Force-extension response of macromolecular chains with bistable units

Manon Benedito ${ }^{1}$, Stefano Giordano

${ }^{1}$ manon.oliveira-benedito@centralelille.fr
JPN, 27 juin 2019, Polytech'Lille

Contents

- Context
- Force spectroscopy
- Bistable chains
- Spin variable
- Gibbs and Helmholtz ensembles
- Generalizations of the theory:

1. Extensibility
2. Interactions
3. Heterogeneity

- Perspectives and conclusion

Project:

Equilibrium and out-ofequilibrium analysis of the mechanical bistability and multistability in polymer chains through the "spin" variable approach (within Gibbs and

Helmholtz ensembles)

Force spectroscopy

Bistable chains

- Conformational transitions in macromolecules observed by forcespectroscopy methodologies.
(Strick et al., 2003 ; Ritort, 2006...)
- Two potential wells corresponding to two stable states : folded (native) and unfolded.

Spin variable

The spin variable s

- identifies the potential well explored by the domain under consideration ;
- is a discrete variable ;
- represents a statistical variable belonging to the phase space of the system.

Giordano, Soft Matter 13, 6877-6893 (2017)

Bistable behavior

$$
\begin{aligned}
& s=0 \rightarrow v(0)=0 ; \\
& x(0)=\ell ; \\
& k(0)=K . \\
& s=1 \rightarrow \begin{array}{l}
V(1)
\end{array} \\
&=\Delta E ; \\
& x(1)=\chi \ell ; \\
& k(1)=K .
\end{aligned}
$$

We define

- χ the ratio between the unfolded and folded lengths of each domain ;
- K the stiffness characterizing each spring ;
- $\Delta \mathrm{E}$ the energy difference between the stable states.

Hamiltonian function

Free polymer: the first monomer unit is fixed, but the others are free to fluctuate. (3D model)

$$
H=\sum_{i=1}^{N} \frac{\vec{p}_{i} \cdot \vec{p}_{i}}{2 M}+U\left(\vec{r}_{1}, \ldots, \vec{r}_{N}, S_{1}, \ldots, S_{N}\right)
$$

Hamiltonian of the system, with arbitrary interactions.

Gibbs and Helmholtz ensembles

Gibbs ensemble

Plateau curve

Dextran, N=275

Gibbs partition function

We consider a bistable freely-jointed chain model

$$
Z_{G}=\sum_{s_{1} \in\{0,1\}} \ldots \sum_{s_{N} \in\{0,1\}} \int_{\Re^{3 N}} \int_{\Re^{3 N}} e^{-\frac{H(\vec{p}, \vec{q}, \vec{s})}{k_{B} T}} d \vec{p} d \vec{q}
$$

After straightforward calculations, we obtain

$$
Z_{G}=\text { const } . \times\left\{\frac{\sinh y}{y}+\chi e^{-\frac{\Delta E}{k_{B} T}} \frac{\sinh \chi y}{y}\right\}^{N}
$$

Results: Gibbs ensemble

Force threshold

$$
f^{*}=\frac{\Delta E}{(\chi-1) \ell}
$$

$\langle s\rangle=\frac{1}{N}\left\langle\sum_{i=1}^{N} s_{i}\right\rangle=-k_{B} T \frac{\partial \log Z_{G}}{N \partial \Delta E}=\frac{\chi e^{-\frac{\Delta E}{k_{B} T}} \frac{\sinh \chi y}{\sinh y}}{1+\chi e^{-\frac{\Delta E}{k_{B} T} \frac{\sinh \chi y}{\sinh y}}}$

Langevin's function

$$
\mathcal{L}(y)=\operatorname{coth} y-\frac{1}{y}
$$

Helmholtz ensemble

Sawtooth-like curve

Titin, N=6

- folded domainunfolded domain

Fisher et al., TIBS 24, p. 379-384 (1999)

Helmholtz partition function

The three-dimensional Laplace transform between the Gibbs and Helmholtz partition functions can be written in scalar form for radially symmetric functions

$$
Z_{H}(r)=\int_{-\infty}^{+\infty} Z_{G}(i \eta) \frac{\eta}{r} \sin \frac{\eta r}{k_{B} T} d \eta
$$

The analysis of the integral through the complex variables method allows the exact calculation in the following form

$$
Z_{H}(r)=\frac{\pi}{r 2^{(N-1)}(N-2)!} \sum_{k=0}^{N} \sum_{p=0}^{N-k} \sum_{q=0}^{k}\binom{N}{k}\binom{N-k}{p}\binom{k}{q}(-1)^{p+q} \alpha^{k}(-\Lambda)^{N-2} \mathbf{1}(\Lambda)
$$

