency, which may be amenable to describing the
dependency of transitions on terms and configurations. However, to our knowl-
edge, these notions have never been applied to general operational semantics.

Finally, most of the material presented here is extracted from the third au-
thor’s forthcoming PhD thesis [28].

Plan We first introduce operational monads in §2, and establish the link with
relative monads in §3. In §4, we introduce our notion of signature and define
the class of vertical signatures, and establish the effectiveness result. Building on
the literature, we then devote §5 to constructing effective signatures for monads
and functors. We continue in §6 by introducing operational specifications, and
showing that they give rise to effective signatures. We exploit this in §7 to cover
our main example, call-by-value, simply-typed 𝜆-calculus. Finally, we conclude
and give some perspectives in §8.

2 Operational monads

In this section, we introduce the main new mathematical notion of the paper,
operational monads, which was already motivated by the case of call-by-value,
simply-typed 𝜆-calculus in §1. Let us start with a further motivating example.

4 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

Example 1. Consider the 𝜆𝜇-calculus of [19]. Its grammar is given by

𝑐 ∶ ∶ = ⟨𝑒|𝜋⟩ Processes
𝑒 ∶ ∶ = 𝑥 | 𝜇𝛼.𝑐 | 𝜆𝑥.𝑒 Programs
𝜋 ∶ ∶ = 𝛼 | 𝑒 ⋅ 𝜋 Stacks,

where 𝛼 and 𝑥 range over two disjoint sets of variables, called stack and program
variables respectively. Both constructions 𝜇 and 𝜆 bind their variable in the
body. There are two reduction rules:

⟨𝜇𝛼.𝑐|𝜋⟩ → 𝑐[𝛼 ↦ 𝜋] ⟨𝜆𝑥.𝑒|𝑒′ ⋅ 𝜋⟩ → ⟨𝑒[𝑥 ↦ 𝑒′]|𝜋⟩.

This may be organised in three layers: first, one defines the syntax, consisting of
programs and stacks; then, one defines the set of configurations for the reduction
relation, here processes (= pairs of a program and a stack); finally, one defines
the reduction relation, as a graph over configurations.

The syntax may be modelled as a monad 𝑇 on the category 𝐒𝐞𝐭2: 𝑇 maps
any pair 𝑋 = (𝑋𝐭, 𝑋𝐬) to the pair (𝑇𝐭(𝑋), 𝑇𝐬(𝑋)), where 𝑇𝐭(𝑋) denotes the set of
programs with free program variables in 𝑋𝐭 and free stack variables in 𝑋𝐬, and
similarly 𝑇𝐬(𝑋) denotes the set of stacks with free variables in 𝑋. Processes are
then modelled by the functor 𝑆 ∘ 𝑇, where 𝑆∶ 𝐒𝐞𝐭2 → 𝐒𝐞𝐭 maps any (𝑋𝐭, 𝑋𝐬) to
𝑋𝐭 × 𝑋𝐬. Reductions of processes with free variables in 𝑋 then form a graph
with vertices in 𝑆(𝑇(𝑋)), i.e., a set 𝑅(𝑋) of edges, equipped with a set map
𝑅(𝑋) → 𝑆(𝑇(𝑋))2. As already mentioned, both (𝑆 ∘𝑇)2 and 𝑅 are 𝑇-modules [32],
in the sense that they support substitution by programs and stacks. The former
is even free in the sense of Lemma 1 below.

Let us recall the definition of modules, and then introduce two constructions
on them that finally lead to the definition of operational monads.

We fix categories 𝒞 and ℰ for the rest of this section.

Definition 1. Let 𝑇 be a monad over 𝒞 . A finitary, ℰ -valued 𝑇-module is a
finitary functor 𝑀∶ 𝒞 → ℰ equipped with a 𝑇-action, i.e., a natural transfor-
mation 𝜌∶ 𝑀 ∘ 𝑇 → 𝑀 making both of the following diagrams commute.

𝑀 ∘ 𝑇 ∘ 𝑇 𝑀 ∘ 𝑇

𝑀 ∘ 𝑇 𝑀

𝑀∘𝜇

𝜌∘𝑇

𝜌

𝜌

𝑀 ∘ id𝒞 𝑀 ∘ 𝑇

𝑀

𝑀∘𝜂

𝜌

Finitary, ℰ -valued 𝑇-modules form a category 𝑇 -Mod𝜙(ℰ) (or just 𝑇 -Mod𝜙
when ℰ is clear), whose morphisms are natural transformations commuting with
the action in the obvious sense.

Lemma 1. The forgetful functor 𝑇 -Mod𝜙(𝒞 , ℰ) → [𝒞 ,ℰ]𝜙 to the (finitary)
functor category has a left adjoint, which maps any functor 𝐹 to 𝐹∘𝑇 with action
given by monad multiplication. The obtained module is denoted by 𝐹. Any module
isomorphic to some module of this form is deemed free. Similarly, any 𝑇-module
morphism of the form 𝛼 ∘ 𝑇 ∶ 𝑀1 → 𝑀2 is deemed free and denoted by 𝛼.

Modules over monads and operational semantics 5

Lemma 2. For any 𝑇-modules 𝑀,𝑁 ∶ 𝒞 → ℰ , the product 𝑀×𝑁 is a 𝑇-module,
with action (𝑀 × 𝑁) ∘ 𝑇 = 𝑀 ∘ 𝑇 × 𝑁 ∘ 𝑇 → 𝑀×𝑁.

Definition 2. An ℰ -valued operational monad on 𝒞 consists of a monad 𝑇 on
𝒞 , called the term monad, equipped with a span 𝑆1 ← 𝑅 → 𝑆2 of 𝑇-modules,
with 𝑆1 and 𝑆2 free.

Remark 1. The restriction to free modules makes the technical development eas-
ier, and is used for establishing the equivalence with relative monads.

Terminology 1. 𝑅, 𝑆1, and 𝑆2 are respectively called the transition, source, and
target modules, and the functors 𝑆1, 𝑆2 ∶ 𝒞 → ℰ underlying the free modules 𝑆1
and 𝑆2 are collectively called configuration functors. For compactness, we often
pretend that ℰ has products, and use pairings 𝑅 → 𝑆1 × 𝑆2 instead of spans.

Remark 1 In most cases that we consider, both configuration functors are equal:
𝑆1 = 𝑆2. Then, we speak about the configuration functor.

Let us now organise operational monads into a category. Observing that the as-
signment 𝑇 ↦ 𝑇 -Mod𝜙(ℰ) extends to a functor (−) -Mod𝜙(ℰ) ∶ 𝐌𝐧𝐝𝜙(𝒞)𝑜𝑝 →
𝐂𝐀𝐓 from finitary monads on 𝒞 to (locally small) categories, we put:

Definition 3. Let 𝑝𝒞 ,ℰ ∶ 𝐌𝐨𝐝𝜙(𝒞 , ℰ) → 𝐌𝐧𝐝𝜙(𝒞) denote the fibration corre-
sponding to the functor (−) -Mod𝜙(ℰ) under the Grothendieck construction [26].

This Grothendieck construction is detailed in Appendix A (see Lemma 9). Con-
cretely, 𝐌𝐨𝐝𝜙(𝒞 , ℰ) has as objects pairs (𝑇,𝑀), where 𝑇 is a finitary monad on
𝒞 and 𝑀 is a finitary, ℰ -valued 𝑇-module, and a morphism (𝑇,𝑀) → (𝑇′,𝑀′) is
a monad morphism 𝛽∶ 𝑇 → 𝑇′, together with a natural transformation 𝛼∶ 𝑀 →
𝑀′ making the square below left commute.

𝑀 ∘ 𝑇 𝑀′ ∘ 𝑇′

𝑀 𝑀′

𝛼∘𝛽

𝜌

𝛽

𝜌′
𝑅 𝑅′

𝑆1 × 𝑆2 𝑆′1 × 𝑆′2

𝛾

𝜕

𝛼1×𝛼2

𝜕′

Definition 4. Let 𝐎𝐌𝐧𝐝(𝒞 ,ℰ) denote the category of ℰ -valued operational
monads on 𝒞 , with as morphisms all monad morphisms 𝛽∶ 𝑇 → 𝑇′, equipped
with module morphisms 𝛼1, 𝛼2, 𝛾 making the square above right commute, where
𝛼1 and 𝛼2 are free.

Example 2. The call-by-value 𝜆- and 𝜆𝜇-calculi form operational monads, as
sketched above.

3 Operational monads as relative monads

In this section, we characterise operational monads as a category of relative
monads [7]. This fact is not used in later sections. Let us recall the standard
definition:

6 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

Definition 5. A monad 𝑇 relative to a given functor 𝐽 ∶ 𝒞 → 𝒟 consists of a
map 𝑇 ∶ 𝐨𝐛(𝒞) → 𝐨𝐛(𝒟), equipped with unit- and bind-like operations, mediated
by 𝐽:

– for any 𝐶 ∈ 𝒞 , a map 𝜂𝐶 ∈ 𝒟(𝐽(𝐶), 𝑇(𝐶)),
– for any 𝐶,𝐶′ ∈ 𝒞 and 𝑓 ∈ 𝒟(𝐽(𝐶), 𝑇(𝐶′)), a map 𝑓⋆ ∈ 𝒟(𝑇(𝐶), 𝑇(𝐶′)),

such that the following diagrams commute for all 𝐽(𝐶)
𝑓
−→ 𝑇(𝐶′) and 𝐽(𝐶′)

𝑔
−→

𝑇(𝐶″).

𝐽(𝐶) 𝑇(𝐶)

𝑇(𝐶′)

𝜂𝐶

𝑓 𝑓⋆
𝑇(𝐶) 𝑇(𝐶)

𝜂⋆𝐶

𝑇(𝐶) 𝑇(𝐶′)

𝑇(𝐶″)

𝑓⋆

(𝑔⋆∘𝑓)⋆ 𝑔⋆

A morphism (𝑇, 𝜂, (−)⋆) → (𝑇′, 𝜂′, (−)⋆′) consists of a family 𝛼𝐶 ∶ 𝑇(𝐶) → 𝑇′(𝐶)
of maps indexed by objects of 𝒞 , such that the following diagrams commute for
all 𝐶,𝐶′, and 𝑓 ∶ 𝐽(𝐶) → 𝑇(𝐶′).

𝐽(𝐶)

𝑇(𝐶) 𝑇′(𝐶)

𝜂𝐶 𝜂′𝐶

𝛼𝐶

𝑇(𝐶) 𝑇′(𝐶)

𝑇(𝐶′) 𝑇′(𝐶′)

𝛼𝐶

𝑓⋆

𝛼𝐶′

(𝛼𝐶′ ∘𝑓)⋆
′

Relative monads in particular induce functors 𝒞 → 𝒟 , and are deemed finitary
when the latter are.

