

Biotic and abiotic determinants of the formation of ant mosaics in primary Neotropical rainforests

Alain Dejean, Arthur Compin, Jacques H.C. Delabie, Frédéric Azémar, Bruno

Corbara, Maurice Leponce

▶ To cite this version:

Alain Dejean, Arthur Compin, Jacques H.C. Delabie, Frédéric Azémar, Bruno Corbara, et al.. Biotic and abiotic determinants of the formation of ant mosaics in primary Neotropical rainforests. Ecological Entomology, 2019, 44 (4), pp.560-570. 10.1111/een.12735. hal-02338140

HAL Id: hal-02338140 https://hal.science/hal-02338140v1

Submitted on 19 Nov 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Biotic and abiotic determinants of the formation of ant mosaics in primary Neotropical rainforests

Journal:	Ecological Entomology
Manuscript ID	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Dejean, Alain; CNRS-Guyane, Compin, Arthur; Universite Toulouse III Paul Sabatier, FSI Azémar, Frédéric; Universite Toulouse III Paul Sabatier, FSI Delabie, Jacques Hubert Charles; Cocoa Research Center, SEFIT; Universidade Estadual de Santa Cruz, Departamento de Ciências Agrárias e Ambientais Corbara, Bruno; Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France Leponce, Maurice; Royal Belgian Institute of Natural Sciences (RBINS), Rue Vautier 29, B-1000 Brussels (Belgium)
Keywords:	ant mosaics, connections on the ground, host tree attractiveness, indicators of disturbance, primary Neotropical rainforest, territoriality

1	Biotic and abiotic determinants of the formation of ant mosaics in primary Neotropical
2	rainforests
3	
4	Alain Dejean ^{1,2} , Arthur Compin ¹ , Jacques H. C. Delabie ³ , Frédéric Azémar ¹ , Bruno
5 6	Corbara ⁴ and Maurice Leponce ^{5,6}
7	¹ Ecolab, Université de Toulouse, CNRS, Toulouse, France, ² CNRS, UMR EcoFoG, AgroParisTech,
8	Cirad, INRA Orcid ID: https://orcid.org/0000-0002-3561-2248, Université des Antilles, Université de
9	Guyane, 97310 Kourou, France, ³ U.P.A. Laboratório de Mirmecologia, Convênio UESC/CEPLAC,
10	C.P. 7, 45600-000 Itabuna, Bahia, Brazil, ⁴ Université Clermont Auvergne, CNRS, LMGE, F-63000
11	Clermont-Ferrand, France, ⁵ Biodiversity Monitoring & Assessment, Royal Belgian Institute of
12	Natural Sciences (RBINS), Rue Vautier 29, B-1000 Brussels, Belgium, ⁶ Behavioural & Evolutionary
13	Ecology, Université Libre de Bruxelles (ULB), Av. F.D. Roosevelt 50, B-1050 Brussels, Belgium
14	
15	Running title: A Neotropical ant mosaic
16	
17	Correspondence: Alain Dejean, Ecolab, Université Toulouse 3, 118 route de Narbonne 31062,
18	Toulouse cedex 9, France. E-mail: alain.dejean@wanadoo.fr. Tel.: (33) 5 61 55 89 31
19	

20	Abstract. 1. Ants are widespread in tropical rainforests, including in the canopy where
21	territorially dominant arboreal species represent the main part of the arthropod biomass.
22	2. The mapping of the territories of dominant arboreal ant species, the use of a null model
23	analysis and a pairwise approach permitted us to show the presence of an ant mosaic on the
24	upper canopy of a primary Neotropical rainforest (\approx 1 ha sampled; 157 tall trees from 28
25	families). Although Neotropical rainforest canopies are frequently irregular with tree crowns
26	at different heights breaking the continuity of the territories of dominant ants, the latter are
27	preserved via trails laid on the ground or underground galleries.
28	3. The distribution of the trees influences the structure of the ant mosaic, something related
29	to the attractiveness of tree taxa for certain arboreal ant species rather than others.
30	4. Small-scale natural disturbances, most likely strong winds in the area studied (presence
31	of canopy gaps) play a role by favoring the presence of two ant species typical of secondary
32	formations: Camponotus femoratus and Crematogaster levior, which live in parabiosis (i.e.,
33	share territories and nests but lodge in different cavities) and build conspicuous ant gardens.
34	Also, pioneer Cecropia myrmecophytic trees were noted.
35	
36	Key words. ant mosaics, connections on the ground, host tree attractiveness, indicators of
37	disturbance, primary Neotropical rainforest, territoriality

39 Introduction

41	Ants dominate the fauna of tropical rainforest canopies both in terms of biomass and number
42	of individuals, an ecological success possible thanks to their entirely or partially herbivorous
43	diet as they feed on extrafloral nectar, food bodies and hemipteran honeydew (Blüthgen et al.,
44	2004; Davidson et al., 2003). Yet, only a limited number of ant species with large colonies are
45	concerned, something corresponding to the notion of 'numerical dominance' (the
46	predominance of a species in frequency of occurrence in the ant community). When combined
47	with 'behavioral dominance' (dominance in interspecific competition due to superior fighting
48	and/or recruitment abilities) this results in 'ecological dominance' (see Davidson, 1998).
49	Certain canopy ants correspond rather to the latter case as they are characterized by very
50	populous colonies of up to several million workers, large and/or polydomous nests (see Fig.
51	1), and an absolute intra- and interspecific territoriality so that they are called 'territorially
52	dominant arboreal ant species' (TDAAs) (Majer, 1993).
52 53	dominant arboreal ant species' (TDAAs) (Majer, 1993). Two TDAAs can share the same territory (i.e., 'co-dominance') when they have
53	Two TDAAs can share the same territory (i.e., 'co-dominance') when they have
53 54	Two TDAAs can share the same territory (i.e., 'co-dominance') when they have complementary rhythms of activity (i.e., one is diurnal, the other is nocturnal), when their
53 54 55	Two TDAAs can share the same territory (i.e., 'co-dominance') when they have complementary rhythms of activity (i.e., one is diurnal, the other is nocturnal), when their workers avoid each other with only occasional conflicts for food, or during "parabiosis" (i.e.,
53 54 55 56	Two TDAAs can share the same territory (i.e., 'co-dominance') when they have complementary rhythms of activity (i.e., one is diurnal, the other is nocturnal), when their workers avoid each other with only occasional conflicts for food, or during "parabiosis" (i.e., two species share the same territories and nests, but lodge in different cavities of these nests)
53 54 55 56 57	Two TDAAs can share the same territory (i.e., 'co-dominance') when they have complementary rhythms of activity (i.e., one is diurnal, the other is nocturnal), when their workers avoid each other with only occasional conflicts for food, or during "parabiosis" (i.e., two species share the same territories and nests, but lodge in different cavities of these nests) (Majer, 1993; Dejean <i>et al.</i> , 2007, 2012; Vicente & Izzo, 2017; Yusha <i>et al.</i> , 2017).
 53 54 55 56 57 58 	Two TDAAs can share the same territory (i.e., 'co-dominance') when they have complementary rhythms of activity (i.e., one is diurnal, the other is nocturnal), when their workers avoid each other with only occasional conflicts for food, or during "parabiosis" (i.e., two species share the same territories and nests, but lodge in different cavities of these nests) (Majer, 1993; Dejean <i>et al.</i> , 2007, 2012; Vicente & Izzo, 2017; Yusha <i>et al.</i> , 2017). TDAAs tolerate within their territories the presence of 'non-dominant' species with small
 53 54 55 56 57 58 59 	Two TDAAs can share the same territory (i.e., 'co-dominance') when they have complementary rhythms of activity (i.e., one is diurnal, the other is nocturnal), when their workers avoid each other with only occasional conflicts for food, or during "parabiosis" (i.e., two species share the same territories and nests, but lodge in different cavities of these nests) (Majer, 1993; Dejean <i>et al.</i> , 2007, 2012; Vicente & Izzo, 2017; Yusha <i>et al.</i> , 2017). TDAAs tolerate within their territories the presence of 'non-dominant' species with small colonies that represent only ≈5% of the ant biomass and individuals, but are species-rich (e.g.,

63	When the tree crowns are contiguous or interconnected by liana, the TDAAs' territories are
64	distributed in a mosaic pattern creating what has become known as 'arboreal ant mosaics'
65	(Majer, 1972, 1993). Ant mosaics have been noted in the upper canopies of tropical African,
66	Asian, Bornean, New Guinean and Neotropical rainforests and tree crop plantations (Majer,
67	1993; Adams, 1994; Armbrecht et al., 2001; Blüthgen & Stork, 2007; Davidson et al., 2007;
68	Dejean et al., 2007, 2010, 2015, 2018; Pfeiffer, 2008; Fayle et al., 2013; Ribeiro et al., 2013;
69	Klimes, 2017; Yusah et al., 2018; Leponce et al., 2019). Nevertheless, ant mosaics are often
70	absent from the 'sub-canopy' likely due to the scarcity of hemipterans whose honeydew is
71	necessary to fuel the TDAA colonies (Floren & Linsenmair, 2000; Blüthgen & Stork, 2007;
72	Dejean et al., 2007, 2018; Ribeiro et al., 2013). Yet, very large TDAAs colonies can occupy
73	vast spaces involving all canopy growth stages (Dejean et al., 2007; Klimes et al., 2015).
74	Founding queens do not install their colony by chance in tree crowns as selective plant
75	attractiveness has been shown experimentally for both plant-ants and TDAAs (Djiéto-Lordon
76	& Dejean, 1999a,b). Although tempered by the extension of the territories over adjacent trees
77	(of different species) with the increasing size of the TDAAs' colonies, this effect remains
78	perceptible (Dejean et al., 2007, 2015, 2018; Fayle et al., 2015). Also, an ontogenetic
79	succession of ant species follows the sequence of stages in tree and vegetal formation
80	development (Watt et al., 2002; Kenne et al., 2003; da Conceição et al., 2015; Dejean et al.,
81	2016). Finally, the forest structure plays a role in the formation of ant mosaics. For example,
82	tropical African rainforests have proportionately more 'large' trees (i.e., tall with a wide trunk
83	and a large crown) than do the tropical forests of other continents, likely due to fewer
84	disturbances over recent decades (Lewis et al., 2013; see projections of African trees in Fig.
85	2). This explains why the Neotropical rainforest canopies are frequently irregular with tree
86	crowns at different heights likely resulting from treefall gaps, breaking the continuity of the
87	territories of the TDAAs (Ribeiro et al., 2013).

