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(Dated: 12 June 2018)

Several experimental methods are usually applied for stretching single molecules and provide valuable insights
about the static and dynamic responses induced by externally applied forces. This analysis is even more im-
portant for macromolecules exhibiting conformational transitions, thereby corresponding to folding/unfolding
processes. With the aim of introducing the statistical mechanics of such phenomena, we apply here the spin
variables approach, based on a set of discrete quantities able to identify the folded or unfolded state of the
chain units. Firstly, we obtain the macroscopic thermodynamics of the chain from its microscopic descrip-
tion. For small systems, far from the thermodynamic limit, this result depends on the applied boundary
condition (e.g., isometric or isotensional), which corresponds to the considered statistical ensemble. Then, we
develop the theory for the two-state extensible freely jointed chain, where the elastic constant of the units,
a property often neglected, plays a central role in defining the force-extension curve. For this system, the
partition function of the isometric ensemble can be written in closed form in terms of the natural generaliza-
tion of the Hermite polynomials, obtained by considering negative indices. These results are relevant for the
interpretation of stretching experiments, operated from the entropic regime up to the unfolding processes.

I. INTRODUCTION

The advent of single-molecule experiments (force
spectroscopy) allowed the direct quantification of the
elasticity and the dynamical properties of individual
macromolecules.1–3 For the first time, these experimen-
tal activities probed the thermodynamics and the sta-
tistical mechanics of small systems.4,5 The properties of
macromolecules with and without conformational tran-
sitions have been investigated through different devices,
such as atomic-force microscopes (AFM, in the range 10-
104pN), laser optical tweezers (LOT, in the range 0.1-
200pN) and magnetic tweezers (MT, in the range 0.01-
10pN).6–11 Such approaches have been largely employed
for proteins,12–16 RNA,17,18 and DNA.19–24 Also, micro-
electro-mechanical systems (MEMS), and in particular
silicon nanotweezers (SNT),25 have been applied to eval-
uate the DNA mechanical degradation under ionizing
radiation.26,27

Through these techniques, it is possible to explore
the whole stretching behavior composed of entropic, en-
thalpic, unfolding and over-stretching regimes. In par-
ticular, the unfolding of the units of a chain, governed
by the conformational transition between two (or more)
states, is an important process, e.g., observed in polypep-
tides and nucleic acids. It is based on transformations of
the units of the chains, which modify their length and
elastic properties. These transitions can be taken into
account by means of a potential energy exhibiting two
(or more) minima corresponding to the stable states or
configurations.
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FIG. 1. Single-molecule stretching experiments conducted
within the Gibbs (a) and the Helmholtz (b) ensembles. Each
domain of the chain may experience a conformational transi-
tion between folded (length `) and unfolded (length χ`) states.

Today, many efforts are devoted to the application
of theoretical physics methods to the complexity of the
biological context.28 Accordingly, models for biopoly-
mer chains introduce a specific Hamiltonian of the sys-
tem and proceed by calculating the pertinent partition
function and, eventually, the thermal and mechanical
macroscopic properties.29–34. Classical theoretical de-
velopments for macromolecules without configurational
transitions are given by the freely-jointed chain (FJC)
model,33,35 the worm-like chain (WLC) model,20,30,36

and many other generalized approaches.37–41 Conversely,
for macromolecules undergoing folding/unfolding trans-
formations, the models must consider the boundary con-
dition imposed to the system (see Fig.1 for details). In-
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deed, the isotensional experiments (at constant applied
force), typically performed with soft devices, correspond
to the Gibbs statistical ensemble (Fig.1a), and the iso-
metric experiments (at prescribed displacement), per-
formed by hard devices, represent a realization of the
Helmholtz statistical ensemble (Fig.1b).42–45 From the
point of view of the force-extension response, isotensional
conditions (Gibbs ensemble) lead to a plateau-like re-
sponse with a threshold force characterizing the synchro-
nized unfolding of all chain units (see for example Fig.3
in Section III). This point can be interpreted through
a cooperative process, which induces the simultaneous
transition of the macromolecular domains.21,22,46–48 On
the contrary, the force-extension curve under isometric
conditions (Helmholtz ensemble) shows a sawtooth-like
shape, proving that the units unfold sequentially in re-
action to the increasing extension (see for example Fig.5
in Section IV). This behavior is therefore interpreted
through a non-cooperative process, with a progressive
unfolding of the units.12,14,49–51

The differences in the force-extension curves mentioned
above (Helmholtz versus Gibbs ensemble) can be mea-
sured when the thermodynamic limit is not satisfied
(small number of monomers). On the other hand, when-
ever the number of units is very large (ideally, when
it approaches infinity), it is important to remark that
the statistical ensembles become equivalent and they
are described by the same constitutive force-extension
response.37,52–55