Proposition 1. Finitary monads relative to 𝐽 and morphisms between them
form a category 𝐑𝐌𝐧𝐝(𝐽).
Now, assume ℰ has an initial object 0 and consider any functors 𝑆1, 𝑆2 ∶ 𝒞 → ℰ .
Furthermore, letting 𝑆 = 𝑆1 × 𝑆2, we consider the functor 𝐽𝑆 ∶ 𝒞 → ℰ /𝑆 maping
any 𝐶 to the unique map 0 → 𝑆(𝑋) viewed as an object of the comma category
ℰ /𝑆. A monad 𝑅 relative to 𝐽𝑆 maps any 𝐶 ∈ 𝒞 to some 𝜕𝑅

𝐶 ∶ 𝐸𝑅(𝐶) → 𝑆(𝑇𝑅(𝐶)).
The unit map on 𝐶 boils down to just a map 𝐶 → 𝑇𝑅(𝐶), and the bind map
turns any map 𝑓 ∶ 𝐶 → 𝑇𝑅(𝐶′) into maps 𝑓♯ and 𝑓⋆ making the following square
commute.

𝐸𝑅(𝐶) 𝐸𝑅(𝐶′)

𝑆(𝑇𝑅(𝐶)) 𝑆(𝑇𝑅(𝐶′))

𝑓♯

𝜕𝑅𝐶

𝑆(𝑓⋆)

𝜕𝑅𝐶′

This is precisely the structure needed to make 𝑇𝑅 into a monad, and 𝐸𝑅 into a
module over it, which the axioms ensure is indeed the case. We thus have:

Lemma 3. This defines an isomorphism 𝐑𝐌𝐧𝐝(𝐽𝑆) ≅ 𝐎𝐌𝐧𝐝(𝑆), where the
latter denotes the restriction of 𝐎𝐌𝐧𝐝(𝒞 ,ℰ) to the given functor 𝑆.

Proof. See Appendix C.

Modules over monads and operational semantics 7

In fact, the assignments 𝑆 ↦ 𝐎𝐌𝐧𝐝(𝑆) and 𝑆 ↦ 𝐑𝐌𝐧𝐝(𝐽𝑆) extend to functors
[𝒞 , ℰ]𝑜𝑝𝜙 → 𝐂𝐀𝐓. The total category (i.e., Grothendieck construction) of the
former is 𝐎𝐌𝐧𝐝(𝒞 ,ℰ). Letting 𝐑𝐌𝐧𝐝(𝒞 ,ℰ /−) denote the total category of the
latter, we obtain:

Theorem 2. Lemma 3 extends to an isomorphism

𝐎𝐌𝐧𝐝(𝒞 ,ℰ) 𝐑𝐌𝐧𝐝(𝒞 ,ℰ /−)

[𝒞 , ℰ]𝜙

≅

of Grothendieck fibrations over [𝒞 , ℰ]𝜙.

4 Signatures for operational monads

Now that we have characterised operational monads as relative monads, we turn
to specifying them, i.e., characterising them as initial objects in some suitable
category. The main difficulty is that given the successive layers of terms, equa-
tions, configurations, and transitions, the task may quickly look messy. We thus
start by introducing general signatures in §4.1 and present a few useful construc-
tions on them in §4.2. This provides us with a uniform framework for designing
in §4.3 our class of vertical signatures for operational monads, which we finally
prove are effective.

4.1 Signatures over a category

Definition 6. An arity for a category 𝒞 consists of a category 𝒟 , together with

functors 𝒞 𝒟
𝑢

𝑝

𝑣

where 𝑢 and 𝑣 are sections of 𝑝, i.e., 𝑝 ∘ 𝑢 =

𝑝 ∘ 𝑣 = id𝒞 . An action of an arity 𝐴 = (𝒟 , 𝑝, 𝑢, 𝑣) on an object 𝐶 of 𝒞 is a
morphism ℎ∶ 𝑢(𝐶) → 𝑣(𝐶) such that 𝑝(ℎ) = id𝐶.

The intuition here is that objects of 𝒟 are like objects of 𝒞 with bits of derived
additional data, 𝑝 being the forgetful functor, and that 𝑢(𝐶) and 𝑣(𝐶) specify
potentially different additional data for any given object 𝐶.

Example 3. For a standard algebraic operation of arity 𝑛 on sets (i.e., 𝒞 = 𝐒𝐞𝐭),
we would take 𝒟 = 𝐒𝐞𝐭 × 𝐒𝐞𝐭, with 𝑝 the first projection, and for 𝑢 and 𝑣

the functors 𝐒𝐞𝐭 𝐒𝐞𝐭 × 𝐒𝐞𝐭,
⟨id,Δ𝑛⟩

⟨id,id⟩
where Δ𝑛(𝑋) = 𝑋𝑛 by definition, so that

𝑢(𝑋) = (𝑋,𝑋𝑛) and 𝑣(𝑋) = (𝑋,𝑋). Because of the condition that 𝑝(ℎ) = id𝐶, an
action of this arity on any set 𝑋 boils down to a mere map 𝑋𝑛 → 𝑋.

8 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

Example 4. More generally, any endofunctor 𝐹 ∶ 𝒞 → 𝒞 corresponds to the arity
(𝒞 2, 𝑝1, ⟨id, 𝐹⟩, ⟨id, id⟩), where 𝑝1 denotes the first projection, in the sense that
actions are exactly 𝐹-algebras.
Of course, we can organise actions into a category:
Definition 7. Let 𝐸 be a family of arities over 𝒞 . The category 𝒞 𝐸 of models
of 𝐸 has as objects all 𝐶 ∈ 𝒞 equipped with an action of each arity in 𝐸, and as
morphisms (𝐶1, ℎ1) → (𝐶2, ℎ2) those morphisms 𝑓 ∶ 𝐶1 → 𝐶2 that commute with
actions in the obvious sense. Let 𝒰𝐸 ∶ 𝒞 𝐸 → 𝒞 denote the forgetful functor.
Remark 2. The category 𝒞 𝐴 of models of an arity 𝐴 = (𝒟 , 𝑝, 𝑢, 𝑣) is the in-
serter [27] of (𝑢, 𝑣) in the 2-category of functors to 𝒞 , commutative triangles,
and transformations that become the identity upon post-composition with 𝑝.
Example 5. A morphism between two actions of the arity of Example 3 is just a
map preserving the operation. A morphism between two actions of the arity of
Example 4 is an algebra morphism.

An important point about arities is that, although they seem designed for
specifying operations, they are expressive enough to specify equations. In order
to explain this, let us recall:
Definition 8. The fibre 𝑝−1(𝑐) of a functor 𝑝∶ 𝒟 → 𝒞 over any 𝐶 ∈ 𝒞 is the
subcategory of 𝒟 spanning objects mapped to 𝐶 and morphisms mapped to id𝐶
by 𝑝.
Definition 9. An arity (𝒟 , 𝑝, 𝑢, 𝑣) over 𝒞 is said equational if 𝑝 is discrete,
i.e., its fibres are discrete categories.

Remark 2 An action of an equational arity (𝒟 , 𝑝, 𝑢, 𝑣) on an object 𝐶 ∈ 𝒞 is
always an identity morphism. Thus, 𝐶 is equipped with an action if and only if
𝑢(𝐶) = 𝑣(𝐶). Any morphism is then a morphism between actions.

The crucial point of our signatures is their simple mechanism for specifying
sort dependency. The idea is to define signatures as sequences of families of
arities, each family over the category of models of the previous one.
Notation 3. Let 𝐸∶ 𝒞 𝒟 mean that 𝒟 = 𝒞 𝐸.
Definition 10. A signature 𝑆 over a category 𝒞 is a finite sequence

𝒞 = 𝒞0
𝐸0 𝒞1…𝒞𝑖

𝐸𝑖 𝒞𝑖+1…𝒞𝑛,

which we denote by 𝑆∶ 𝒞 𝒞𝑛. The empty sequence is called the empty signa-
ture.

The category of models 𝒞 𝑆 is 𝒞 if 𝑆 is empty, and 𝒞 𝐸𝑛𝑛 otherwise, with
forgetful functor 𝒰𝑆 given by the composite

𝒞 𝐸𝑛𝑛
𝒰𝐸𝑛
−−−−→ 𝒞 𝐸𝑛−1

𝑛−1
𝒰𝐸𝑛−1
−−−−−→ … 𝒰𝐸1

−−−−→ 𝒞 𝐸0
0

𝒰𝐸0
−−−−→ 𝒞0 = 𝒞 .

Definition 11. A signature 𝑆 is effective if its category of models has an initial
object 𝑆𝑐⋆ .

Modules over monads and operational semantics 9

4.2 Combining signatures

Signatures may be combined in several useful ways. The first, easiest way is
composition:

Definition 12. For any signatures 𝒞 𝑆 𝒟 𝑇 ℰ with 𝑆 = (𝐸0, …, 𝐸𝑚) and
𝑇 = (𝐹0, …, 𝐹𝑛), let 𝑇 ∘ 𝑆 denote the composite signature (𝐸0, …, 𝐸𝑚, 𝐹0, …, 𝐹𝑛)

We may also reindex signatures along functors:

Lemma 4. Given any functor 𝐹 ∶ 𝒞 ′ → 𝒞 and signature 𝑆 over 𝒞 , there is a
signature 𝐹∗(𝑆) whose category of models is the pullback

(𝒞 ′)𝐹∗(𝑆) 𝒞 𝑆

𝒞 ′ 𝒞 .

𝐹𝑆

𝒰𝐹∗(𝑆)

𝐹

𝒰𝑆 (1)

Proof. For any arity (𝒟 , 𝑝, 𝑢, 𝑣) over 𝒞 , we take the pullback 𝐹∗(𝑝) is of 𝐹 and
𝑝, as suggested by the notation, and the relevant sections 𝑢′ and 𝑣′ follow by
universal property, as in the diagram below. The rest follows inductively.

𝒞 ′ 𝒞

𝒟 ′ 𝒟

𝒞 ′ 𝒞 .

𝐹

𝑢′ 𝑢

𝑑

𝐹∗(𝑝)

𝐹

𝑝

We may finally combine both operations to obtain the following effect.

Proposition 2. Consider signatures 𝑆1 and 𝑆2 on 𝒞1 and 𝒞2, respectively.
There is a signature 𝑆1 ⊗ 𝑆2 on 𝒞1 × 𝒞2 such that (𝒞1 × 𝒞2)𝑆1⊗𝑆2 = 𝒞 𝑆1

1 × 𝒞 𝑆2
2 ,

which is effective if 𝑆1 and 𝑆2 are.

Proof. Using Lemma 4, we first obtain a signature 𝑝∗1𝑆1 ∶ 𝒞1 × 𝒞2 𝒞 𝑆1
1 × 𝒞2.

Then, reindexing 𝑆2 along the second projection 𝑝2 ∶ 𝒞
𝑆1
1 × 𝒞2 → 𝒞2, we obtain

𝑝∗2𝑆2 ∶ 𝒞
𝑆1
1 × 𝒞2 𝒞 𝑆1

1 × 𝒞 𝑆2
2 , as desired. Effectiveness follows directly.

4.3 Vertical signatures

Let us now introduce the more complex construction that will lead to our class
of effective signatures for operational monads.

The idea is to first specify terms and configurations, and then transitions. So
we want to start from a signature over the following category.

Definition 13. Let 𝐁(𝒞 ,ℰ) denote the category 𝐌𝐧𝐝𝜙(𝒞) × [𝒞 , ℰ]2𝜙 of triples
of a monad and two configuration functors.