5

88	Studying ant mosaics is important because TDAAs prevent attended hemipterans from
89	proliferating (Styrsky & Eubanks, 2007) and protect their host trees from defoliating insects
90	through their predatory behavior or by deterring them either actively or simply through the
91	presence of their long-lasting landmarks (Majer, 1993; Dyer, 2002; Floren et al., 2002;
92	Dejean et al., 2007; Offenberg et al., 2007).
93	Ant mosaics can be impacted by canopy gaps created by the death of a tree or the fall of
94	trees by snapping or uprooting due to strong winds that are considered small-scale natural
95	disturbances. An indirect impact also occurs during the formation of large gaps as they permit
96	light-demanding tree species with low wood density (e.g., pioneer trees) to develop quickly
97	from seeds (Schnitzer et al., 2008).
98	In this study, conducted in a primary moist Neotropical rainforest situated in French
99	Guiana, we aimed to determine: (1) if an ant mosaic exists in the upper canopy, (2) if TDAA
100	workers follow trails on the ground that interconnect neighboring trees to compensate the
101	irregularity of the canopy or if they use underground galleries, (3) if the host tree taxa
102	influence the TDAAs' distribution and (4) if locally strong winds due to the neighboring
103	presence of an inselberg affect the distribution of the TDAAs, favoring certain of them.
104	
105	Materials and methods
106	
107	Study site, tree mapping and identification

The Nouragues Ecological Research Station (4°05' N - 52°41'W), dominated by a partly denuded Inselberg (430 asl), is located within the *Montagnes Balenfois* massif typical of the Guiana Shield. The radiocarbon dating of charcoal and pollen coring suggest that the forest cover has remained intact over at least 3000 years, but with fires occurring \approx 500 years ago. A variety of vegetal formations occur within a radius of 1.5 km, including: (1) the inselberg's

113	summit, (2) a low transition forest, (3) a wide, forested plateau, and (4) a liana forest whose
114	origin might be due to strong winds or a microtornado. The climate is moist tropical, with a
115	mean annual rainfall of 3000 mm distributed over \approx 280 days; the daily mean temperature
116	ranges from 20.3°C to 33.5°C (Grimaldi & Riera, 2001; Tymen et al., 2016).
117	In the Nouragues area, strong winds, likely due to the vicinity of the Inselberg, generated
118	on the plateau the formation of a liana forest and large gaps. Liana forests, caused by
119	windthrow events resulting in > 1ha gaps, generally persist for a long time, blocking the forest
120	succession (van der Meer & Bonger, 1996; Stefan et al., 2010; Tymen et al., 2016).
121	Field studies were conducted on the plateau (2006-2010) where the staff of the Nouragues
122	Ecological Research Station has established grid trails every 100 m, creating 1 ha forest plots
123	over 70 ha; the trees have been mapped, measured, tagged and identified (Poncy et al., 2001).
124	
125	Canopy access, gathering TDAA samples and mapping the ant mosaic
126	We used the single rope technique to reach the upper canopy tree crowns, permitting us to
127	gather samples from 157 trees. To collect ant samples, we cut off two to four branches (10-15
128	cm in diameter) from each tree. Because arboreal ants mark these branches as part of their
129	territories (i.e., the workers deposit "landmarks" that can last for more than 1 year; Beugnon

130 & Dejean, 1992; Offenberg, 2007), several dozen to thousands of workers remained on them

131 for more than 1 hour after the sectioning of the branches (Dejean *et al.*, 2007, 2010, 2015).

132 Using entomological aspirators, we were thus able to collect samples of the ants crawling on

133 the fallen branches or hidden in hollow twigs.

134 In contrast to trapping methods permitting large numbers of species to be collected, this

- 135 branch clipping method allows us to sample numerically dominant ants and obtain
- 136 information on the co-occurrence of these species on the same branches, and so interspecific

137	tolerance. Thus, branch clipping does not permit to obtain a representative picture of 'non-
138	dominant' ant species (not considered here), something needed in diversity studies.
139	We also verified at the bases of trees if there were nests of <i>Ectatomma tuberculatum</i> or
140	Paraponera clavata, two ground-nesting, arboreal foraging species known as dominant or co-
141	dominant (see studied ant nesting habits in Table 1).
142	The presence of arboreal ant trails on the ground was noted during a sampling of litter-
143	dwelling ants in the area studied (Groc et al., 2014). We therefore verified if the trails
144	interconnected the bases of different trees and if certain workers transported brood and
145	nestmates from one tree to another (see Orivel & Dejean, 2001). As most of the TDAAs in the
146	area are diurnal, each hour between 8:00 and 18:00 during five non-consecutive sunny days,
147	we walked along the same path that was chosen because it passed between trees whose
148	canopies were not in contact whereas they share the same TDAAs.
149	Because E. tuberculatum and Crematogaster stollii use underground galleries to connect
150	trees (Table 1) when one or the other species was noted on groups of trees we sought to
151	determine if these trees belonged to the same colony. We thus sprayed paint on workers from
152	one nest (from ≈ 60 cm so that each ant had only some spots) and verified during the three
153	next days if ants with spots of paint were present on the adjacent trees. For E. tuberculatum,
154	we unearthed a nest from the base of a tree and sprayed blue paint as the workers are
155	yellowish. For Cr. stollii, we opened galleries at the base of a tree and sprayed yellow paint as
156	the workers are black; the verification required opening galleries of adjacent trees.
157	All these techniques permitted us to pinpoint the exact limits of the TDAAs' territories,
158	allowing the precise mapping of these territories (Fig. 2).
159	Ant samples were preserved in 70% ethanol for later identification; voucher specimens
160	were deposited in the Laboratório de Mirmecologia, UESC/CEPLAC, Ilhéus, Bahia, Brazil
161	and in the Royal Belgian Institute of Natural Sciences, Brussels, Belgium.

163 Rarefaction curves of tree and ant assemblages

164 Diversity statistics were calculated using EstimateS 9.1 software (Colwell, 2013) with 100 165 randomizations of the sampling order without replacement. To estimate sampling 166 completeness, the Chao1 (tree data, abundance-based) and Chao2 (ant data, occurrence-based) 167 non-parametric estimators of total species richness were calculated (Colwell *et al.*, 2004). 168 Because ant mosaics correspond to non-random patterns of co-occurrence related to the 169 mutual exclusion of TDAAs, we used a fixed-equiprobable null model and the C-score co-170 occurrence index with the sequential swap algorithm and 5,000 iterations available in the 171 EcoSim software (Gotelli & Entsminger, 2004; Blüthgen & Stork, 2007; Fayle et al. 2013). 172 The fixed-equiprobable algorithm maintains the species occurrence frequencies and considers 173 all sites (trees) equiprobable (Gotelli, 2000). The C-score index used in combination with the 174 fixed-equiprobable algorithm generally has good statistical properties and is not prone to false 175 positives (Gotelli, 2000). Specific associations between the most frequent ant species (i.e., 176 present on more than 10% of the 157 trees sampled) were tested using Chi-square tests with 177 Yates' correction. When field observations revealed that a single tree crown belonged to two 178 different territories (n= 7 cases), the species involved were encoded separately in the co-179 occurrences matrix (the whole results in a matrix of 6 ant species x 164 sampling units).

180

181 Testing the relationships between tree family (or subfamily) and ant species

To determine the influence of host trees in shaping the ant mosaic, the TDAAs recorded for each tree family (or subfamily for the Fabaceae) allowed us to build a '10 ant species x 31 tree families' matrix. TDAAs found only occasionally were eliminated to avoid the effect of outliers as were the 11 cases for which the trees were not identified, so that this study was conducted on 144 out of the 157 trees sampled.

9

187 To ordinate the host tree families based on the TDAAs they sheltered, we conducted a non-188 metric multidimensional scaling (NMDS) on a matrix of dissimilarity based on the Bray-189 Curtis dissimilarity index using 100 random starts. The final stress value of 0.06 < 0.1 can be 190 acknowledged as providing a good representation for a 2-D configuration. A hierarchical 191 clustering using the 'complete' agglomeration method (NbClust package) on the dissimilarity 192 matrix resulted in eight clusters of ant species; this was the best clustering scheme obtained 193 using the 'majority rule' (24 indices computed). These analyses were conducted using the 194 Vegan and NbClust packages in R software (R Development Core Team, 2015). 195 196 Identifying different degrees of 'small-scale disturbance' between five Guianese rainforests 197 Because the parabiotic, ant-garden ants Camponotus femoratus (Formicinae) and 198 Crematogaster levior (Myrmicinae) are characteristic of pioneer formations (Dejean et al., 199 2000) but are also present in rainforest canopies, particularly around treefall gaps (Vicente & 200 Izzo, 2017), they can serve as a basis for comparison to establish different degrees of 'small-201 scale natural disturbances' between rainforests. This needs to be distinguished from major 202 disturbances such as those caused by hurricanes or by humans. 203 Thus, we compared the number of trees sheltering these ant garden ants versus those 204 sheltering the other dominant ants between five Guianese rainforests (data from the present 205 study, Dejean et al. 2018, and Leponce et al. 2019). A set of Fisher's exact-tests was used for 206 pairwise comparisons; simultaneous comparisons were adjusted using the false discovery rate, 207 BH correction (Pike, 2011). We also compared the number of tree crowns sheltering these 208 ant-garden ants between light-demanding and other types of trees on the Nouragues plateau as 209 well as the frequency of light-demanding trees between the Nouragues plateau and Paracou, 210 two terra firme rainforests (see data in Appendix S1A, B).