Where

$$
\alpha=\chi e^{-\frac{\Delta E}{k_{B} T}} \quad \text { and } \quad \Lambda=k-N+2 p-\chi k+2 \chi q-\frac{r}{\ell}
$$

Results: Helmholtz ensemble

$1^{\text {st }}$ generalization: extensibility

Dimensionless extensibility
Helmholtz partition function

$$
\alpha=\frac{K_{B} T}{k \ell^{2}}
$$

$$
Z_{H}(r)=-\frac{1}{2 r} \sum_{k=0}^{N} \sum_{p=0}^{N-k} \sum_{q=0}^{k}\binom{N}{k}\binom{N-k}{p}\binom{k}{q}(-1)^{p+q}
$$

Dimensionless force

$$
y=\frac{\ell f}{k_{B} T}
$$

$$
\begin{aligned}
& \times(\chi \phi)^{k}\left[\sqrt{\pi}\left(\frac{N \alpha}{2}\right)^{\frac{N-2}{2}} e^{-\frac{\Lambda^{2}}{2 N \alpha}} H_{-N+1}\left(\frac{\Lambda}{\sqrt{2 N \alpha}}\right)\right. \\
& \left.+\mathbf{1}(\Lambda) \sum_{h=0}^{\left[\frac{N}{2}-1\right]} \frac{(-1)^{N-1} \pi\left(\frac{\Lambda}{2}\right)^{N-2}}{h!(N-2-2 h)!}\left(\frac{N \alpha}{2 \Lambda^{2}}\right)^{h}\right]
\end{aligned}
$$

Gibbs partition function
$Z_{G}(f)=\left(\frac{\sinh y}{y}+\phi \chi \frac{\sinh \chi y}{y}\right)^{N} \exp \left(\frac{N \alpha y^{2}}{2}\right)$

Index lambda

$$
\Lambda=k-N+2 p-\chi k+2 \chi q-\frac{r}{\ell}
$$

$1^{\text {st }}$ generalization: extensibility

$$
\begin{gathered}
k=0.4 j \mathrm{~N} / \mathrm{m}, \forall j=1, \ldots, 6 \\
\ell=0.5 \times 10^{-9} \mathrm{~m}, T=300 \mathrm{~K}, \chi=3, \Delta E=20 k_{B} T=8.28 \times 10^{-20} \mathrm{~J}
\end{gathered}
$$

Average number of unfolded domains
Benedito et al., J. Chem. Phys. 149, 054901 (2018)

$2^{\text {nd }}$ generalization: interactions

Ising potential energy ($\mathrm{s}_{\mathrm{i}}=-1,+1 ; \lambda>0$ ou $\left.\lambda<0\right)$
folded unit
unfolded unit

Ising interaction

Positive (ferromagnetic) interaction: $\lambda>0 \quad$ Negative (antiferromagnetic) interaction: $\lambda<0$

$$
U_{\text {tot }}=-\lambda \sum_{i=1}^{N-1} s_{i} s_{i+1}-\vec{f} \cdot \vec{r}_{N}+\sum_{i=1}^{N}\left\{v\left(s_{i}\right)+\frac{1}{2} k\left(s_{i}\right)\left[\left\|\vec{r}_{i}-\vec{r}_{i-1}\right\|-\ell\left(s_{i}\right)\right]^{2}\right\}
$$

$2^{\text {nd }}$ generalization: interactions in the Gibbs ensemble

Force-extension curves

Average number of unfolded units

$2^{\text {nd }}$ generalization: interactions in the Helmholtz ensemble

Benedito et al., Physical Review E 98, 052146 (2018)

$3^{\text {rd }}$ generalization: heterogeneity

Heterogeneous units with respect to:

- units length
- units stiffness
- energy jump

This allows to find the unfolding pathway, what is impossible if all units are homogeneous.

$3^{\text {rd }}$ generalization: heterogeneity

$$
\Delta \mathrm{E}_{1}=27,5 \mathrm{~K}_{\mathrm{B}} \mathrm{~T}, \Delta \mathrm{E}_{2}=32,5 \mathrm{~K}_{\mathrm{B}} \mathrm{~T}, \Delta \mathrm{E}_{3}=25 \mathrm{~K}_{\mathrm{B}} \mathrm{~T}, \Delta \mathrm{E}_{4}=30 \mathrm{~K}_{\mathrm{B}} \mathrm{~T}, \Delta \mathrm{E}_{5}=35 \mathrm{~K}_{\mathrm{B}} \mathrm{~T}
$$

Physics Letters A submitted

Perspectives and conclusion

Dynamics of unfolding processes

Finally, the statistical mechanics of bistable chains based on the spin variable approach allowed to reproduce and interpret complex behaviors observed in real macromolecules of biological origin.

Thank you for your attention!

Q iemn

- centralelille

U Université de Lille