10 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

Let 𝒮 denote any signature for 𝐁(𝒞 ,ℰ). The idea is to lift 𝒮 to 𝐎𝐌𝐧𝐝(𝒞 ,ℰ),
by reindexing along the forgetful functor 𝐩∶ 𝐎𝐌𝐧𝐝(𝒞 ,ℰ) → 𝐁(𝒞 ,ℰ), thus
yielding a signature 𝐩∗(𝒮) over 𝐎𝐌𝐧𝐝(𝒞 ,ℰ), and specify transitions as a sig-
nature over models of 𝐩∗(𝒮).

This may in fact be done abstractly, as follows.

Definition 14. Given a functor 𝑝∶ 𝒳 → ℬ and a signature 𝒮 over ℬ , a
(𝑝,𝒮)-vertical endofunctor is an endofunctor Σ on 𝒳 𝑝∗(𝒮) over ℬ𝒮 , i.e., such
that the following triangle commutes, where 𝑝𝒮 denotes the forgetful functor as
in (1).

𝒳 𝑝∗(𝒮) 𝒳 𝑝∗(𝒮)

ℬ𝒮

Σ

𝑝𝒮 𝑝𝒮

We expect the models of any (𝑝,𝒮)-vertical endofunctor Σ to be certain algebras:

Definition 15. For any functor 𝐹 ∶ 𝒞1 → 𝒞2, a morphism ℎ∶ 𝑥 → 𝑥′ in 𝒞1 is
vertical when 𝐹(ℎ) = id𝐹(𝑥).

The models of an (𝑝,𝒮)-vertical endofunctor Σ are those Σ-algebras whose
structure map is vertical in this sense.

Let us now show that any (𝑝,𝒮)-vertical endofonctor Σ induces a signature over
𝒳 𝑝∗(𝒮), whose models are vertical Σ-algebras. Indeed, defining 𝒟𝒮 and 𝜋𝒮 by
the pullback

𝒳 𝑝∗(𝒮)

𝒟𝒮 𝒳 𝑝∗(𝒮)

𝒳 𝑝∗(𝒮) ℬ𝒮 ,

Σ
𝑢Σ

𝜋′𝒮

𝜋𝒮

𝑝𝒮

𝑝𝒮

Σ induces the arity 𝐴𝒮 ,Σ ≔ (𝒟𝒮 , 𝜋𝒮 , 𝑢Σ, Δ), where 𝑢Σ denotes the displayed
mediating morphism and the diagonal functor Δ is defined similarly from the
trivial commuting square 𝑝𝒮 ∘ id = 𝑝𝒮 ∘ id. Let us note that giving a section
of 𝜋𝒮 is equivalent to giving an (𝑝,𝒮)-vertical functor 𝒳 𝑝∗(𝒮) → 𝒳 𝑝∗(𝒮). We
finally obtain our notion of vertical signature, by combining 𝒮 and Σ.

Definition 16. A signature over 𝒳 is 𝑝-vertical iff it has the shape 𝐴𝒮 ,Σ∘𝑝∗(𝒮)
for some effective signature 𝒮 over ℬ and (𝑝,𝒮)-vertical endofunctor Σ. It is
finitary when all restrictions Σ to fibres of 𝑝 are.

A vertical signature is a 𝑝-vertical signature for some 𝑝.

Here is thus our main effectiveness result:

Theorem 4. If 𝒳 has an initial object and 𝑝 is a Grothendieck fibration with
cocomplete fibres, then any finitary 𝑝-vertical signature is effective.

Modules over monads and operational semantics 11

Proof. One checks that the category of vertical algebras is fibered over the cat-
egory ℬ𝒮 . Thus, the initial object is the initial object in the initial fibre, so it
suffices to find an initial algebra for the endofunctor Σ restricted to the initial
fiber. This follows from finitarity by Adámek’s theorem [1].

Let us now show that the theorem applies to operational monads.

Lemma 5. The forgetful functor 𝐩∶ 𝐎𝐌𝐧𝐝(𝒞 ,ℰ) → 𝐁(𝒞 ,ℰ) is a Grothendieck
fibration whose fibres are cocomplete.

5 Specifying monads and functors

In §4, we have defined general vertical signatures, which instantiate to a class of
effective signatures for operational monads. We now want to exploit this by cov-
ering the announced examples. In preparation for this, we devote this section to
recasting existing techniques for specifying the underlying monad and configu-
ration functors as general signatures over the category 𝐁(𝒞 ,ℰ) of Definition 13.

First of all, by Proposition §2, taking as parameters the base category 𝒞
and the target category ℰ for configuration functors, giving effective signatures
𝒮0,𝒮1, and 𝒮2, respectively for 𝐌𝐧𝐝𝜙(𝒞), [𝒞 , ℰ]𝜙, and [𝒞 , ℰ]𝜙, automatically
yield an effective signature for 𝐁(𝒞 ,ℰ). We thus first consider monads in §5.1
and functors in §5.2. (More detail may be found in Appendices A and B.)

5.1 Specifying monads

In this section, we build on [11] to construct signatures for monads. Let 𝕀 be a
set of types.

Definition 17. A 𝕀-binding arity is a tuple ((𝑡1, 𝑢1), …, (𝑡𝑚, 𝑢𝑚), 𝑢) ∈ (𝕀⋆×𝕀)⋆×𝕀,
where, for any set 𝑋, 𝑋⋆ denotes the set of finite sequences of elements of 𝑋.
We denote such a tuple by

Θ 𝑡1𝑢1 × … × Θ 𝑡𝑚𝑢𝑚 ⇒ Θ𝑢.

An 𝕀-binding signature is a family of binding 𝕀-arities.

The intuition is that an operation of this arity takes 𝑚 arguments and returns a
result of type 𝑢. The 𝑖𝑡ℎ argument must be of type 𝑢𝑖 and binds 𝑛𝑖 variables of
types 𝑡𝑖 = (𝑡1𝑖 , …, 𝑡

𝑛𝑖
𝑖).

Example 6. We define an 𝕀-binding signature for 𝜆𝜇-calculus, with 𝕀 = {𝐭, 𝐬}: it
consists of three operations, ⋅, 𝜆, and 𝜇, with respective arities (Θ𝐭 ×Θ𝐬 ⇒ Θ𝐬),
(Θ 𝐭

𝐭 ⇒ Θ𝐭), and (Θ 𝐬
𝐭 × Θ 𝐬

𝐬 ⇒ Θ𝐭).

Following [6], any 𝕀-binding arity 𝐵 induces an arity for monads in the sense
of §4: we take as forgetful functor 𝑝𝐒𝐞𝐭𝕀,𝐒𝐞𝐭 ∶ 𝐌𝐨𝐝𝜙(𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭) → 𝐌𝐧𝐝𝜙(𝐒𝐞𝐭𝕀), so
with sections determined by

𝐵−(𝑇) = 𝑇𝑡1𝑢1 × … × 𝑇𝑡𝑚𝑢𝑚 and 𝐵+(𝑇) = 𝑇𝑢,

12 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

where for any 𝑀 ∈ 𝑇 -Mod𝜙(𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁), we define 𝑀𝑙⃗
𝑡 ∈ 𝑇 -Mod𝜙(𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭) by

𝑋 ↦ 𝑀(𝑋 + 𝐲𝑙⃗)𝜏, with 𝐲(𝑙1,…,𝑙𝑛) ≔ 𝐲𝑙1 + … + 𝐲𝑙𝑛 .

Theorem 5. The signature for finitary monads on 𝐒𝐞𝐭𝕀 induced by any 𝕀-binding
signature Σ has a model category 𝐌𝐧𝐝𝜙(𝐒𝐞𝐭𝕀)Σ equivalent to the category of
models of Σ in the sense of [11]. As a consequence, Σ is effective.

Example 7. For simply-typed 𝜆-abstraction, the source module of (Θ 𝐭
𝐭 ⇒ Θ𝐭)

maps any monad 𝑇 to 𝑇𝐭
𝐭 , and its target to 𝑇𝐭. Thus, a model comes equipped

with maps 𝑇(𝑋 + 1) → 𝑇(𝑋) for all sets 𝑋, which are natural in 𝑋. Operations
like (−)𝐭 may thus be thought of as introducing a fresh variable of type 𝐭.

Example 8. A model of the 𝕀-binding signature for 𝜆𝜇-calculus (Example 6) is
a finitary monad 𝑇 on 𝐒𝐞𝐭𝕀 with 𝑇-module morphisms (𝑇𝐭×𝑇𝐬 → 𝑇𝐬), (𝑇𝐭

𝐭 → 𝑇𝐭),
and (𝑇𝐬

𝐭 × 𝑇𝐬
𝐬 → 𝑇𝐭). Morphisms of models are monad morphisms commuting

with these module morphisms in the obvious sense.

Remark 3. We could generalise our approach by considering equations on terms,
as we do in the next section for configurations. But we refrain from doing it as
it is not needed in the covered examples.

5.2 Specifying functors

Let us now adapt binding arities for specifying objects of [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁]𝜙 (denoted
by 𝒞 in this section), that is, finitary functors 𝐒𝐞𝐭𝕀 → 𝐒𝐞𝐭𝕁, for any sets 𝕀 and 𝕁.
In order to cover the example of 𝜋-calculus, we need to be slightly more general
than with 𝕀-binding arities for monads. Calling 𝕀⋆ × (𝕀⋆ × 𝕁)⋆ × 𝕁 the set of
(𝕀, 𝕁)-binding arities and families thereof (𝕀, 𝕁)-binding signatures, as we did for
𝕀-binding arities, we may recast any (𝕀, 𝕁)-binding arity as a pair of sections of
the first projection functor 𝑝𝕀,𝕁 ∶ [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁]𝜙×[𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭]𝜙 → [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁]𝜙, which
amount to functors [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁]𝜙 → [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭]𝜙. Indeed, let us adapt the notation
for 𝕀-binding arities, denoting by Id𝑡 arguments of the shape 𝑡 ∈ 𝕀 and by Θ 𝑡⃗

𝑢
arguments in (𝕀⋆ × 𝕁)⋆ (where we omit 𝑢 if 𝕁 ≅ 1), any 𝐵 of the form

(Id𝑣1
× … × Id𝑣𝑝

× Θ 𝑡1𝑢1 × … × Θ 𝑡𝑚𝑢𝑚 ⇒ Θ𝑢)

corresponds to functors 𝐵−, 𝐵+ ∶ [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁]𝜙 → [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭]𝜙 with

𝐵−(𝑆)(𝑋) = 𝑋(𝑣1) × … × 𝑋(𝑣𝑝) × 𝑆(𝑋 + 𝐲𝑡1)(𝑢1) × … × 𝑆(𝑋 + 𝐲𝑡𝑚)(𝑢𝑚),

and 𝐵+(𝑆)(𝑋) = 𝑆(𝑋)(𝑢). Any (𝕀, 𝕁)-binding signature thus induces a signature,
still denoted by Σ, hence a category [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁]Σ𝜙 of models consisting of finitary
functors 𝐹 ∶ 𝐒𝐞𝐭𝕀 → 𝐒𝐞𝐭𝕁 equipped with an action 𝐵−(𝐹) → 𝐵+(𝐹), for each bind-
ing arity 𝐵 in Σ. Morphisms are natural transformations commuting with these
actions in the obvious sense.