212 **Results**

213

214 General points

215 The 157 trees sampled represented 77 species belonging to 29 families, the Lecythidaceae 216 (30 trees) being the most frequent followed by the Fabaceae (28 trees) (Appendix S1), but we 217 noted the incompleteness of the tree survey (Fig. 3a). The projected on-ground crown map 218 (Fig. 2) corresponds to the location of individual trees in more or less circular horizontal 219 projected crown areas whose diameters varied from 5-6 m to, exceptionally, 14-15 m (see tree 220 #11M11); one can note the presence of numerous gaps between these tall canopy trees. 221 A representative part of the dominant ant assemblage was inventoried (Fig. 3b). Among 222 the 16 ant species recorded (nine genera from six subfamilies), only *Camponotus rapax* is a 223 non-dominant species, here in the situation of sub-dominant on one tree: #11L447. The most 224 frequent species, Cr. levior, noted on 43.95% of the tree crowns, generally nests in parabiosis 225 with *Ca. femoratus*, both sharing ant gardens (Table 1; Figs. 1, 2; Appendix S1).

226

227 Mapping the territorially dominant ant territories

228 Despite the absence of direct contact between certain tree crowns or their connection via 229 lianas in many cases, the cohesion of these territories is possible thanks to the presence of 230 trails on the ground that interconnect the trees. These trails are used during the warmest hours 231 of the day (11:00-15:00), the workers walking in both directions transporting larvae, nymphs 232 and nestmates. This was noted for Az. jelskii (connections between trees #11L403, #11L399 233 and #11L402), Az. instabilis (trees #11M77 and #11M66), Ca. femoratus and Cr. levior 234 (group of trees whose limits are #11M53, #11M37, #11M93 and #11M90; trees #11M111 and 235 #11M128; Fig. 2). The nests of Dolichoderus bidens are interconnected by constantly-used 236 trails passing through low understory vegetation. Also, spraving paint on E. tuberculatum or

237 Cr. stollii workers confirmed that via underground galleries neighboring trees sheltering these 238 ant species belonged to the territory of one colony (e.g., for Cr. stollii see groups #11M104, 239 #11M135 and #11N136; #11L556, #11L458 and #11M106; Fig. 2). 240 We also noted tree crowns divided into separate territories (e.g., #11L408, #11L411, 241 #11L522, #11L403, #11M126, #11M128, #11M111; Fig. 2). 242 In addition to the cases of parabiosis between *Ca. femoratus* and *Cr. levior* noted on 56 243 tree crowns, co-dominance was frequent when involving Cr. stollii which was often 244 associated with E. tuberculatum (i.e., on 16 trees out of 28 sheltering Cr. stollii; Table 2; Fig. 2; Appendix S1). Other cases of co-dominance concerned Cr. levior and Cephalotes atratus 245 246 (tree #11L495), Azteca instabilis and Az. jelskii (trees #11L411 and #11M79), and Az. 247 instabilis and Daceton armigerum (tree #11M128) or Dolichoderus bispinosus (tree #11L408) 248 (Fig. 2; Appendix S1). 249 The null model analysis confirmed the existence of a mosaic by revealing less species co-250 occurrence than expected by chance between the six most common ant species, indicating a 251 competitively structured assemblage (observed C-score = 912.9; simulated C-score = 614.6; 252 P<0.001). The pairwise approach showed that *Crematogaster levior* and *Ca. femoratus* were positively associated with each other but negatively associated with all four other frequent 253

254 species, while *Cr. stollii* was positively associated with *E. tuberculatum* (Table 2).

255

256 Influence of tree family (or subfamily) on the ant species distribution

The NMDS ordination of Bray-Curtis distances and the complete agglomeration method showed a strong host tree selectivity by the 10 most frequent dominant ant species as eight clusters were delimited with, as expected, the two parabiotic, ant-garden ants, *Cr. levior* and *Ca. femoratus*, grouped together. *Azteca jelskii* was associated with *D. bispinosus*, whereas all other ant species were related to a specific set of tree taxa (Fig. 4). Thus, the sampling size

- was large enough to obtain evidence that the formation of ant mosaics depends to some extenton the host trees.
- 264

285

pairwise approach.

265 Identifying different degrees of small-scale disturbances between five Guianese rainforests 266 The rate of presence of the ant-garden ants Ca. femoratus and Cr. levior on the Nouragues 267 plateau (present study) and the Mitaraka swamp forest was not significant, but significantly 268 higher than the three other forests (Table 3). Among the latter, the difference between the 269 forest of Paracou and the Mitaraka plateau was not significant, but was significant between 270 them and the Petit Saut forest (ant-garden ants absent there) (Table 3). 271 The number of tree crowns sheltering *Ca. femoratus* and/or *Cr. levior* on the Nouragues 272 plateau was not significant between light-demanding and other types of trees (8 cases out of 273 20; 40% versus 59 out of 120; 49.17%; Fisher's exact-test: P = 0.48). Also, the comparison 274 between the Guianese terra firme rainforests of the Nouragues plateau and Paracou resulted in 275 non-significant differences in the relative numbers of light-demanding tree species (26 out 276 146 trees identified *versus* 22 out of 109; Fisher's exact-test: P = 0.87) (see Appendix S1). 277 278 Discussion 279 280 Ant mosaic characteristics and traits related to ant species dominance 281 Although Neotropical rainforest canopies are reputed to be irregular, breaking the 282 continuity of the territories of TDAAs (Ribeiro et al., 2013), we show the existence of an ant 283 mosaic. This was demonstrated by mapping the spatial segregation of the numerically 284 dominant ants in the upper canopy (Fig. 2), the use of a null model co-occurrence and a

286	All already known cases of arboreal ant dominance were recorded including classical
287	TDAAs, co-dominance and even a colony of the non-dominant species Ca. rapax in the
288	position of sub-dominance (small Ca. rapax colonies nest in old branches of trees; Table 1).
289	In addition to the parabiosis between Cr. levior and Ca. femoratus, most cases of co-
290	dominance involved Cr. stollii whose workers moreover defend territories vis-à-vis other
291	TDAAs even though they mostly move inside carton galleries (Longino, 2007; Schmidt &
292	Dejean, 2018). They were frequently associated with E. tuberculatum (Table 2). Some other
293	cases of co-dominance correspond to tolerance between TDAA foraging workers (Fig. 2,
294	Appendix S1).
295	A representative part of these dominant arboreal ants was inventoried in the upper canopy
296	(Fig. 3), whereas this was not the case for trees for which a very large sampling effort might
297	be necessary due to the hyperdiverse Amazonian rainforests (see Poncy et al., 2001).
298	Importantly, although the TDAA territories frequently spread over several tree crowns,
299	some tree crowns were divided into two or more separate territories (Fig. 2; Ribeiro et al.,
300	2013; Dejean et al., 2018). This situation needs to be handled with care to avoid confusing it
301	with cases of co-dominance causing wrong data to be used in the statistical analyses leading
302	to erroneous interpretations.
202	A communication communication of another discussion of account has a second s

303 A complementary survey conducted at ground level is necessary because it will allow trees 304 whose crowns are not interconnected by contact or *via* lianas to be grouped in the same 305 territory and, here too, avoid misinterpretations. Indeed, we showed that the workers of five 306 TDAAs use trails on the ground or the low vegetation to interconnect trees whose crowns are 307 not in contact, permitting them to exchange brood and workers and thus to maintain the 308 colony odor as is known for two ground-nesting ant species (Beugnon et al., 2001; Orivel & 309 Dejean, 2001). Furthermore, we confirmed that the colonies of Cr. stollii and E. tuberculatum 310 interconnect neighboring trees belonging to their territory via underground galleries.

312 Forest canopy functioning and ant mosaics

313 Among the functional traits of ant species involved in ant mosaics (e.g., colony size, 314 territoriality, host-tree preference), the size of the colonies is primordial. For example, 315 Camarota *et al.* (2016) demonstrated that, in the Brazilian Cerrado (a savanna with trees ≈ 6 m 316 in height), null model analyses conducted on all ant species noted on trees resulted in random 317 co-occurrence patterns. Yet, the same approach conducted on the most frequent species 318 resulted in a segregated pattern, something confirmed through a pairwise approach (a pairwise 319 approach also permitted Adams et al., 2017 to identify segregated TDAAs in a Panamanian 320 rainforest). Consequently, numerical dominance can be enough for null model analyses to 321 illustrate a segregated pattern of occurrence (see other details in Blüthgen & Stork, 2007). Indeed, if ant abundance in tropical rainforest canopies surpasses that of all other animal taxa, 322 323 this is due to dominant species because non-dominant ants, that are species-rich, represent 324 only $\approx 5\%$ of the ant biomass and individuals (Hölldobler & Wilson, 1994; Tobin, 1997).

325

326 Roles of host trees and small-scale disturbances on the distribution of dominant ants

Host tree specificity due to attractive chemicals acting on founding queens and workers, 327 328 well known for myrmecophyte-ant relationships, was generalized to include TDAAs during 329 ethological experiments showing the basis of nest-site selection by these arboreal ants (Djiéto-330 Lordon & Dejean, 1999a,b). This was also shown via the distribution of the dominant ants' 331 territories even though the latter expand as the colonies age (i.e., they occupy neighboring 332 trees whose taxa are distributed by chance) (Dejean et al., 2007, 2015; 2018; this study). Our 333 approach was valid as we indeed noted that the two ant-garden ants shared the same cluster 334 and that the plant-ant Az. ovaticeps was associated with its mutualist host mymecophyte, 335 Cecropia obtusa (Cecropiaceae) (Fig. 4).