Lemma 6. The signature induced by any (𝕀, 𝕁)-binding signature is effective.

Modules over monads and operational semantics 13

Example 9. The configuration functor for 𝜆𝜇-calculus has 𝕀 = {𝐭, 𝐬}, 𝕁 = 1, and
just one arity, Id𝐭× Id𝐬 ⇒ Θ. Models are just given by the coslice under Id𝐭 × Id𝐬.

Example 10. Let us now consider the 𝜋-calculus [30, §1.1 and 1.2], omitting
sums and silent actions for readability. As explained in §1, terms should be
the things by which we substitute, i.e., in this case, mere channels. The monad
should thus be the identity monad, that is, the initial monad, which is specified
by the empty binding signature. Furthermore, since reduction relates processes,
the latter should be considered as configurations, in the sense that 𝑆1(𝑋) and
𝑆2(𝑋) should both be the set of processes with free channels in 𝑋.

We may specify this as follows. First of all, in this case 𝕀 = 𝕁 = 1, so binding
arities boil down to a natural number 𝑝 in 1⋆, plus a sequence of natural numbers,
the successive lengths 𝑛⃗ = (𝑛1, …𝑛𝑞) of the relevant sequences of the unique
element of 1. We denote such an arity by (Id𝑝 ×Θ (𝑛1) ×…×Θ (𝑛𝑞) ⇒ Θ) where 𝑛𝑖
is omitted if null, 𝑝 is omitted if equal to 1, and Id𝑝 is omitted if 𝑝 is null.

Using this notation, e.g., input 𝑎(𝑏).𝑃 has as (1, 1)-binding arity Id×Θ (1) ⇒ Θ,
parallel composition 𝑃|𝑄 has arity Θ×Θ ⇒ Θ, and output 𝑎⟨𝑏⟩.𝑃 has arity Id2×
Θ ⇒ Θ. Models correspond to functors 𝑆 equipped with natural transformations
𝑋 × 𝑆(𝑋 + 1) → 𝑆(𝑋), 𝑆(𝑋)2 → 𝑆(𝑋), and 𝑋2 × 𝑆(𝑋) → 𝑆(𝑋).

In order to fully specify the 𝜋-calculus, however, we need to quotient out
processes by equations such as associativity of parallel composition

𝑃|(𝑄|𝑅) ≡ (𝑃|𝑄)|𝑅. (2)

The following notion of equation allows to do just this. Equation (2) may be
decomposed into its metavariables, 𝑃, 𝑄, and 𝑅, and two metaterms, the left- and
right-hand sides. In this case, viewing the (non-quotiented) syntax as specified
by a (1, 1)-binding signature Σ, we think of metavariables as the domain of the
binding arity 𝐵 = (Θ × Θ × Θ ⇒ Θ). Then, 𝐵− ∶ [𝐒𝐞𝐭, 𝐒𝐞𝐭]𝜙 → [𝐒𝐞𝐭, 𝐒𝐞𝐭]𝜙 maps
any endofunctor 𝑆 and set 𝑋 to 𝑆(𝑋)3. A metaterm then should associate to any
𝑆 ∈ 𝒞 with Σ-model structure a natural transformation 𝐵−(𝑆) → 𝐵+(𝑆). In the
general case, this yields:
Definition 18. Given a (𝕀, 𝕁)-binding signature Σ over 𝒞 = [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁]𝜙 with
𝒰Σ ∶ 𝒞 Σ → 𝒞 the forgetful functor, a Σ-equation 𝑢 = 𝑣∶ 𝐵 consists of a (𝕀, 𝕁)-
binding arity 𝐵 together with two natural transformations 𝑢, 𝑣 ∶ 𝐵−∘𝒰Σ → 𝐵+∘𝒰Σ

called the metaterms.

Remark 4. In the untyped case, we have 𝐵+(𝑆)(𝑋) = 𝑆(𝑋), so 𝐵+ = Id and hence
𝐵+ ∘ 𝒰Σ ≅ 𝒰Σ.

Example 11. The equations of structural equivalence [30, Table 1.1] may be en-
coded in this way. For (2), the involved metaterms 𝐵− ∘𝒰Σ → 𝐵+ ∘𝒰Σ at any Σ-
model 𝑆 have components 𝑆(𝑋)3 → 𝑆(𝑋) mapping any triple (𝑃,𝑄, 𝑅) to (𝑃|𝑄)|𝑅
and 𝑃|(𝑄|𝑅), where | follows from the Σ-model structure of 𝑆. Other equations
are treated similarly, the only subtle one being 𝜈𝑎.(𝑃|𝑄) ≡ (𝜈𝑎.𝑃)|𝑄 when 𝑎 ∉ 𝑄.
For this, the relevant binding arity 𝐵 is Θ (1) × Θ ⇒ Θ for the metavariables 𝑃
and 𝑄, and the metaterms have components at 𝑆 and 𝑋 given by

14 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

𝑆(𝑋 + 1)2 𝑆(𝑋 + 1)
𝑆(𝑋 + 1) × 𝑆(𝑋) 𝑆(𝑋).

𝑆(𝑋)2

𝑆(𝑋+1)×𝑆(𝑖𝑛𝑙) |
𝜈

𝜈×𝑆(𝑋) |

Proposition 3. Any (𝕀, 𝕁)-binding signature Σ with a family (𝑢𝑖 = 𝑣𝑖 ∶ 𝐵𝑖)𝑖∈𝐼 of
Σ-equations induces an effective general signature for 𝒞 whose models are exactly
those models 𝑀 of Σ such that 𝑢𝑖𝑀 = 𝑣𝑖𝑀 for all 𝑖.

Proof. The proof, detailed in Appendix B, consists in rephrasing these construc-
tions in terms of equational systems [12], and exploiting [12, Theorem 5.1 (1)].
The induced signature is a composite of two arities. The first component is
the one induces by Σ. The second component consists of the equational arity
(𝒟 , 𝑝, 𝑢, 𝑣) induced by a single equation 𝑢 = 𝑣 ∶ 𝐵: 𝒟 is the category consisting
of finitary functors 𝐹 ∶ 𝐒𝐞𝐭𝕀 → 𝐒𝐞𝐭𝕁 equipped with a Σ-model structure, and a
natural transformation 𝐵−(𝐹) → 𝐵+(𝐹). The forgetful functor 𝑝 returns the un-
derlying Σ-model, while 𝑢 and 𝑣 respectively assign to each model 𝐹 of Σ the
natural transformations 𝑢𝐹 and 𝑣𝐹.

6 Transition rules

In this section, we design of way of presenting the (𝑝,𝒮)-vertical endofunctors
of §4.3, akin to transition rules in the sense of operational semantics. We then
introduce notation for it, which allows us to cover examples more conveniently
in §7.

For this section, we restrict to cases where 𝒞 = 𝐒𝐞𝐭𝕀 and ℰ = 𝐒𝐞𝐭𝕁, and
assume given a signature 𝒮 for the category 𝐁(𝒞 ,ℰ) of Definition 13. Typically,
𝕁 = 𝕀, or 𝕁 ≅ 1, and then ℰ ≅ 𝐒𝐞𝐭. Consider, e.g., the left congruence rule of
untyped 𝜆-calculus (then, 𝕀 = 𝕁 = 1)

𝑀 → 𝑀′

𝑀 𝑁 → 𝑀′ 𝑁 ⋅ (3)

In the spirit of equations in §5.2, it may be decomposed into metavariables,
a sequence of premises, and a conclusion. Metavariables will be modelled as 𝒮 -
modules, and premises and conclusion as pairs of metaterms, in the following
sense.

Definition 19. An 𝒮 -module is any functor 𝒱 ∶ 𝐁(𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁)𝒮 → 𝐌𝐨𝐝𝜙(𝒞 , 𝐒𝐞𝐭)
over 𝐌𝐧𝐝𝜙(𝒞), i.e., preserving the underlying monad.

A metaterm 𝒱 → 𝒱 ′ consists of a vertical natural transformation 𝛼, i.e.,
one such that 𝑝𝒞 ,ℰ ∘ 𝛼 = id𝒰 , where 𝒰 = 𝜋1 ∘ 𝒰𝒮 .

Example 12. Rule (3) comprises three metavariables 𝑀, 𝑀′, and 𝑁, so the
metavariable 𝒮 -module maps any (𝑇, 𝑆1, 𝑆2) to 𝑇3.

We may now introduce transition rules.

Modules over monads and operational semantics 15

Definition 20. A configuration pair (⃗𝑙, 𝜏, 𝑃) over 𝒱 consists of 𝑙⃗ ∈ 𝕀⋆ and

𝜏 ∈ 𝕁, together with a metaterm pairing 𝒱 𝑃−→ 𝜅𝑙⃗𝜏, where 𝜅(𝑇, 𝑆1, 𝑆2) = 𝑆1 × 𝑆2
(= 𝑆1 × 𝑆2). When 𝑙⃗ is empty, the configuration pair is deemed normal.

A transition rule (𝒱 , 𝐿, 𝐶) consists of an 𝒮 -module 𝒱 , together with a
sequence 𝐿 of premise configuration pairs and a conclusion normal configuration
pair 𝐶.

We may at last define:

Definition 21. An operational specification consists of an 𝕀-binding signature
𝒮1 and (𝕀, 𝕁)-binding signatures 𝒮2 and 𝒮3, equipped with a family of transition
rules over the tensor product 𝒮 = 𝒮1 ⊗𝒮2 ⊗𝒮3.

As announced, we now show that operational specifications induce signatures.

Lemma 7. Any operational specification ℛ gives rise to an (𝐩,𝒮)-vertical
endofunctor 𝐹ℛ , which is finitary on all fibres.

Proof. Let us fix 𝐵 = (𝑇, 𝑆1, 𝑆2) ∈ 𝐁(𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁)𝒮 , and describe the restriction of
the endofunctor 𝐹ℜ induced by any transition rule ℜ = (𝒱 , 𝐿, 𝐶) on the fibre
over 𝐵, i.e., the slice category 𝒳 /𝜅(𝐵), where 𝒳 = 𝑇 -Mod𝜙(𝐒𝐞𝐭𝕁).

First, each element 𝑃𝑖 of the sequence 𝐿 = (𝑃1, …, 𝑃𝑛) of premises is a configu-
ration pair 𝑃𝑖 ∶ 𝒱 −→ 𝜅(𝐵)𝑙𝑖𝜏𝑖 . Taking components at 𝐵 and letting ∇(𝐹) = ∏𝑖∈𝑛 𝐹

𝑙𝑖
𝜏𝑖 ,

we obtain the tupling 𝒱 (𝐵)
⟨𝑃𝑖𝐵⟩𝑖∈𝑛−−−−−−→ ∇(𝜅(𝐵)), which we denote by ⟨𝐿𝐵⟩. Now, by

the well-known adjunction (−)𝜏 ⊣ (−) ⋅ 𝐲𝜏, the conclusion 𝒱 𝐶−→ 𝜅(𝐵)𝜏 yields a

morphism 𝒱 (𝐵) ⋅ 𝐲𝜏
𝐶̌𝐵−−→ 𝜅(𝐵). We have thus constructed a span

∇(𝜅(𝐵)) ⋅ 𝐲𝜏
⟨𝐿𝐵⟩⋅𝐲𝜏←−−−−−− 𝒱 (𝐵) ⋅ 𝐲𝜏

𝐶̌𝐵−−→ 𝜅(𝐵) in 𝒳 .