336 Another important characteristic is the dominance of the ant-garden ants Ca. femoratus and 337 *Cr. levior* in the ant mosaic studied, two species typical of pioneer formations that are also 338 frequent around treefall gaps and in plantations (Dejean et al., 2000; Vicente & Izzo, 2017). 339 Thus, their presence in primary rainforests (Dejean et al., 2018; Leponce et al., 2019; this 340 study) might indicate some degrees of past disturbances or of frequent disturbances. The 341 comparison between Guianese rainforests showed that the rate of presence of these two ant 342 species was significantly higher on the Nouragues plateau than in other terra firme Guianese 343 rainforests, but similar to that of a swamp forest (Table 3). Note that the characteristics of 344 Neotropical swamp forests are similar to that of young, secondary forests and treefall gaps in 345 old-growth forests (Souza & Martins 2005). Furthermore, the presence of the typical pioneer species Ce. obtusa shows that canopy 346

347 gaps existed in the past; later these trees reached the canopy and so were recorded in this348 survey (Appendix S1; Fig. 2).

349

Relationships between small-scale natural disturbances and the presence of ant-garden ants Because the comparison of the frequency of the ant-garden ants on the Nouragues plateau and the comparison of the numbers of light-demanding tree species between the Nouragues plateau and Paracou resulted in non-significant differences, we failed to show that these ants select 'light-demanding tree taxa' rather than others. Thus, the neighboring presence of canopy gaps seems enough to favor the presence of these ants in the situation studied (i.e., whether the host trees are light-demanding or not).

Therefore, the abiotic disturbances represented by frequent strong winds and the formation of large canopy gaps are likely the main cause of the abundance of the ant-garden ants *Ca*. *femoratus* and *Cr. levior* that withstand these effects better than do competitive TDAAs (see

360 Vicente & Izzo, 2017). Because they build conspicuous ant gardens easy to locate (Fig. 1),

361 they might serve as indicators of different degrees of small-scale natural disturbances.

362

In conclusion, ant mosaics exist in Neotropical rainforests despite the frequent small-scale natural disturbances and absence of contact between tree crowns due to the structure of the trees. This is due to the TDAAs' territoriality, host tree taxa selection, contact between tree crowns and interconnection *via* liana, plus the ability of certain TDAAs to interconnect trees belonging to their territories using trails on the ground or underground galleries, whereas an abiotic influence plays a role in the form of strong winds and the formation of large canopy

369 gaps.

370

371 Acknowledgements

372

373 We would like to thank Jérôme Chave for furnishing us the maps of the area studied, the identification 374 of the trees and information on tree functional traits, the staff of the Nouragues Ecological Research 375 Station for logistical assistance, Lannick Rerat for sampling ants from the canopy using the single-376 rope technique, Eleonore Compin for technical help and Andrea Yockey for proofreading the 377 manuscript. Financial support for this study was provided by the "Investissement d'Avenir" grants 378 managed by the French Agence Nationale de la Recherche (CEBA, ref. ANR-10- LABX-25-01) and a 379 research grant from the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico 380 (*CNPq*) for JHCD. AD, BC and ML designed the experiments; AD and ML conducted the field study; 381 JHCD identified the ants; AC and ML analyzed the data; FA prepared the illustrations; AD wrote the 382 paper, and all authors made significant contributions in terms of ideas and revisions. All authors have 383 approved the manuscript and there are no conflicts of interest. 384

385 Supporting Information

387	Additional Supporting Information may be found in the online version of this article under the DOI
388	reference: 10.1111/een.??????
389	
390	Appendix S1. A. Identification of the 157 trees studied in the Nouragues Ecological Research Station
391	and the dominant ant species they sheltered in their crowns (the codes are nailed to the trunks of the
392	trees at \approx 1.60 m in height). (LD): light-demanding tree species including pioneer tree species (26
393	species out of 120 taxa identified). B. For comparison, selection of light-demanding tree species in the
394	forest of Paracou, French Guiana (see Dejean et al., 2018).
395	
396	References
397	
398	Adams, B.J, Schnitzer, S.A. & Yanoviak, S.P. (2017) Trees as islands: canopy ant species richness
399	increases with the size of liana-free trees in a Neotropical forest. <i>Ecography</i> , 39 , 001–009.
400	Adams, E.S. (1994) Territory defense by the ant Azteca trigona: maintenance of an arboreal ant
401	mosaic. <i>Oecologia</i> , 97 , 202–208.
402	Armbrecht, I., Jiménez, E., Alvarez, G., Uloa-Chacon, P. & Armbrecht, H. (2001) An ant mosaic in
403	the Colombian rain forest of Chocó (Hymenoptera: Formicidae). Sociobiology, 37, 491-509.
404	Beugnon, G., Chagné, P. & Dejean, A. (2001). Colony structure and foraging behavior in the tropical
405	formicine ant Gigantiops destructor. Insectes Sociaux, 48, 347–351.
406	Beugnon, G. & Dejean, A. (1992) Adaptive properties of the chemical trail system of the African
407	weaver ant. Insectes Sociaux, 39, 341–346.
408	Blüthgen, N. & Stork, N.E. (2007) Ant mosaics in a tropical rainforest in Australia and elsewhere: a
409	critical review. Austral Ecology, 32 , 93–104.
410	Blüthgen, N., Stork, N.E. & Fiedler, K. (2004) Bottom-up control and co-occurrence in complex
411	communities: honeydew and nectar determine a rainforest ant mosaic. Oikos, 106, 344–358.
412	Bolton, B. (2018) Species: Cephalotes atratus (Linnaeus, 1758). Antweb
413	https://www.antweb.org/description.do?rank=species&name=atratus&genus=cephalotes.

- 414 Camargo, R.X. & Oliveira, P.S. (2012) Natural history of the Neotropical arboreal ant, *Odontomachus*
- 415 *hastatus*: nest sites, foraging schedule, and diet. *Journal of Insect Science*, **10**, 158.
- 416 Camarota, F., Powell, S., Melo, A.S., Priest, G., Marquis, R.J. & Vasconcelos, H.L. (2016) Co-
- 417 occurrence patterns in a diverse arboreal ant community are explained more by competition than
- 418 habitat requirements. *Ecology and Evolution*, **6**, 8907–8918.
- 419 Colwell, R.K. (2013) EstimateS: statistical estimation of species richness and shared species from
- 420 samples. Version 9. User's Guide: <u>http://purl.oclc.org/estimates.</u>
- 421 Colwell, R.K., Mao, C.X. & Chang, J. (2004) Interpolating, extrapolating, and comparing incidence-
- 422 based species accumulation curves. *Ecology*, **85**, 2717–2727.
- 423 Corbara, B., Servigne, P., Dejean, A., Carpenter, J.M. & Orivel, J. (2018) A mimetic nesting
- 424 association between a timid social wasp and an aggressive arboreal ant. *Comptes Rendus Biologies*,
- **341**, 182–188.
- 426 da Conceição, E.S., Delabie, J.H.C., Castro Della Lucia, T.M., de Oliveira Costa-Neton, A. & Majer,
- 427 J.D. (2014) Structural changes in arboreal ant assemblages (Hymenoptera: Formicidae) in an age
- 428 sequence of cocoa plantations in the south-east of Bahia, Brazil. *Austral Entomology*, **54**, 315–324.
- 429 Davidson, D.W. (1998) Resource discovery versus resource domination in ants: a functional
- 430 mechanism for breaking the trade-off. *Ecological Entomology*, **23**, 484–490.
- 431 Davidson, D.W., Cook, S.C., Snelling, R.R. & Chua, T.H. (2003) Explaining the abundance of ants in
 432 lowland tropical rainforest canopies. *Science*, **300**, 969–972.
- 433 Davidson, D.W., Lessard, J.-P., Bernau, C.R. & Cook, S.C. (2007) Tropical ant mosaic in a primary
- 434 Bornean Rain Forest. *Biotropica*, **39**, 468–475.
- 435 De la Mora, A., Livingston, G. & Philpott, S.M. (2008) Arboreal ant abundance and leaf miner
- 436 damage in coffee agroecosystems in Mexico. *Biotropica*, **40**, 742–746.
- 437 Dejean, A., Azémar, F., Céréghino, R., Leponce, M., Corbara, B., Orivel, J. & Compin, A. (2016) The
- 438 dynamics of ant mosaics in tropical rainforests characterized using the Self-Organizing Map
- 439 algorithm. *Insect Science*, **23**, 630–637.
- 440 Dejean, A., Corbara, B., Orivel, J. & Leponce, M. (2007) Rainforest canopy ants: the implications of
- territoriality and predatory behavior. *Functional Ecosystems and Communities*, **1**, 105–120.

442	Dejean, A., Corbara, B., Orivel, J., Snelling, R.R., Delabie, J.H.C. & Belin-Depoux, M. (2000) The
443	importance of ant gardens in the pioneer vegetal formations of French Guiana. Sociobiology, 35,
444	425–439.
445	Dejean, A., Delabie, J.H.C., Corbara, B., Azémar, F., Groc, S., Orivel, J. & Leponce, M. (2012) The
446	ecology and feeding habits of the arboreal trap-jawed ant Daceton armigerum. PLoS ONE, 7,
447	e37683.
448	Dejean, A., Fisher, B.L., Corbara, B., Rarevohitra, R., Randrianaivo, R., Rajemison, B. & Leponce, M.
449	(2010) Spatial distribution of dominant arboreal ants in a Malagasy coastal rainforest: gaps and
450	presence of an invasive species. PLoS ONE, 5, e9319.
451	Dejean, A., Orivel, J., Leponce, M., Compin, A., Delabie, J.H.C., Azémar, F. & Corbara, B. (2018)
452	Ant-plant relationships in the canopy of an Amazonian rainforest: the presence of an ant mosaic.
453	Biological Journal of the Linnean Society, 125, 344–354.
454	Dejean, A., Ryder, S., Bolton, B., Compin, A., Leponce, M., Azémar, F., Céréghino, R., Orivel, J. &
455	Corbara, B. (2015) How territoriality and host-tree taxa determine the structure of ant mosaics. The
456	Science of Nature, 102, 33.
457	Delabie, J.H.C. (1990) The ant problems of cocoa farms in Brazil. Applied Myrmecology: A World
458	Perspective (ed. by R.K. Vander Meer, K. Jaffe & A. Cedeño), pp. 555–569, Westview Press,
459	Boulder, Colorado, USA.
460	Delabie, J.H.C., Benton, F.P. & de Medeiros, M.A. (1991) La polydomie chez les Formicidae
461	arboricoles dans les cacaoyières du Brésil: optimisation de l'occupation de l'espace ou stratégie
462	défensive? Actes des Colloques Insectes Sociaux, 7, 173-178.
463	Djiéto-Lordon, C. & Dejean, A. (1999a) Innate attraction supplants experience during host plant
464	selection in an obligate plant-ant. Behavioural Processes, 46, 181–187.