Let now the (𝐩,𝒮)-vertical endofunctor 𝐹ℜ associated to ℜ be given over 𝐵 by
the composite

𝒳 /𝜅(𝐵)
∇⋅𝐲𝜏/𝜅(𝐵)−−−−−−−−→ 𝒳 /∇(𝜅(𝐵)) ⋅ 𝐲𝜏

Δ⟨𝐿𝐵⟩·𝐲𝜏−−−−−−−→ 𝒳 /𝒱 (𝐵) ⋅ 𝐲𝜏
∑𝐶̌𝐵−−−−→ 𝒳 /𝜅(𝐵), (4)

where Δ⟨𝐿𝐵⟩ denotes pullback along ⟨𝐿𝐵⟩ and ∑𝐶̌𝐵
postcomposition with 𝐶̌𝐵.

Similarly, the (𝐩,𝒮)-vertical endofunctor 𝐹ℛ associated to any family ℛ =
(ℜ𝑖)𝑖∈𝐼 of transition rules is the coproduct ∑𝑖 𝐹ℜ𝑖 .

Finally, to show that any 𝐹ℛ is finitary on fibres, it suffices to prove that each
𝐹ℜ𝑖 is, hence that each component of (4) is. But, exploiting the characterisation
of 𝑇-modules as covariant presheaves over the Kleisli category 𝐊𝐥(𝑇) of 𝑇 [21],
we obtain that 𝒳 is equivalent to the category of covariant presheaves over
𝐊𝐥(𝑇)𝑓 × 𝕁, where 𝐊𝐥(𝑇)𝑓 denotes the full subcategory of finitely presentable
objects. Thus, both ∑𝐶 and Δ⟨𝐿𝐵⟩ are left adjoints, hence in particular finitary.
But then, any forgetful functor from a slice creates colimits, so we reduce to

16 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

proving that ∇ is finitary. It is also well-known that filtered limits commute
with finite limits in 𝐒𝐞𝐭, hence in any presheaf category, so we further reduce to
proving that 𝑀 ↦ 𝑀𝑙⃗

𝜏 itself is, which clearly holds pointwise.

Corollary 1. Any operational specification induces an effective signature.

It may not be entirely clear at this stage that this construction produces
meaningful signatures. In the hope of rectifying this, let us introduce our notation
for transition rules and use it to cover some simple examples.

Any transition rule can be written as

𝑀1(𝑋⃗) ⇝ 𝑁1(𝑋⃗) ∶ 𝜏1 … 𝑀𝑛(𝑋⃗) ⇝ 𝑁𝑛(𝑋⃗) ∶ 𝜏𝑛
𝑀0(𝑋⃗) ⇝ 𝑁0(𝑋⃗) ∶ 𝜏0

,

where 𝑀𝑖 and 𝑁𝑖 are expressions depending on metavariables 𝑋⃗ = (𝑋1, …, 𝑋𝑞),
and 𝜏𝑖 ∈ 𝕁 (omitted when 𝕁 ≅ 1). Each pair (𝑀𝑖, 𝑁𝑖) defines a configuration pair

𝑃𝑖 ∶ Γ1 ×⋯× Γ𝑞 → (𝜎1)
𝑙𝑖𝜏𝑖 × (𝜎2)

𝑙𝑖𝜏𝑖
(𝑋1, …, 𝑋𝑞) ↦ (𝑀𝑖(𝑋1, … , 𝑋𝑞), 𝑁𝑖(𝑋1, … , 𝑋𝑞)),

where 𝑙0 = ∅, and the 𝒮 -modules Γ1, …, Γ𝑞, the sequences 𝑙1, …, 𝑙𝑛 are inferred
to make this well-defined for all 𝑖 ∈ {0, … , 𝑛}. The denoted reduction rule has as
𝒮 -module 𝒱 = Γ1 × … × Γ𝑞, and as premises and conclusion the configuration
pairs (𝑙⃗𝑖, 𝜏𝑖, 𝑃𝑖)𝑖∈{1,…,𝑛} and (∅, 𝜏0, 𝑃0). Typically, Γ𝑖 = Θ 𝑙⃗

𝑡 for 𝑙⃗ ∈ 𝕀⋆ and 𝑡 ∈ 𝕀.

Remark 5. A reduction rule written in this way remains ambiguous as one should
choose an ordering on metavariables for defining the relevant 𝒮 -module. How-
ever, all choices yield equivalent model categories.

Example 13 (Reduction rules for 𝜆𝜇-calculus). Consider the reduction rule

⟨𝜇𝛼.𝑐|𝜋⟩ → 𝑐[𝛼 ↦ 𝜋]

of 𝜆𝜇-calculus, recalling that in this case 𝕀 = {𝐭, 𝐬} and 𝕁 = 1. Furthermore, an
object 𝐵 = (𝑇, 𝑆1, 𝑆2) of 𝐁(𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁)𝒮 is in particular equipped with a 𝑇-module
morphism 𝜇∶ (𝑇𝐭 × 𝑇𝐬)𝐬 → 𝑇𝐭 corresponding to 𝜇-abstraction, and with natural
transformations ⟨⟩𝑖 ∶ (−)𝐭×(−)𝐬 → 𝑆𝑖, for 𝑖 = 1, 2. The rule may thus be understood
as ⟨𝜇(𝑐), 𝜋⟩1 ⇝ ⟨𝑐{∗𝐬 ↦ 𝜋}⟩2, where −{∗𝐬−} denotes substitution of the additional
variable ∗𝐬 from 𝐲𝐬. The 𝒮 -module 𝒱 is Θ 𝐬

𝐭 ×Θ 𝐬
𝐬×Θ𝐬 for (𝑐, 𝜋), as 𝑐 is a process,

i.e., a pair consisting of a program and a stack. The corresponding endofunctor
takes any operational monad 𝜕 ∶ 𝑅 → 𝑆1 × 𝑆2 and first computes the pullback
along ⟨𝐿𝐵⟩, which, because there are no premises, is the terminal morphism.
The resulting image is then 𝒱 (𝐵) itself. An algebra structure thus amounts to
a morphism ℎ making the following triangle commute.

(𝑇𝐭 × 𝑇𝐬)𝐬 × 𝑇𝐬 𝑅

(𝑆1 × 𝑆2) ∘ 𝑇

ℎ

(𝑐,𝜋)↦⟨⟨𝜇(𝑐),𝜋⟩1,⟨{∗𝐬↦𝜋}⟩2⟩ 𝜕

Modules over monads and operational semantics 17

Example 14. For an example with premises, recall the left congruence (3) rule of
(untyped) 𝜆-calculus. In this case, 𝑇 comes with a module morphism @∶ 𝑇2 → 𝑇
for application, and each 𝑆𝑖 comes with a natural transformation Id → 𝑆𝑖, which

we treat as implicit. The premise configuration pair 𝐻 is then 𝑇3 ⟨𝜋1,𝜋2⟩−−−−−−→ 𝑇2 ↪
𝑆1 ∘𝑇×𝑆2 ∘𝑇, and the pullback of 𝜕 ∶ 𝑅 → 𝑆1 ∘𝑇×𝑆2 ∘𝑇 along 𝐻 yields the module
𝐻∗(𝑅) such that for any set 𝑋, 𝐻∗(𝑅)(𝑋) consists of all tuples (𝑟,𝑀,𝑀′, 𝑁) with
𝑟 ∈ 𝑅(𝑋) a reduction, such that 𝜕(𝑟) = (𝑀,𝑀′). Algebra structure then amounts
to a morphism ℎ making the following square commute,

𝐻∗(𝑅) 𝑅

𝑇3 𝑇2 𝑆1 ∘ 𝑇 × 𝑆2 ∘ 𝑇

ℎ

𝐻∗(𝜕)

⟨@∘⟨𝜋1,𝜋3⟩,@∘⟨𝜋2,𝜋3⟩⟩

𝜕

i.e., mapping any such (𝑟,𝑀,𝑀′, 𝑁) so some reduction over (@(𝑀,𝑁), @(𝑀′, 𝑁)),
as desired.

Example 15. Without entering into such detail, recall from Examples 10 and 11
the binding signature and equations for the syntax of 𝜋-calculus modulo struc-
tural congruence, thought of as a configuration functor. From there, reduction
rules are easy:

𝑜𝑢𝑡(𝑎, 𝑏, 𝑥)|𝑖𝑛(𝑎, 𝑦) ⇝ 𝑥|(𝑦{∗ ↦ 𝑏})
𝑥 ⇝ 𝑥′

𝑥|𝑦 ⇝ 𝑥′|𝑦
𝑥 ⇝ 𝑥′

𝜈(𝑥) ⇝ 𝜈(𝑥′) ⋅

Example 16. Let us finally treat the case of GSOS rules [10], which differ from
previous examples in that they specify labelled transitions 𝑡 𝑎−→ 𝑢: the intuition
is that 𝑡 reduces to 𝑢, exchanging information 𝑎 with its environment. Fixing a
set 𝔸 of labels and a standard signature, i.e., a family of operations with arities
in ℕ (= untyped syntax, no binding), Positive GSOS rules have the shape

𝑥𝑖
𝑎𝑖,𝑗
−−→ 𝑦𝑖,𝑗

𝑜𝑝(𝑥1, …, 𝑥𝑛)
𝑐−→ 𝑀

,

where 𝑜𝑝 has arity 𝑛, the 𝑥𝑖’s and 𝑦𝑖,𝑗’s are pairwise distinct variables, and 𝑀 is a
term potentially depending on them. A Positive GSOS specification is a family
of such rules.

Apart from the labels, Positive GSOS rules look much like reduction rules
from §6. But in fact, taking 𝑆1 = Id and 𝑆2 = 𝔸× Id as configuration functors di-
rectly handles labels. Both functors are easily specified: 𝑆1 by just one operation
of arity Id ⇒ Θ and 𝑆2 by 𝔸 operations of the same arity.

Remark 6. Negative GSOS rules allow hypotheses of the form 𝑥 𝑎 𝑦, which may
prevent reductions from forming a module (by not being stable under substitu-
tion), hence do not fit into our framework in general.