- 465 Djiéto-Lordon, C. & Dejean, A. (1999b) Tropical arboreal ant mosaic: innate attraction and imprinting
- determine nesting site selection in dominant ants. *Behavioral Ecology and Sociobiology*, 45, 219–
 225.
- 468 Dyer, L.A. (2002) A quantification of predation rates, indirect positive effects on plants, and foraging
- 469 variation of the giant tropical ant, *Paraponera clavata*. Journal of Insect Science, **2**, 18.

- Elahi, R. (2005) The effect of water on the ground nesting habits of the giant tropical ant, *Paraponera clavata. Journal of Insect Science*, 5, 34.
- 472 Fayle, T.M., Eggleton, P., Manica, A., Yusah, K.M. & Foster, W.A. (2015) Experimentally testing and
- 473 assessing the predictive power of species assembly rules for tropical canopy ants. *Ecology Letters*.
- **18**, 254–262.
- 475 Fayle, T.M., Turner, E.C. & Foster, W.A. (2013) Ant mosaics occur in SE Asian oil palm plantation
- 476 but not rain forest and are influenced by the presence of nest-sites and non-native species.
- 477 *Ecography*, **36**, 1051–1057.
- 478 Floren, A., Biun, A. & Linsenmair, K.E. (2002) Arboreal ants as key predators in tropical lowland
- 479 rainforest trees. *Oecologia*, **131**, 137–44.
- 480 Floren, A. & Linsenmair, K.E. (2000) Do ant mosaics exist in pristine lowland rain forests?
- 481 *Oecologia*, **123**, 129-137.
- 482 Gibernau, M., Orivel, J., Delabie, J.H.C., Barabé, D. & Dejean, A. An asymmetrical relationship
- between an arboreal ponerine ant and a trash-basket epiphyte (Araceae). *Biological Journal of the Linnean Society*, 91, 341–346.
- 485 Gotelli, N.J. (2000) Null model analysis of species co-occurrence patterns. *Ecology*, **81**, 2606–2621.
- 486 Gotelli, N.J. & Entsminger, G.L. (2004) EcoSim: Null models software for ecology. Version 7.
- 487 Acquired Intelligence Inc. & Kesey-Bear, <u>http://garyentsminger.com/ecosim/index.htm.</u>
- 488 Grimaldi, M. & Riera, B. (2001) Geography and climate. *Nouragues*. *Dynamics and plant-animal*
- 489 interactions in a Neotropical Rainforest (ed. by F. Bongers, P. Charles-Dominique, P.M. Forget, &
- 490 M. Théry), pp. 9–18, Kluwer Academic publishers, Dordrecht, The Netherlands.
- 491 Groc, S., Delabie, J.H.C., Fernández, F., Leponce, M., Orivel, J., Silvestre, R., Vasconcelos, H.L. &
- 492 Dejean, A. (2014) Leaf-litter ant communities in a pristine Guianese rainforest: stable functional
- 493 structure *versus* high species turnover. *Myrmecological News*, **19**, 43–51.
- Hölldobler, B. & Wilson, E.O. (1994) Journey to the ants: a story of scientific exploration. Harvard
 University Press, Cambridge, MA, USA.
- 496 Hora, R.R., Vilela, E.F., Fénéron, R., Pezon, A., Fresneau, D. & Delabie, J.H.C. 2005. Facultative
- 497 polygyny in *Ectatomma tuberculatum* (Formicidae, Ectatomminae). *Insectes Sociaux*, **52**, 194–200.

- 498 Kenne, M., Djiéto-Lordon, C., Orivel, J., Mony, R., Fabre, A. & Dejean, A. (2003) Influence of
- 499 insecticide treatments on ant-hemiptera associations in tropical plantations. *Journal of Economic*500 *Entomology*, 96, 251–258.
- 501 Klimes, P., Fibich, P., Idigel, C., Rimandai, M. (2015) Disentangling the diversity of arboreal ant
- 502 communities in tropical forest trees. *PLoS ONE*, **10**, e0117853.
- 503 Klimes, P. (2017) Diversity and specificity of ant-plant interactions in canopy communities: insights
- from primary and secondary tropical forests in New Guinea. *Ant-plant interactions: impacts of*
- 505 *humans on terrestrial ecosystems* (ed. by P.S. Oliveira & S. Koptur), pp. 26–51, Cambridge
- 506 University Press, Cambridge, UK.
- 507 Leponce M., Delabie J.H.C., Jacquemin J., Martin M.C. & Dejean A. (2019) Tree-dwelling ant survey
- 508 (Hymenoptera, Formicidae) in Mitaraka, French Guiana. Zoosystema, (in press).
- 509 Lewis, S.L., Sonke, B., Sunderland, T., Begne, S.K., Lopez-Gonzalez, G., vander Heijden, G.M.F.,
- 510 Phillips, O.L., Affum-Baffoe, K. & Baker, T.R. (2013) Above-ground biomass and structure of 260
- 511 African tropical forests. *Philosophical Transactions of the Royal Society B: Biological Sciences*,
- **368**, 20120295.
- 513 Longino, J.T. (2003) The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica.
- 514 *Zootaxa*, **151**, 1–150.
- Longino, J.T. (2007) A taxonomic review of the genus *Azteca* in Costa Rica and a global revision of
 the *aurita* group. *Zootaxa*, 1491, 1–63.
- 517 MacKay, W.P. (1993) A review of the New World ants of the genus *Dolichoderus* (Hymenoptera:
 518 Formicidae). *Sociobiology*, 22, 1–150.
- 519 Majer, J.D. (1972) The ant mosaic in Ghana cocoa farms. *Bulletin of Entomological Research*, **62**,
- 520 151–160.
- 521 Majer, J.D. (1993) Comparison of the arboreal ant mosaic in Ghana, Brazil, Papua New Guinea and
- 522 Australia: its structure and influence of ant diversity. *Hymenoptera and Biodiversity* (ed. by J.
- 523 LaSalle & L.D. Gauld), pp. 115–141, CAB International, Wallingford, UK.
- 524 Majer, J.D., Delabie, J.H.C, Smith, M.R.B. (1994) Arboreal ant community patterns in Brazilian cocoa
- 525 farms. *Biotropica*, **26**, 73–83.

- 526 Offenberg, J. (2007) The distribution of weaver ant pheromones on host trees. *Insectes Sociaux*, 54,
 527 248–250.
- 528 Orivel, J. & Dejean, A. (2001) Ant activity rhythm in a pioneer vegetal formation of French Guiana.
 529 *Sociobiology*, **39**, 65–76.
- 530 Pfeiffer, M., Tuck, H.C. & Lay, T.C. (2008) Exploring arboreal ant community composition and co-
- 531 occurrence patterns in plantations of oil palm (*Elaeis guineensis*) in Borneo and Peninsular
- 532 Malaysia. *Ecography*, **31**, 21–32.
- 533 Pike, N. (2011) Using false discovery rates for multiple comparisons in ecology and evolution,
- 534 *Methods in Ecology and Evolution*, **2**, 278–282.
- 535 Poncy, O., Sabatier, D., Prévost, M.-F. & Hardy, I. (2001) The lowland high rainforest. Structure and
- 536 tree species diversity. *Nouragues*. *Dynamics and plant-animal interactions in a Neotropical*
- 537 Rainforest (ed. by F. Bongers, P. Charles-Dominique, P.M. Forget & M. Thery), pp. 31–46,
- 538 Kluwer Academic publishers, Dordrecht, The Netherlands.
- R Development Core Team (2015) R: a language and environment for statistical computing. R
 Foundation for Statistical Computing, Vienna.
- 541 Ribeiro, S.P., Espirito Santo, N.B., Delabie, J.H.C. & Majer, J.D. (2013) Competition, resources and
- 542 the ant (Hymenoptera: Formicidae) mosaic: a comparison of upper and lower canopy.
- 543 *Myrmecological News*, **18**, 99–102.
- 544 Schmidt, M. & Dejean, A. (2018) A dolichoderine ant that constructs traps to collectively ambush
- 545 prey: convergent evolution with a myrmicine genus. *Biological Journal of the Linnean Society*,
 546 **124**, 41–46.
- 547 Schnitzer, S., Mascaro, J., & Carson, W. (2008) Treefall gaps and the maintenance of plant species
- 548 diversity in tropical forests. *Tropical forest community ecology* (ed. by W. Carson & S. Schnitzer),
- 549 pp. 196–209, Wiley-Blackwell Pub., Chichester, UK.
- Souza, A.F. & Martins, F.R. (2005) Spatial variation and dynamics of flooding, canopy openness, and
 structure in a Neotropical swamp forest. *Plant Ecology*, **180**, 161–173.
- 552 Stefan, A., Schnitzer, S.A. & Carson W.P. (2010) Lianas suppress tree regeneration and diversity in
- treefall gaps. *Ecology Letters*, **13**, 849–857.

554	Styrsky, J.D. & Eubanks, M.D. (2007) Ecological consequences of interactions between ants and
555	honeydew-producing insects. Proceedings of the Royal Society of London, B Biological Sciences,
556	274 , 151–164.
557	Tobin, J.E. (1997) Competition and coexistence of ants in a small patch of rainforest canopy in
558	Peruvian Amazonia. Journal of the New York Entomological Society, 105, 105–112.
559	Tymen, B., Réjou-Méchain, M., Dalling, J.W., Fauset, S., Feldpausch, T.R., Norden, N., Phillips,
560	O.L., Turner, B.L., Viers, J. & Chave, J. (2016) Evidence for arrested succession in a liana-infested
561	Amazonian forest. Journal of Ecology, 104, 149–159.
562	van der Meer, R.J. & Bongers, F. (1996) Formation and closure of canopy gaps in the rain forest at
563	Nouragues, French Guiana. Vegetatio, 126, 167-179.
564	Vicente, R.E. & Izzo, T.J. (2017) Defining habitat use by the parabiotic ants Camponotus femoratus
565	(Fabricius, 1804) and Crematogaster levior Longino, 2003. Sociobiology, 64, 373-380.
566	Watt, A.D., Stork, N.E. & Bolton, B. (2002) The diversity and abundance of ants in relation to forest
567	disturbance and plantation establishment in southern Cameroon. Journal of Applied Ecology, 39,

- 568 985–998.
- 569 Yusah, K.M., Foster, W.A., Reynolds, G. & Fayle, T.M. (2018) Ant mosaics in Bornean primary rain
- 570 forest high canopy depend on spatial scale, time of day, and sampling method. *Peer J*, **6**, e4231.
- 571

572	Figure legends
573 574	Fig. 1. (a) A large carton nest of Azteca chartifex. (b) A conspicuous ant garden resulting from the
575	association between Camponotus femoratus and Crematogaster levior. The scale bar represents 50cm.
576 577	Fig. 2. Overhead view of the distribution of the trees and their associated territorially dominant ant
578	species in the area studied in the Nouragues Ecological Field Station, French Guiana. The codes
579	correspond to the trees listed in Appendix S1 (see also examples of the projection of African tree
580	crowns for comparison). Note the co-occurrence of two mutually exclusive TDDAs in seven tree
581	crowns (i.e., trees #11L403; #11L408; #11L411; #11L522; #11M111; #11M126; #11M128), and co-
582	dominance in 29 trees.
583	
584	Fig. 3. (a) Individual-based rarefaction (Mao-Tau with 95 % CI, solid lines) illustrating the
585	incompleteness of the survey concerning the tree species (N = 141 identified trees), confirmed by the
586	stability of the singletons (species observed with only one individual, triangles) and doubletons
587	(species with only two individuals, circles). The estimated asymptotic richness of the assemblage
588	obtained by Chao1 is shown as diamonds (Chao1 mean = 175 species; CI95%: 119-298 tree species).
589	Trees that could not be identified to the species level were excluded from this analysis. (b) Sample-
590	based rarefaction (Mao-Tau with 95 % CI, solid lines) illustrating the near-completeness of the survey
591	concerning the ant species, confirmed by the decrease in uniques (species collected only once,
592	triangles) and duplicates (species collected twice, circles). The estimated asymptotic richness of the
593	assemblage obtained by Chao2 is shown as diamonds ($N = 157$ supporting trees).
594	
595	Fig. 4. Non-metric multidimensional scaling (NMDS) ordination plot showing the ant species (black
596	crosses) according to their host tree taxa (red dots) (Bray-Curtis distance). The 'complete' clustering
597	of ant species in the ordination space according to host tree sample composition delimits eight clusters.
598	The analysis was conducted on the 10 most frequent dominant ants and 31 tree families or subfamilies
599	for the Fabaceae (this corresponds to 144 tree crowns out of the 157 sampled).

 Table 1. List of dominant ant species collected from 157 trees in the Nouragues Ecological Research

 Station (the total of the percentages is greater than 100% because one tree crown can shelter several

 dominant ant species due to cases of co-dominance).

Ant species	Occurrences	Frequency on trees	Nesting habits	
Crematogaster levior	69	43.95 %	Carton nests, ant gardens, polydomous, parabiosis with Camponotus femoratus.	Dejean <i>et al.</i> (2000); Vicente & Izzo (2017)
Camponotus femoratus	61	38.85 %	Semi-spherical carton nests, ant gardens, polydomous, parabiosis with <i>Crematogaster levior</i> .	Dejean <i>et al.</i> (2000); Vicente & Izzo (2017)
Crematogaster stollii	28	17.83 %	Carton nests in cavities; galleries on tree trunks and branches; continue underground, interconnecting trees.	Longino (2003)
Azteca instabilis	22	14.01 %	Hemispherical carton nests against tree trunks or base of main branches, polydomous.	De la Mora <i>et al</i> . (2008)
Ectatomma tuberculatum	19	12.10 %	Ground-nesting at the base of trees, polydomous; galleries underground interconnecting trees.	Delabie (1990); Hora <i>et al.</i> (2005)
Azteca jelskii	16	10.19 %	Carton nests in cavities, polydomous.	Longino (2007)
Dolichoderus bidens	6	3.82 %	Numerous small carton nests under the leaves, polydomous.	MacKay (1993); Delabie <i>et al.</i> (1991) Corbara <i>et al.</i> (2018)
Dolichoderus bispinosus	6	3.82 %	Nests in cavities, polydomous.	MacKay (1993)
Daceton armigerum	4	2.55 %	Cavities in old branches of trees, polydomous.	Dejean <i>et al</i> . (2012)
Azteca ovaticeps	4	2.55 %	Nests in hollow trunks and branches of <i>Cecropia</i> spp. trees.	Longino, 2007
Odontomachus hastatus	4	2.55 %	Nests in trash baskets formed by palm trees or <i>Philodendron</i> .	Gibernau <i>et al</i> . (2007); Camargo & Oliveira (2012)
Paraponera clavata	4	2.55 %	Ground-nesting at the base of trees.	Elahi (2015)
Azteca chartifex	3	1.91 %	Large, triangular carton nests, polydomous.	Delabie <i>et al</i> . (1991); Longino (2007)
Cephalotes atratus	2	1.27 %	Large cavities in old branches of trees, polydomous.	Bolton (2018)
Azteca brevis	1	0.63 %	Carton nests in cavities; galleries on tree trunks and branches; continue underground, interconnecting trees	Longino, 2007; Schmidt & Dejean, 2018)
Camponotus rapax	1	0.63 %	Small colonies nesting in cavities in old branches of trees.	Gibernau <i>et al</i> . (2007); AD, BC <i>pers. com</i>

Table 2. Associations between the most frequent species (frequency on the 157 trees sampled >10%) by decreasing rank of occurrence and tested using *Chi*-square tests (1 d.f., Yates' correction). Symbols indicate the nature of the association: "+" positive, "–" negative, "0" not significant.

		Frequency	1	2	3	4	5
1	Crematogaster levior	44%					
2	Camponotus femoratus	39%	+				
3	Crematogaster stolli	18%	-	-			
4		14%	-	-	0		
5	Ectatomma tuberculatum	12%	-	-	+	0	
6	Azteca jelskii	10%	-	-	0	0	0

Table 3. Comparison of the parabiotic, ant-garden ants *Camponotus femoratus* and*Crematogaster levior* and all other territorially dominant arboreal ant species (TDAAs)between five Guianese rainforests. Statistical comparison: Fisher's exact-tests and falsediscovery rate (FDR; BH correction) adjustment for simultaneous comparisons.

	A-	B-	C-	D-	E-
	Nouragues	Paracou	Mitaraka	Mitaraka	Petit Saut
_	(plateau)		(plateau)	(swamp)	
Ant-garden ants	69 (45.7%)	27 (20.15%)	6 (20%)	15 (50%)	0 (0%)
All other TDAAs	82 (54.3%)	107 (79.85%)	24 (80%)	15 (50%)	45 (100%)
Total	151	134	30	30	45
	AxB	AxC	AxD	AxE	BxC
Fisher's exact-test	P <0.001	P = 0.0088	P = 0.693	P = 0.0001	P = 1
FDR adjustment	P<0.05	P<0.05	NS	P<0.05	NS
	BxD	BxE	CxD	CxE	DxE
Fisher's exact-test	P = 0.002	P = 0.001	P = 0.0292	P = 0.0029	P < 0.0001
FDR adjustment	P<0.05	P<0.05	P<0.05	P<0.05	P<0.05

Fig. 1. (a) A large carton nest of Azteca chartifex. (b) A conspicuous ant garden resulting from the association between Camponotus femoratus and Crematogaster levior. The scale bar represents 50cm.

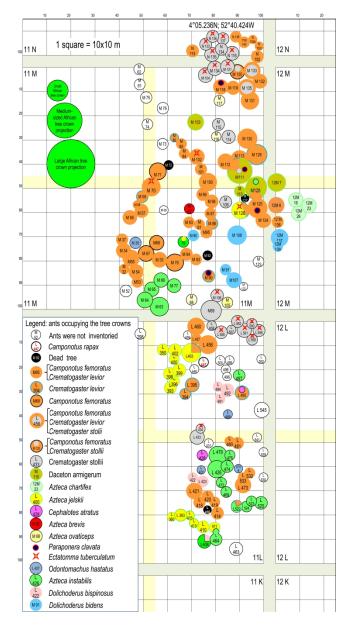


Fig. 2. Overhead view of the distribution of the trees and their associated territorially dominant ant species in the area studied in the Nouragues Ecological Field Station, French Guiana. The codes correspond to the trees listed in Appendix S1 (see also examples of the projection of African tree crowns for comparison).

128x239mm (600 x 600 DPI)

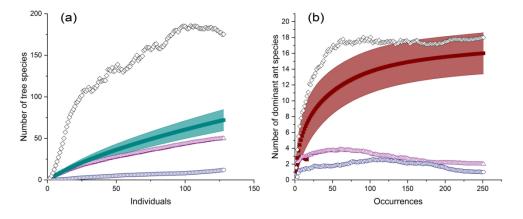


Fig. 3. (a) Individual-based rarefaction (Mao-Tau with 95 % CI, solid lines) illustrating the incompleteness of the survey concerning the tree species (N = 141 identified trees), confirmed by the stability of the singletons (species observed with only one individual, triangles) and doubletons (species with only two individuals, circles). The estimated asymptotic richness of the assemblage obtained by Chao1 is shown as diamonds (Chao1 mean = 175 species; CI95%: 119-298 tree species). Trees that could not be identified to the species level were excluded from this analysis. (b) Sample-based rarefaction (Mao-Tau with 95 % CI, solid lines) illustrating the near-completeness of the survey concerning the ant species, confirmed by the decrease in uniques (species collected only once, triangles) and duplicates (species collected twice, circles). The estimated asymptotic richness of the assemblage obtained by Chao2 is shown as diamonds (N = 157 supporting trees).