18 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

7 Call-by-value, simply-typed 𝜆-calculus, big-step style
Let us finally consider the more advanced case of the call-by-value, simply-typed
𝜆-calculus in big-step style. As already mentioned, the monad should consist
of values. This requires us first to define values without having an application
operation at hand, and then to characterise general terms as a module over them
without an abstraction operation. Let first 𝕀 denote the set of simple types over
a fixed set of base types, and take 𝒞 = ℰ = 𝐒𝐞𝐭𝕀. We first specify the monad
𝑇 for values. The idea here is to encode each layer of applications by a single
operation @𝛽, where 𝛽 is the corresponding (well-typed) binary tree. Formally,
we postulate an operation 𝜆𝛽 ∶ Θ𝐴

𝐴1 × … × Θ𝐴
𝐴𝑛 ⇒ Θ𝐴→𝐵 for each typed binary

tree 𝐴1, …,𝐴𝑛 ⊢ 𝛽 ∶ 𝐵, as inductively defined by the rules

𝐵 ⊢ 𝐵 ∶ 𝐵
Γ ⊢ 𝛽1 ∶ 𝐶 → 𝐷 Δ ⊢ 𝛽2 ∶ 𝐶

Γ, Δ ⊢ 𝛽1 𝛽2 ∶ 𝐷
⋅

Example 17. The value 𝜆𝑦 ∶ 𝐴 → 𝐴 → 𝐵.(𝑦 𝑥) 𝑥 becomes 𝜆(𝐴→𝐴→𝐵) 𝐴 𝐴(∗, 𝑥, 𝑥),
where the variables 𝑥, ∗ ∈ {𝑥} + 1 are implicitly embedded by the monad unit 𝜂.
Let us now specify configuration functors. In big-step style, we are specifying an
evaluation relation, i.e., a relation between general terms and values. Thus, the
first configuration functor 𝑆, for general terms, is specified a bit like the value
monad, but without abstracting, i.e., by operations @𝛽 ∶ Id𝐴1

×…×Id𝐴𝑛
⇒ Θ𝐵. In

particular, there is an embedding of variables into general terms 𝑉𝐴 ∶ Id𝐴 ⇒ Θ𝐴
by considering the trivial tree 𝐴 ⊢ 𝐴∶ 𝐴. The specified second configuration
functor should be the identity, and is thus specified by arities 𝑊𝐴 ∶ Id𝐴 ⇒ Θ𝐴
for each type 𝐴.

Finally, transitions are specified by the axiom 𝑉𝐴(𝑥) ⇝ 𝑊𝐴(𝑥) ∶ 𝐴 and the
following rule, for all types 𝐴,𝐵 and tree 𝛽.

𝑥 ⇝ 𝜆𝛽(𝑥′) ∶ 𝐴 → 𝐵 𝑦 ⇝ 𝑦′ ∶ 𝐴 @𝛽(𝑥′{∗ ↦ 𝑦′}) ⇝ 𝑧∶ 𝐵
@(𝐴→𝐵)𝐵(𝑥, 𝑦) ⇝ 𝑧 ∶ 𝐵

8 Conclusion and perspectives
We have introduced operational monads as a generalisation of reduction monads,
and demonstrated that they cover relevant new examples. We also have proved
that they are equivalent to a certain category of relative monads, and introduced
a notion of signature for them. We have finally characterised a class of effective
signatures called vertical, together with a format for them close to standard
operational semantics called operational specifications.

In future work, we plan on investigating other forms of configuration mod-
ules, e.g., using a single free module seems to cover type systems enjoying a
substitution lemma, and using an arbitrary module covers the subtle labelled
transition system for 𝜋-calculus.

Finally, it would be relevant to prove general theorems about the operational
monads that we now know how to generate, typically about sufficient conditions
for bisimilarity to be a congruence [29].

Modules over monads and operational semantics 19

A Specifying monads

In this section, we recast 𝕀-binding signatures (without equations) into the frame-
work of general signatures. Such binding signatures have been used to specify
monads on 𝐒𝐞𝐭𝕀 in [6] and we could replay this work in the current restricted fini-
tary setting. Before, binding signatures have been considered by [11] to specify
relative monads on the injection of the free cocartesian cocompletion on 𝕀 into
𝐒𝐞𝐭𝕀: these are actually equivalent to finitary monads on 𝐒𝐞𝐭𝕀. We focus here the
latter approach to benefit from this equivalence.

We describe Fiore and Hur’s [11] category of models of an 𝕀-binding signature,
slightly departing from their presentation, in the sense that we transfer their
definition across the chain of equivalences

[𝔽[𝕀], 𝐒𝐞𝐭]𝕀 ≃ [𝐒𝐞𝐭𝕀𝑓, 𝐒𝐞𝐭𝕀] ≃ [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕀]𝜙, (5)

where 𝔽 denotes free cocartesian completion. Eluding technical details, for any
𝕀-binding signature Σ, their definition comprises two components, one for in-
terpreting the operations specified by Σ, and the other for (capture-avoiding)
substitution. Under the equivalence (5), the latter amounts to restricting atten-
tion to (finitary) monads.

Let us now describe the former, i.e., the interpretation of operations. Follow-
ing [20], this relies on modules over monads.

Example 18. An important module, on any monad 𝑇 on sets, is given by 𝑇𝑇(𝑋) =
𝑇(𝑋+1), which indeed is the exponential object 𝑇𝑇 in the category 𝑇 -Mod𝜙(𝐒𝐞𝐭)
of 𝑇-modules [3, Proposition 13]. The syntax of pure 𝜆-calculus may be specified
on 𝒞 = 𝐒𝐞𝐭: a model is a monad 𝑇 with module morphisms

𝜆∶ 𝑇𝑇 → 𝑇 @∶ 𝑇 × 𝑇 → 𝑇,

where 𝑇𝑇(𝑋) = 𝑇(𝑋+1). The next example will legitimate the notation in a more
general setting.

Example 19. The previous example extends to the simply-typed setting, using
the following basic constructions, for any set 𝕀, 𝑡 ∈ 𝕀, and monad 𝑇 on 𝐒𝐞𝐭𝕀.

– The assignment 𝑋 ↦ 𝑋(𝑡) extends to a 𝑇-module which we denote by 𝑇𝑡.
– Given any 𝑇-module 𝑀, the assignment 𝑋 ↦ 𝑀(𝑋 + 𝐲𝑡) extends to a 𝑇-

module 𝑀𝑇𝑡 (that we denote 𝑀𝑡), which is indeed an exponential object in
𝑇 -Mod𝜙.

We may use this to model the syntax of 𝜆𝜇-calculus, taking 𝕀 = {𝐭, 𝐬}, where 𝐭
stands for terms and 𝐬 for stacks. E.g., the push operation 𝑒 ⋅ 𝜋 may be specified
as module morphism

⋅ ∶ 𝑇𝐭 × 𝑇𝐬 → 𝑇𝐬.

Furthermore, we may specify 𝜆 and 𝜇 abstraction as module morphisms

𝜆∶ 𝑇𝑇𝐭
𝐭 → 𝑇𝐭 𝜇∶ (𝑇𝐭 × 𝑇𝐬)𝑇𝐬 → 𝑇𝐭

20 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

(processes being understood as mere pairs of a term and a stack). Indeed, by
the above observation, understanding 𝑇𝐭(𝑋) as terms with free term variables in
𝑋(𝐭) and stack variables in 𝑋(𝐬), 𝜆𝑋 ∶ 𝑇𝐭(𝑋 + 𝐲𝐭) → 𝑇𝐭(𝑋) takes a term with one
additional term variable and returns a term, as desired. Similarly, 𝜇𝑋 ∶ 𝑇𝐭(𝑋 +
𝐲𝐬) × 𝑇𝐬(𝑋 + 𝐲𝐬) → 𝑇𝐭(𝑋) takes a process with one additional stack variable and
returns a term.

Notation 6. If 𝑡⃗ = (𝑡1, …, 𝑡𝑛) is a list of elements of 𝕀, we denote 𝑀𝑡⃗ for the
𝑇-module 𝑀𝑇𝑡1×…×𝑇𝑡𝑛 if 𝑀 is a 𝑇-module.

Let us now return to defining the models of an 𝕀-binding signature Σ. By the
last example, any binding 𝕀-arity 𝐵, say

Θ 𝑡1𝑢1 × … × Θ 𝑡𝑚𝑢𝑚 ⇒ Θ𝑢,

induces for any monad 𝑇 two 𝑇-modules,

𝐵−(𝑇) = 𝑇𝑡1𝑢1 × … × 𝑇𝑡𝑚𝑢𝑚 and 𝐵+(𝑇) = 𝑇𝑢,

which allows us to define:
Definition 22. A model of any 𝕀-binding signature Σ = (𝐵𝑜)𝑜∈𝑂 is any fini-
tary monad 𝑇 ∈ 𝐌𝐧𝐝𝜙(𝐒𝐞𝐭𝕀), equipped with an 𝑂-indexed family of 𝑇-module
morphisms 𝑎𝑜 ∶ 𝐵−

𝑜 (𝑇) → 𝐵+
𝑜 (𝑇). Models form a category 𝐌𝐧𝐝𝜙(𝐒𝐞𝐭𝕀)Σ, by tak-

ing as morphisms (𝑇, (𝑎𝑜)𝑜∈𝑂) → (𝑇′, (𝑎′𝑜)𝑜∈𝑂) the monad morphisms 𝛼∶ 𝑇 → 𝑇′

(i.e., natural transformations preserving multiplication and unit) such that for
all 𝑜 ∈ 𝑂 the square

𝐵−𝑜 (𝑇) 𝐵−𝑜 (𝑇′)

𝐵+𝑜 (𝑇) 𝐵+𝑜 (𝑇′)

𝐵−𝑜 (𝛼)

𝑎𝑜

𝐵+𝑜 (𝛼)

𝑎′𝑜

commutes, where 𝐵−𝑜 (𝛼) and 𝐵+𝑜 (𝛼) are defined in the obvious way.

Lemma 8. This category 𝐌𝐧𝐝𝜙(𝐒𝐞𝐭𝕀)Σ is equivalent to Fiore and Hur’s category
of Σ-models [11].

Proof. Across the equivalence (5), restricting attention to monads corresponds
to their restriction to monoids, and their compatibility condition [11, page 7]
corresponds to our requirement that each 𝑎𝑜 be a module morphism. The only
subtlety lies in the interpretation of operations. Let us consider the case of a
single 𝕀-binding arity 𝐵 = (𝑏1 × … × 𝑏𝑛 ⇒ Θ𝑡) for simplicity, where each 𝑏𝑖
is Θ

Θ𝑡𝑖1
×…×Θ𝑡𝑖𝑛𝑖𝑢𝑖 . They interpret this as requiring an algebra structure on any

model 𝑋, for the functor [𝔽[𝕀], 𝐒𝐞𝐭]𝕀 → [𝔽[𝕀], 𝐒𝐞𝐭]𝕀 corresponding accross the
equivalence with [𝐒𝐞𝐭𝕀𝑓, 𝐒𝐞𝐭𝕀] → [𝐒𝐞𝐭𝐈𝑓, 𝐒𝐞𝐭𝕀] to

𝐹𝐵(𝑋)(𝛾) = (􏾟
1≤𝑖≤𝑛

𝐹𝑏𝑖 (𝑋)(𝛾)) · 𝐲𝑡,

Modules over monads and operational semantics 21

with
𝐹
Θ
Θ𝑡1×…×Θ𝑡𝑛𝑢

(𝑋)(𝛾) = 𝑋(𝛾 + 𝐲𝑡1 + … + 𝐲𝑡𝑛)(𝑢).
Thus, an 𝐹𝐵-algebra structure on 𝑋 corresponds to the desired module morphism
via

∫
𝛾
[(∏1≤𝑖≤𝑛 𝐹𝑏𝑖 (𝑋)(𝛾)) · 𝐲𝑡, 𝑋(𝛾)] ≅ ∫

𝛾
[∏1≤𝑖≤𝑛 𝐹𝑏𝑖 (𝑋)(𝛾), [𝐲𝑡, 𝑋(𝛾)]]

≅ ∫
𝛾
[∏1≤𝑖≤𝑛 𝐹𝑏𝑖 (𝑋)(𝛾), 𝑋(𝛾)(𝑡)] (by Yoneda)

≅ ∫
𝛾
[𝐵−(𝑋)(𝛾), 𝐵+(𝑋)(𝛾)]

≅ [𝐵−(𝑋), 𝐵+(𝑋)],

slightly abusing notation for the last line.

Now that we have defined the models of Σ, let us turn such 𝕀-binding sig-
natures into general signatures for monads. For this, we need to find a notion
of arity for monads, or more precisely a functor 𝒟 → 𝐌𝐧𝐝𝜙(𝒞) whose sections
would denote arities for monads. But as we have seen when defining models, a
natural notion of arity for a monad 𝑇 is a 𝑇-module. Our functor 𝒟 → 𝐌𝐧𝐝𝜙(𝒞)
should thus have 𝑇 -Mod𝜙(ℰ) as its fibre over any 𝑇. For this, we resort to the
fibration 𝑝𝒞 ,ℰ ∶ 𝐌𝐨𝐝𝜙(𝒞 , ℰ) → 𝐌𝐧𝐝𝜙(𝒞) of the total category of modules into
monads (Definition 3). Let us detail the construction of this fibration through
the Grothendieck construction [26].

Lemma 9. The assignment 𝑇 ↦ 𝑇 -Mod𝜙(ℰ) extends to a functor

𝐌𝐨𝐝𝜙(ℰ) ∶ 𝐌𝐧𝐝𝜙(𝒞)𝑜𝑝 → 𝐂𝐀𝐓.

Proof. Any monad morphism 𝜑∶ 𝑇 → 𝑇′ yields a functor 𝐊𝐥(𝜑)𝑓 ∶ 𝐊𝐥𝑓(𝑇) →
𝐊𝐥𝑓(𝑇′) mapping any 𝐶 to itself, and any 𝑓 ∶ 𝐶 → 𝑇(𝐶′) to the composite

𝐶
𝑓
−→ 𝑇(𝐶′)

𝜑𝐶′−−−→ 𝑇′(𝐶′).

The action 𝐌𝐨𝐝𝜙(ℰ)(𝜑) ∶ 𝑇′ -Mod𝜙(ℰ) → 𝑇 -Mod𝜙(ℰ) is thus given by map-

ping any 𝑀∶ 𝐊𝐥(𝑇′)𝑓 → ℰ to the composite 𝐊𝐥(𝑇)𝑓
𝐊𝐥(𝜑)𝑓
−−−−−→ 𝐊𝐥(𝑇′)𝑓

𝑀−−→ 𝒟 .

Definition 23. Let 𝐌𝐨𝐝𝜙(𝒞 , ℰ) denote the total category of 𝐌𝐨𝐝𝜙(ℰ).

Concretely, an object is a pair (𝑇,𝑀) of a monad and a module over it, and
morphisms (𝑇,𝑀) → (𝑆,𝑁) are pairs of a monad morphism 𝛼∶ 𝑇 → 𝑆, together
with a natural transformation

𝐊𝐥𝑓(𝑇) 𝐊𝐥𝑓(𝑆)

𝒟 .

𝐊𝐥(𝛼)

𝑀 𝑁
𝛽

By construction, the category 𝐌𝐨𝐝𝜙(𝒞 , ℰ) comes with a projection functor
𝑝𝒞 ,ℰ ∶ 𝐌𝐨𝐝𝜙(𝒞 , ℰ) → 𝐌𝐧𝐝𝜙(𝒞), which gives the desired arity functor.

22 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

Definition 24. Sections of 𝑝𝒞 ,ℰ are called parametric modules.
Example 20. The modules of Examples 18 and 19 all extend to parametric mod-
ules, which we respectively denote by Θ, ΘΘ, Θ×Θ, Θ𝑡, and 𝑀Θ𝑡 , which justifies
the notation of Definition 17 in hindsight.

It remains to recast general binding arities as parametric modules.
Definition 25. Let 𝕀 be a set of simple types. For any 𝕀-binding arity 𝐵 = (𝐷 ⇒
Θ𝑡), let

𝐵 = (𝐌𝐨𝐝𝜙(𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭), 𝑝𝐒𝐞𝐭𝕀,𝐒𝐞𝐭, 𝐷,Θ𝑡)
denote the induced arity over 𝐌𝐧𝐝𝜙(𝐒𝐞𝐭𝕀). Furthermore, for any 𝕀-binding sig-
nature Σ = (𝐵𝑜)𝑜∈𝑂, let Σ = (𝐵𝑜)𝑜∈𝑂 denote the induced signature.
Lemma 10. Models of the general signature Σ are ismorphic to models of Σ,
i.e.,

𝐌𝐧𝐝𝜙(𝐒𝐞𝐭𝕀)Σ ≃ 𝐌𝐧𝐝𝜙(𝐒𝐞𝐭𝕀)Σ,
over 𝐌𝐧𝐝𝜙(𝐒𝐞𝐭𝕀).
Proof. Concretely, models of Σ consist of a finitary monad 𝑇, equipped with
module morphisms 𝜌𝑜 ∶ 𝐷𝑜(𝑇) → Θ𝑡𝑜 (𝑇), for all 𝑜 ∈ 𝑂, and morphisms (𝑇, 𝜌) →
(𝑈, 𝜎) are monad morphisms 𝑓 ∶ 𝑇 → 𝑈 making the following square commute
for all 𝑜.

𝐷𝑜(𝑇) 𝐷𝑜(𝑈)

Θ𝑡𝑜 (𝑇) Θ𝑡𝑜 (𝑈)

Σ(𝑓)

𝜌

𝑓

𝜎

Clearly, we have 𝐷𝑜 = 𝐵−
𝑜 and Θ𝑡𝑜 = 𝐵+

𝑜 , hence the result.
Corollary 2. Let 𝕀 be a set of simple types and Σ be an 𝕀-binding signature.
Then, Σ is effective.
Proof. By [11, §8], the forgetful functor from Σ-models is monadic, so the result
follows from Lemmas 8 and 10.

To conclude this section on signatures for monads, let us mention that Fiore
and Hur [11] propose an extended notion that incorporates equations, which we
do not need in examples.

B Specifying functors
In this section, we prove that any 𝕀, 𝕁-binding signature Σ with a set 𝐸 of Σ-
equations induce an effective signature over 𝒞 = [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭𝕁]𝜙 whose category
of models is the fullsubcategory of models 𝑀 of Σ such that 𝑢𝑀 = 𝑣𝑀 for any
Σ-equation 𝑢 = 𝑣∶ 𝐵 in 𝐸,

The steps consist in first constructing an equational system from [12] with the
adequate notion of models, and then show that any equational system induces
a general signature with the adequate notion of models.

We show that any 𝕀, 𝕁-binding signature induces an endofunctor 𝒞 .

Modules over monads and operational semantics 23

Definition 26. Let 𝐵 = (Id𝑣1
×…× Id𝑣𝑝

×Θ 𝑡1𝑢1 ×…×Θ 𝑡𝑚𝑢𝑚 ⇒ Θ𝑢) be a 𝕀, 𝕁-binding
arity. We denote ℱ (𝐵) the endofunctor 𝐵− × 𝐲𝑢 on 𝒞 , where _ × 𝐲𝑢 is the left
adjoint to the functor _𝑢 ∶ 𝒞 → [𝐒𝐞𝐭𝕀, 𝐒𝐞𝐭]𝜙 taking the 𝑢𝑡ℎ component. Then, an
algebra for ℱ (𝐵) is the same thing as a finitary functor 𝐹 ∶ 𝐒𝐞𝐭𝕀 → 𝐒𝐞𝐭𝕁 with a
natural transformation 𝐵−(𝐹) → 𝐵+(𝑓).

Let Σ be a 𝕀, 𝕁-binding signature. We denote ℱ (Σ) the coproduct of all the
endofunctors ℱ (𝐵) for each binding arity 𝐵 in Σ.

Lemma 11. Let Σ be a 𝕀, 𝕁-binding signature. The category of algebras of ℱ (Σ)
is isomorphic to the category of models of Σ.

Now, given a 𝕀, 𝕁-binding signature Σ, a Σ-equation 𝑢 = 𝑣∶ 𝐵 defines (through
the above adjunction) a pair of functors ℱ (𝑢) and ℱ (𝑣) from ℱ (Σ) -alg to
ℱ (𝐵) -alg preserving the underlying object.

This corresponds to the definition of equational system from [12].

Definition 27 ([12, Definition 3.3]). An equational system 𝕊 = (𝒞 ∶ Σ ⊳
Γ ⊢ 𝐿 = 𝑅) consists of a category 𝒞 , endofunctors Σ, Γ∶ 𝒞 → 𝒞 , endofunctors
Σ, Γ∶ 𝒞 → 𝒞 , and functors 𝐿, 𝑅∶ Σ -alg → Γ-alg making the following triangle
commute, where 𝑈Σ and 𝑈Γ are the forgetful functors.

Σ -alg Γ -alg

𝒞

𝐿

𝑅
𝑈Σ 𝑈Γ

Definition 28. Given an equational system 𝕊 = (𝒞 ∶ Σ ⊳ Γ ⊢ 𝐿 = 𝑅), a
model for 𝕊, or an 𝕊-algebra, is a Σ-algebra 𝜌∶ Σ𝑋 → 𝑋 for which 𝐿(𝑋, 𝜌) =
𝑅(𝑋, 𝜌). More generally, let 𝕊 -alg, the category of 𝕊-algebras, denote the following
equaliser in 𝐂𝐀𝐓.

𝕊 -alg Σ -alg Γ -alg
𝐿

𝑅

Given a binding signature Σ and a set 𝐸 of Σ-equations, we have for each equation
𝑢 = 𝑣 ∶ 𝐵 ∈ 𝐸 an equational system induced by ℱ (𝑢),ℱ (𝑣) ∶ ℱ (Σ) -alg →
ℱ (𝐵) -alg. We gather all of them into a pair of functors ℱ (Σ) -alg → ℱ (𝐸) -alg
where

ℱ (𝐸) ≔ 􏾜
𝑢=𝑣∶𝐵∈𝐸

ℱ (𝐵).

Then, the category of algebras of the induced equational system is isomorphic
to the full subcategory of models 𝑀 of Σ such that 𝑢𝑀 = 𝑣𝑀, for any Σ-equation
𝑢 = 𝑣 ∶ 𝐵 ∈ 𝐸.

We have an effectivity result for these equational systems.

Theorem 7. The category of algebras of an equational system induced by a
𝕀, 𝕁-binding signature Σ and a set 𝐸 of Σ-equations as above has an initial object.

24 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

Proof. 𝒞 is cocomplete, ℱ (Σ) and ℱ (𝐸) are easily shown to be finitary. Then,
by [12, Theorem 5.1 (1)], the forgetful functor from 𝕊 -alg to 𝒞 has a left adjoint:
by cocontinuity, the image of the initial object by this adjoint is initial.