165x67mm (300 x 300 DPI)

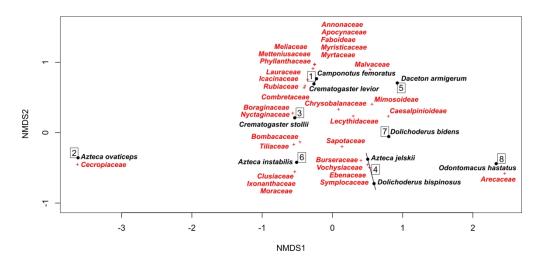


Fig. 4. Non-metric multidimensional scaling (NMDS) ordination plot showing the ant species (black crosses) according to their host tree taxa (red dots) (Bray-Curtis distance). The 'complete' clustering of ant species in the ordination space according to host tree sample composition delimits eight clusters. The analysis was conducted on the 10 most frequent dominant ants and 31 tree families or subfamilies for the Fabaceae (this corresponds to 144 tree crowns out of the 157 sampled).

189x88mm (300 x 300 DPI)

Appendix S1. A. Identification of the 157 trees studied in the Nouragues Ecological Research Station and the dominant ant species they sheltered in their crowns (the codes are nailed to the trunks of the trees at \approx 1.60 m in height). (LD): light-demanding tree species including pioneer tree species (26 species out of 120 taxa identified).

Tree family	Tree species	CODE	Territorially dominant arboreal species
Vochysiaceae	Qualea rosea	11L350	Azteca jelskii
Lecythidaceae	Lecythis persistens	11L360	Azteca jelskii
Burseraceae	Protium sagotianum	11L363	Azteca jelskii
Lecythidaceae	Lecythis poiteaui	11L393	Azteca jelskii
Cardiopteridaceae	Dendrobangia boliviana	11L394	Crematogaster levior
Caesalpinioideae	Vouacapoua americana	11L395	Crematogaster levior
Lecythidaceae	Lecythis poiteaui	11L396	Azteca jelskii
Burseraceae	Protium sagotianum	11L398	Azteca jelskii
Sapotaceae	Pouteria gonggrijpii	11L399	Azteca jelskii
Chrysobalanaceae	Licania canescens	11L400	Azteca jelskii
Symplocaceae	Symplocos martinicensis	11L402	Azteca jelskii
Lecythidaceae	Lecythis idatimon	11L403	Azteca jelskii, Crematogaster levior
Caesalpinioideae	Vouacapoua americana	11L408	Azteca instabilis, Dolichoderus bispinosus
Ebenaceae	Diospyros capreifolia	11L410	Azteca jelskii
Lecythidaceae	Eschweilera coriacea	11L411	Azteca instabilis, Azteca jelskii
Caesalpinioideae	Vouacapoua americana	11L413	Azteca jelskii
Annonaceae	Fusaea longifolia	11L414	Camponotus femoratus, Crematogaster levior
Lecythidaceae	Eschweilera coriacea	11L415	Azteca jelskii
Burseraceae	Tetragastris altissima	11L418	Camponotus femoratus, Crematogaster levior
Combretaceae	Buchenavia sp.	11L419	Camponotus femoratus, Crematogaster levior
Burseraceae	Protium morii	11L420	Camponotus femoratus, Crematogaster levior
Caesalpinioideae	Vouacapoua americana	11L421	Camponotus femoratus, Crematogaster levior
Sapotaceae	Pouteria decorticans	11L422	Dolichoderus bispinosus
Burseraceae	Unidentified	11L423	Dolichoderus bispinosus
Ixonanthaceae	Cyrillopsis paraensis	11L426	Azteca instabilis
Arecaceae	Astrocaryum sciophilum	11L427	Odontomachus hastatus
Burseraceae	Protium opacum	11L428	Cephalotes atratus
Lecythidaceae	Lecythis persistens	11L433	Crematogaster stollii
Nyctaginaceae	Neea floribunda	11L434	Crematogaster stollii, Ectatomma tuberculatum
Sapotaceae	Micropholis cayennensis	11L447	Camponotus rapax
Malvaceae	Sterculia pruriens (LD)	11L456	Camponotus femoratus, Crematogaster levior
Lauraceae	Ocotea percurrens	11L457	Camponotus femoratus, Crematogaster levior
Combretaceae	Buchenavia sp.	11L458	Crematogaster stollii
Sapotaceae	Pradosia ptychandra	11L460	Camponotus femoratus, Crematogaster levior
Lecythidaceae	Couratari oblongifolia	11L464	Azteca instabilis
Cecropiaceae	Pourouma tomentosa (LD)	11L469	Azteca instabilis
Vochysiaceae	Qualea rosea	11L472	Azteca instabilis
Meliaceae	Carapa procera	11L473	Camponotus femoratus, Crematogaster levior
Mimosoideae	Inga gracilifolia (LD)	11L474	Azteca instabilis
Arecaceae	Astrocaryum sciophilum	11L474 B	Odontomachus hastatus

Clusiasaa	Sumphania alabulifara	11L478	Artago instabilio
Clusiaceae	Symphonia globulifera	11L470	Azteca instabilis Azteca instabilis
Caesalpinioideae	Vouacapoua americana	11L479	
Lecythidaceae	Eschweilera grandiflora	11L481	Camponotus femoratus, Crematogaster levior
Lecythidaceae Arecaceae	Lecythis persistens	11L489	Camponotus femoratus, Crematogaster levior Odontomachus hastatus
	Astrocaryum sciophilum Erisma floribundum	11L409	
Vochysiaceae			Dolichoderus bispinosus
Sapotaceae	Manilkara bidentata	11L492 11L494	Dolichoderus bispinosus
Sapotaceae	Chrysophyllum lucentifolium		Dolichoderus bispinosus
Lecythidaceae	Eschweilera coriacea	11L495	Crematogaster levior, Cephalotes atratus
Mimosoideae	Inga huberi (LD)	11L497	Azteca instabilis
Vochysiaceae	Qualea rosea	11L506	Crematogaster stollii, Ectatomma tuberculatum
Sapotaceae	Pouteria guianensis	11L507	Crematogaster stollii
Bombacaceae	Quararibea duckei	11L522	Azteca instabilis, Crematogaster levior
Tiliaceae	Apeiba glabra (LD)	11L523	Azteca instabilis
Lecythidaceae	Couratari multiflora	11L524	Azteca instabilis
Sapotaceae	Pouteria guianensis	11L525	Azteca instabilis
Chrysobalanaceae	Licania canescens	11L532	Camponotus femoratus, Crematogaster levior
Malvaceae	Sterculia sp. (LD)	11L533	Camponotus femoratus, Crematogaster levior
Lecythidaceae	Eschweilera grandiflora	11L556	Crematogaster stollii, Ectatomma tuberculatum
Lecythidaceae	Lecythis persistens	11L558	Crematogaster stollii, Ectatomma tuberculatum
Cardiopteridaceae	Dendrobangia boliviana	11L560	Crematogaster stollii, Ectatomma tuberculatum
Cardiopteridaceae	Dendrobangia boliviana	11L561	Crematogaster stollii, Ectatomma tuberculatum
Lauraceae	Ocotea sp.	11L562	Crematogaster stollii, Ectatomma tuberculatum
Sapotaceae	Chrysophyllum sp.	11M32	Camponotus femoratus, Crematogaster levior
Caesalpinioideae	Vouacapoua americana	11M33	Camponotus femoratus, Crematogaster levior
Myristicaceae	Virola kwatae	11M34	Camponotus femoratus, Crematogaster levior
Caesalpinioideae	Vouacapoua americana	11M35	Odontomachus hastatus
Lecythidaceae	Eschweilera coriacea	11M37	Camponotus femoratus, Crematogaster levior
Sapotaceae	Chrysophyllum lucentifolium	11M53	Camponotus femoratus, Crematogaster levior
Sapotaceae	Chrysophyllum lucentifolium	11M54	Camponotus femoratus, Crematogaster levior
Myristicaceae	Virola kwatae	11M55	Camponotus femoratus, Crematogaster levior
Lecythidaceae	Eschweilera coriacea	11M56	Camponotus femoratus, Crematogaster levior
Sapotaceae	Pouteria oblanceolata	11M57	Camponotus femoratus, Crematogaster levior
Meliaceae	Carapa sp.	11M58	Camponotus femoratus, Crematogaster levior
Sapotaceae	Micropholis guyanensis	11M59	Crematogaster levior
Sapotaceae	Chrysophyllum sp.	11M63	Azteca instabilis
Lecythidaceae	sp.	11M64	Azteca instabilis
Moraceae	sp.	11M65	Azteca instabilis
Lecythidaceae	Lecythis persistens	11M66	Azteca instabilis
Sapotaceae	sp.	11M67	Camponotus femoratus
Lecythidaceae	Eschweilera coriacea	11M68	Camponotus femoratus
Lecythidaceae	Eschweilera coriacea	11M70	Camponotus femoratus, Crematogaster levior, Ectatomma tuberculatum
Caesalpinioideae	Vouacapoua americana	11M71	Camponotus femoratus
Sapotaceae	Pradosia ptychandra	11M77	Azteca instabilis
Myristicaceae	Virola micheliil	11M78	Camponotus femoratus
Caesalpinioideae	Vouacapoua americana	11M79	Azteca instabilis, Azteca jelskii