It remains to show that any equational system 𝕊 = (𝒞 ∶ Σ ⊳ Γ ⊢ 𝐿 =
𝑅) induces a general signature over the category 𝒞 with a category of models
isomorphic to the category of 𝕊-algebras. This signature is of size two. The
first family consists of a single arity whose category of models are Σ-algebras
(Example 4). The second family consists of consider the following equational
arity (𝒟 , 𝑎, 𝑢, 𝑣) over the category of Σ-algebras enforcing the required equation.

– 𝒟 is the category of objects 𝑐 ∈ 𝒞 equipped with an algebra structure for
both Σ and Γ. More formally, 𝒟 is defined as the pullback

𝒟 //

𝑎
��

⌟ Γ -alg

��

Σ -alg // 𝒞

.

– 𝑎 ∶ 𝒟 → Σ -alg is induced by the definition of 𝒟 as a pullback.
– 𝑢 maps a Σ-algebra 𝑐 to the underlying object of 𝑐 equipped with the same

Σ-algebra structure and the Γ-algebra given by 𝐿(𝑐).
– 𝑣 maps a Σ-algebra 𝑐 to the underlying object of 𝑐 equipped with the same

Σ-algebra structure and the Γ-algebra given by 𝑅(𝑐).

C Proof of Lemma 3

Let us first check the monad axioms with unit and bind. For the first unit axiom,
we have

􏾫𝜂−𝐶
⋆
= 𝜂⋆𝐶 = id𝑇𝐶, (6)

hence
𝑈(􏾫𝜂−𝐶

⋆
) = 𝑈(id𝑇𝐶) = id𝑈𝑇𝐶

as desired.
For the second unit axiom, for any 𝑓 ∶ 𝐶 → 𝑈𝑇𝐶′, we have ̃𝑓 = ̃𝑓⋆∘𝜂𝐶 because

𝑇 is a relative monad, hence 𝑓 = 𝑈(̃𝑓⋆) ∘ 𝜂−𝐶 by transposition.
Finally, for the bind axiom, consider any 𝑓 ∶ 𝐶 → 𝑈𝑇𝐶′ and 𝑔∶ 𝐶′ → 𝑈𝑇𝐶″.

By functoriality of 𝑈, it is enough to show

𝑔̃⋆ ∘ ̃𝑓⋆ = 􏷾(𝑈(𝑔̃⋆) ∘ 𝑓)
⋆

. (7)

But because 𝑇 is a relative monad, we have 𝑔̃⋆ ∘ ̃𝑓⋆ = (𝑔̃⋆ ∘ ̃𝑓)⋆, so it is further
enough to show

𝑔̃⋆ ∘ ̃𝑓 = 􏷾(𝑈(𝑔̃⋆) ∘ 𝑓).

Modules over monads and operational semantics 25

Transposing, we have

(𝑔̃⋆ ∘ ̃𝑓)− = 𝑈(𝑔̃⋆ ∘ ̃𝑓) ∘ 𝜂𝐽𝐶
= 𝑈(𝑔̃⋆) ∘ 𝑈(̃𝑓) ∘ 𝜂𝐽𝐶
= 𝑈(𝑔̃⋆) ∘ 𝑓,

as desired.
Finally, let 𝑀(𝐶) = 𝑇(𝐶) on objects, and 𝑀(𝐶

𝑓
−→ 𝑈𝑇𝐶′) = ̃𝑓⋆. Functoriality

boils down to precisely (6) and (7), which we have already shown.

Bibliography

[1] Adámek, J.: Free algebras and automata realizations in the language of
categories. Commentationes Mathematicae Universitatis Carolinae 015(4),
589–602 (1974), http://eudml.org/doc/16649

[2] Ahrens, B.: Modules over relative monads for syntax and semantics. Math-
ematical Structures in Computer Science 26, 3–37 (2016)

[3] Ahrens, B., Hirschowitz, A., Lafont, A., Maggesi, M.: High-level sig-
natures and initial semantics. In: Ghica, D.R., Jung, A. (eds.) Proc.
27th EACSL Annual Conference on Computer Science Logic. Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 119, pp.
4:1–4:22. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
https://doi.org/10.4230/LIPIcs.CSL.2018.4, https://doi.org/10.4230/
LIPIcs.CSL.2018.4

[4] Ahrens, B., Hirschowitz, A., Lafont, A., Maggesi, M.: Modular specifica-
tion of monads through higher-order presentations. In: Geuvers, H. (ed.)
Proc. 4th International Conference on Formal Structures for Computation
and Deduction. Leibniz International Proceedings in Informatics (LIPIcs),
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2019)

[5] Ahrens, B., Hirschowitz, A., Lafont, A., Maggesi, M.: Reduction monads
and their signatures (2019), submitted

[6] Ahrens, B., Zsido, J.: Initial semantics for higher-order typed
syntax in coq. J. Formalized Reasoning 4(1), 25–69 (2011).
https://doi.org/10.6092/issn.1972-5787/2066, https://doi.org/10.
6092/issn.1972-5787/2066

[7] Altenkirch, T., Chapman, J., Uustalu, T.: Monads need not be
endofunctors. Logical Methods in Computer Science 11(1) (2015).
https://doi.org/10.2168/LMCS-11(1:3)2015, https://doi.org/10.2168/
LMCS-11(1:3)2015

[8] Altenkirch, T., Morris, P., Forsberg, F.N., Setzer, A.: A categorical se-
mantics for inductive-inductive definitions. In: Corradini, A., Klin, B.,
Cîrstea, C. (eds.) Proc. 4th International Conference on Algebra and
Coalgebra in Computer Science LNCS, vol. 6859, pp. 70–84. Springer
(2011). https://doi.org/10.1007/978-3-642-22944-2_6, https://doi.org/
10.1007/978-3-642-22944-2_6

[9] Bird, R.S., de Moor, O.: Algebra of programming. Prentice Hall Interna-
tional series in computer science, Prentice Hall (1997)

[10] Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM
42(1), 232–268 (1995). https://doi.org/10.1145/200836.200876, https://
doi.org/10.1145/200836.200876

[11] Fiore, M.P., Hur, C.K.: Second-order equational logic. In: Proceedings of
the 19th EACSL Annual Conference on Computer Science Logic (CSL 2010)
(2010)

Modules over monads and operational semantics 27

[12] Fiore, M., Hur, C.K.: On the construction of free algebras for equational
systems. Theoretical Computer Science 410, 1704–1729 (2009)

[13] Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In:
Proc. 14th Symposium on Logic in Computer Science IEEE (1999)

[14] Fiore, M.P.: Second-order and dependently-sorted abstract syntax. In: Proc.
23rd Symposium on Logic in Computer Science pp. 57–68. IEEE (2008).
https://doi.org/10.1109/LICS.2008.38

[15] Fiore, M.P., Staton, S.: A congruence rule format for name-passing pro-
cess calculi from mathematical structural operational semantics. In: Proc.
21st Symposium on Logic in Computer Science pp. 49–58. IEEE (2006).
https://doi.org/10.1109/LICS.2006.7

[16] Fiore, M.P., Turi, D.: Semantics of name and value passing. In: Proc.
16th Symposium on Logic in Computer Science pp. 93–104. IEEE (2001).
https://doi.org/10.1109/LICS.2001.932486

[17] Garner, R.: Combinatorial structure of type dependency. CoRR
abs/1402.6799 (2014), http://arxiv.org/abs/1402.6799

[18] Hamana, M.: Term rewriting with variable binding: An initial al-
gebra approach. In: Proc. 5th International Conference on Prin-
ciples and Practice of Declarative Programming ACM (2003).
https://doi.org/10.1145/888251.888266

[19] Herbelin, H.: Séquents qu’on calcule: de l’interprétation du calcul des
séquents comme calcul de lambda-termes et comme calcul de stratégies
gagnantes. Ph.D. thesis, Paris Diderot University, France (1995), https:
//tel.archives-ouvertes.fr/tel-00382528

[20] Hirschowitz, A., Maggesi, M.: Modules over monads and linear-
ity. In: WoLLIC. LNCS, vol. 4576, pp. 218–237. Springer (2007).
https://doi.org/10.1007/3-540-44802-0_3

[21] Hirschowitz, A., Maggesi, M.: Modules over monads and initial
semantics. Information and Computation 208(5), 545–564 (2010).
https://doi.org/10.1016/j.ic.2009.07.003

[22] Hirschowitz, T.: Cartesian closed 2-categories and permutation equiv-
alence in higher-order rewriting. Logical Methods in Computer Sci-
ence 9(3) (2013). https://doi.org/10.2168/LMCS-9(3:10)2013, http://
hal.archives-ouvertes.fr/hal-00540205

[23] Hirschowitz, T.: Cellular monads from positive GSOS specifications.
In: Pérez, J.A., Rot, J. (eds.) Proc. 26th International Workshop
on Expressiveness in Concurrency and 16th Workshop on Structural
Operational Semantics, EXPRESS/SOS. EPTCS, vol. 300, pp. 1–
18 (2019). https://doi.org/10.4204/EPTCS.300.1, https://doi.org/10.
4204/EPTCS.300.1

[24] Hirschowitz, T.: Familial monads and structural operational semantics.
PACMPL 3(POPL), 21:1–21:28 (2019), https://dl.acm.org/citation.
cfm?id=3290334

[25] J.A. Goguen, J.T., Wagner, E.: An initial algebra approach to the specifi-
cation, correctness and implementation of abstract data types. In: Yeh, R.
(ed.) Current Trends in Programming Methodology, IV: Data Structuring.
pp. 80–144. Prentice-Hall (1978)

28 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

[26] Jacobs, B.: Categorical Logic and Type Theory. No. 141 in Studies in Logic
and the Foundations of Mathematics, North Holland, Amsterdam (1999)

[27] Kelly, G.M.: Elementary observations on 2-categorical limits. Bulletin of the
Australian Mathematical Society 39, 301–317 (1989)

[28] Lafont, A.: Signatures and models for syntax and operational semantics in
the presence of variable binding. Ph.D. thesis, École Nationale Superieure
Mines – Telecom Atlantique Bretagne Pays de la Loire – IMT Atlantique
(2019), https://arxiv.org/abs/1910.09162v2, forthcoming

[29] Pitts, A.M.: Howe’s Method for Higher-Order Languages, Cambridge Tracts
in Theoretical Computer Science, vol. 52, chap. 5. Cambridge University
Press (2011)

[30] Sangiorgi, D., Walker, D.: The 𝜋-calculus - a theory of mobile processes.
Cambridge University Press (2001)

[31] Staton, S.: General structural operational semantics through categorical
logic. In: Proc. 23rd Symposium on Logic in Computer Science pp. 166–
177. IEEE (2008). https://doi.org/10.1109/LICS.2008.43

[32] Street, R.: The formal theory of monads. Journal of Pure and Applied Al-
gebra 2, 149–168 (1972)

[33] Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In:
Proc. 12th Symposium on Logic in Computer Science pp. 280–291 (1997).
https://doi.org/10.1109/LICS.1997.614955