Caesalpinioideae	Vouacapoua americana	11M80	Dolichoderus bidens
Faboideae	Swartzia benthamiana	11M81	Camponotus femoratus, Crematogaster levior
Malvaceae	Sterculia sp. (LD)	11M82	Azteca brevis
Cardiopteridaceae	Dendrobangia boliviana	11M83	Camponotus femoratus, Crematogaster levior
Lecythidaceae	Eschweilera coriacea	11M84	Camponotus femoratus, Crematogaster levior
Apocynaceae	Aspidosperma helstonei	11M85	Camponotus femoratus, Crematogaster levior
Phyllanthaceae	Hyeronima alchorneoides	11M86	Crematogaster levior
Cecropiaceae	Cecropia obtusa (LD)	11M88	Azteca ovaticeps
Sapotaceae	Chrysophyllum lucentifolium	11M89	Crematogaster stollii
Lecythidaceae	Lecythis persistens	11M90	Crematogaster levior, Paraponera clavata
Vochysiaceae	Qualea rosea	11M91	Dolichoderus bidens
Myristicaceae	Iryanthera sp.	11M93	Camponotus femoratus, Crematogaster levior
Apocynaceae	Geissospermum sp.	11M94	Camponotus femoratus, Crematogaster levior
Chrysobalanaceae	Licania majuscula	11M95	Camponotus femoratus, Crematogaster levior
Caesalpinioideae	Sclerolobium melinonii	11M96	Crematogaster levior
Myrtaceae	Guettarda acreana	11M97	Camponotus femoratus, Crematogaster levior
Not identified		11MM98	Camponotus femoratus, Crematogaster levior
Malvaceae	Sterculia sp. (LD)	11M99	Camponotus femoratus, Crematogaster levior
Myrtaceae	Guettarda acreana	11M100	Camponotus femoratus, Crematogaster levior
Mimosoideae	Inga alba (LD)	11M101	Camponotus femoratus, Crematogaster levior
Myrtaceae	Guettarda acreana	11M102	Camponotus femoratus, Crematogaster levior, Ectatomma tuberculatum
Lecythidaceae	Eschweilera grandiflora	11M103	Daceton armigerum
Boraginaceae	Cordia sp.	11M104	Crematogaster stollii, Ectatomma tuberculatum
Cecropiaceae	Cecropia obtusa (LD)	11M105	Azteca ovaticeps
Cecropiaceae	Pourouma sp. (LD)	11M106	Crematogaster stollii, Ectatomma tuberculatum
Mimosoideae	Inga melinonis (LD)	11M107	Dolichoderus bidens
Lecythidaceae	Eschweilera grandiflora	11M108	Dolichoderus bidens
Lecythidaceae	Eschweilera grandiflora	11M109	Crematogaster stollii
Malvaceae	Sterculia sp. (LD)	11M110	Daceton armigerum
Caesalpinioideae	Pseudopiptadenia suaveolens	11M111	Da. armigerum, Az. instabilis, Cre. levior, Para. clavata, Cre. stollii
Sapotaceae	Micropholis guyanensis	11M112	Camponotus femoratus, Crematogaster levior
Malvaceae	Sterculia sp. (LD)	11M113	Camponotus femoratus, Crematogaster levior
Malvaceae	Sterculia sp. (LD)	11M114	Crematogaster stollii
Lecythidaceae	Couratari guianensis	11M115	Crematogaster stollii
Cecropiaceae	Cecropia obtusa (LD)	11M116	Azteca ovaticeps
Cecropiaceae	Cecropia obtusa (LD)	11M117	Azteca ovaticeps
Meliaceae	<i>Carapa</i> sp.	11M118	Camponotus femoratus, Crematogaster levior, Paraponera clavata
Lauraceae	sp.	11M119	Camponotus femoratus, Crematogaster levior
Caesalpinioideae	Parkia nitida	11M120	Camponotus femoratus, Crematogaster stollii
Boraginaceae	Cordia sp.	11M121	Crematogaster stollii, Ectatomma tuberculatum
Sapotaceae	Pouteria eugeniifolia	11M124	Camponotus femoratus, Crematogaster levior
Apocynaceae	Aspidosperma marcgravianum	11M125	Camponotus femoratus, Crematogaster levior, Paraponera clavata
Caesalpinioideae	Vouacapoua americana	11M126	Azteca jelskii, Crematogaster levior, Ectatomma tuberculatum
Caesalpinioideae	Vouacapoua americana	11M128	Azteca instabilis, Crematogaster levior, Daceton armigerum
Mimosoideae	Inga capitata (LD)	11M129	Crematogaster levior
Mimosoideae	Inga flagelliformis (LD)	11M130	Camponotus femoratus, Crematogaster levior

Sapotaceae	Chrysophyllum lucentifolium	11M131	Camponotus femoratus, Crematogaster levior
Cardiopteridaceae	Dendrobangia boliviana	11M132	Camponotus femoratus, Crematogaster levior
Rubiaceae	Guettarda acreana	11M133	Camponotus femoratus, Crematogaster levior, Crematogaster stollii
Tiliaceae	Apeiba glabra (LD)	11M134	Crematogaster stollii, Ectatomma tuberculatum
Not identified		11M135	Camponotus femoratus, Crematogaster levior, Crematogaster stollii
Not identified		11N115	Camponotus femoratus, Crematogaster levior
Not identified		11N116	Crematogaster stollii, Ectatomma tuberculatum
Not identified		11N133	Crematogaster stollii, Ectatomma tuberculatum
Not identified		11N134	Crematogaster stollii
Mimosoideae	Inga rubiginosa (LD)	11N135	Crematogaster stollii, Ectatomma tuberculatum
Not identified		11N136	Crematogaster stollii, Ectatomma tuberculatum
Mimosoideae	Inga leiocalycina (LD)	11N137	Crematogaster stollii, Ectatomma tuberculatum
Not identified		11N138	Camponotus femoratus, Crematogaster levior
Caesalpinioideae	Vouacapoua americana	11N145	Camponotus femoratus, Crematogaster levior
Not identified		11N152	Camponotus femoratus, Crematogaster levior
Not identified		11N152b	Camponotus femoratus, Crematogaster levior
Not identified		11N152c	Camponotus femoratus, Crematogaster levior
Lecythidaceae	Eschweilera coriacea	12M6	Camponotus femoratus, Crematogaster levior
Mimosoideae	Inga stipularis (LD)	12M7	Daceton armigerum
Metteniusaceae	Poraqueiba guianensis	12M136	Camponotus femoratus, Crematogaster levior
Lecythidaceae	Lecythis persistens	12M137	Dolichoderus bidens
Mimosoideae	Inga thibaudiana (LD)	12M139	Dolichoderus bidens
Lecythidaceae	Eschweilera coriacea	12M18	Azteca chartifex
Caesalpinioideae	Vouacapoua americana	12M23	Azteca chartifex (very large nest)
Lecythidaceae	Eschweilera coriacea	12M26	Azteca chartifex
157 TREES			

157 TREES

26 light-demanding tree species out of 146 trees identified; 17.8%

The myrmecophytic Cecropia obtusa was not considered in the statistics because it is specifically associated with

Azteca ovaticeps.

B. For comparison, selection of light-demanding tree species in the forest of Paracou, French Guiana (see Dejean *et al.*, 2018).

Tree family	Tree species	CODE	Territorially dominant arboreal species
Anacardiaceae	<i>Tapirir</i> a sp.	139	Crematogaster levior
Cecropiaceae	Coussapoa sp.	151	Azteca instabilis
Celastraceae	Goupia glabra	85	Azteca chartifex
Celastraceae	Goupia glabra	15	Azteca chartifex
Celastraceae	Goupia glabra	159	Camponotus femoratus
Faboideae	Swartzia panacoco	91	Azteca instabilis
Faboideae	Swartzia panacoco	92	Azteca instabilis
Faboideae	Swartzia panacoco	153	Azteca instabilis
Mimosoideae	Inga alba	40	Azteca chartifex
Mimosoideae	Inga alba	34	Azteca instabilis
Mimosoideae	Inga huberi	25	Azteca jelskii

Page	36	of	36

Malvaceae	Sterculia sp.	163	Camponotus femoratus, Crematogaster levior
Malvaceae	Sterculia sp.	164	Camponotus femoratus, Crematogaster levior
Malvaceae	Sterculia sp.	168	Camponotus femoratus, Crematogaster levior
Malvaceae	Sterculia sp.	162	Neoponera goeldii
Malvaceae	Sterculia sp.	138	Crematogaster levior
Malvaceae	Sterculia sp.	172	Azteca jelskii
Malvaceae	Sterculia sp.	178	Azteca gnava
Moraceae	Brosimum guianense	39	Dolichoderus quadridenticulatus
Moraceae	Brosimum rubescens	123	Azteca jelskii
Moraceae	Heliocostylis pedunculata	19	Azteca instabilis
Moraceae	Heliocostylis pedunculata	80	Dolichoderus quadridenticulatus
22 light-demanding trees out of 131 identified; 16.79%; 134 trees monitored in total			

The discrimination of light-demanding tree species was based on Newbery et al. (1985), Roggy & Prévost (1999) and

Gourlet-Fleury et al. (2004); we would like to acknowledge Dr. Jérôme Chave for verifying our list of tree species.

References

- Dejean, A., Orivel, J., Leponce, M., Compin, A., Delabie, J.H.C., Azémar, F. & Corbara, B. (2018) Ant-plant relationships in the canopy of an Amazonian rainforest: the presence of an ant mosaic. *Biological Journal of the Linnean Society*, **125**, 344–354.
- Gourlet-Fleury, S., Guehl, J.-M. & Laroussinie, O. (2004) Ecology and management of a Neotropical Rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier, Paris.
- Newbery, D.McC. & de Foresta, H. (1985) Herbivory and defense in pioneer, gap and understory trees of tropical rain forests in French Guiana. *Biotropica*, **17**, 238-244.
- Roggy, J.C. & Prévost M.-F. (1999) Nitrogen-fixing legumes and sylvigenesis in a rain forest in French Guiana: a taxonomic and ecological approach. *New Phytology*, **144**, 283-294.