In order to get a wider comprehension of this com-
plex scenario, several theoretical approaches have been
so far proposed in literature. Concerning the Gibbs en-
semble, the plateau-like response observed for double-
stranded DNA has been largely investigated with thermo-
dynamic approaches, statistical mechanics and molecular
dynamics simulations.47,56–60 A similar response has been
also observed for long polysaccharides (e.g.,dextran) and
modeled through a continuous two-state model.42,49,61

In a like manner, theoretical developments have been
adopted to model the sawtooth-like response observed
within the Helmholtz ensemble. Theories for titin, RNA
hairpins and other macromolecules have been elabo-
rated through Landau-like free energies, first-order phase
transition, Langevin equations, and Ising models.62–67

A more general point of view about two-state systems
driven by hard or soft devices can be found in the
mechanical literature concerning discrete systems with
multi-basin energy landscapes, Fermi-Pasta-Ulam chains
of bistable elements, and structures undergoing discrete
phase transformations.68–71

We present in this paper a general methodology to cope
with the problem of analysing the response of a system
composed of two-state units and subjected to different
boundary conditions. While in the first part of the pa-
per, we briefly introduce the statistical mechanics of this
system and its macroscopic thermodynamic properties,
in the second part, we obtain the complete solution for
a specific case, namely the two-state freely jointed chain

with extensible units. The main idea consists in associ-
ating to each unit a discrete variable (or spin variable),
able to define the state of the unit itself. Such a variable
represents a sort of “bit”, assuming the values 0 and 1
for the folded and the unfolded states, respectively. The
set of spin variables assume therefore the character of
dynamic variables, thus belonging to the extended phase
space of the system. From the historical point of view,
the first biophysical model based on a discrete quantity,
similar to a spin variable, has been performed to pre-
dict the response of skeletal muscles.72,73 This method
has been recently applied to different allosteric systems
and macromelecular chains as well.74–77 The introduc-
tion of the spin variables is advantageous since strongly
facilitates the calculation of the partition functions, pre-
serving at the same time a good accuracy of results.76

Briefly, an arbitrary potential function composed of two
minima, can be substituted by two quadratic potentials
and the switching between them is controlled by the cor-
responding spin variable. This method works for both
Gibbs and Helmholtz ensembles, allowing to draw direct
comparisons between isotensional and isometric condi-
tions. We remark that the spin variables approach can
be only adopted for systems at thermodynamic equilib-
rium. As a matter of fact, the quadratic potentials and
the associated spin variables are not sufficient to describe
the dynamics since the characteristic relaxation times
strongly depend on the energy barriers between the po-
tential wells. This is a well-known result, encoded within
the Kramers rate formula, originally formulated to study
chemical reactions,78 and recently generalized for arbi-
trary systems with nonconvex energy landscapes.79,80

Concerning the two-state freely jointed chain with ex-
tensibility, we have here generalized a recent result ob-
tained for the same system without extensibility.76 It is
important to remark that the finite elastic constant of the
units plays a crucial role in defining the force-extension
response in both isotensional and isometric ensembles. In
particular, within the Helmholtz ensemble, the peak-to-
peak force of the sawtooth-like curve strongly depends on
the elastic constant. Since this quantity is often consid-
ered as the main output of the force spectroscopy mea-
surements, the finite value of the elastic constant can
not be neglected and its effect is here studied in detail.
From the mathematical point of view, the most difficult
issue concerns the calculation of the Helmholtz partition
function. Eventually, its closed form expression has been
found in terms of the Hermite polynomials, suitably gen-
eralized to negative indices.

II. THERMODYNAMICS OF CHAINS
WITH CONFORMATIONAL TRANSITIONS

We introduce here a general methodology to approach
the problem of describing the conformational transitions
in chains undergoing typical folding/unfolding processes.
It means that each domain or unit of the chain may be
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in two states corresponding to different chemical confor-
mations. The potential energy of the system is therefore
constituted of two wells, which can be explored during
the dynamics of the system. To simplify the description
of the system, considered at thermodynamic equilibrium,
it is often convenient to introduce discrete variables or
spins, which are able to indicate what basin is explored
for each unit of the chain. Consequently, the more gen-
eral form of the Hamiltonian for such a system can be
written as

H =

N∑
i=1

~pi · ~pi
2M

+ U (~r1, ..., ~rN , S1, ..., SN )−
N∑
i=1

µiSi,(1)

where Si ∈ {0, 1} are the spin variables ∀i = 1, ..., N in-
troduced in the potential energy U . We say that the do-
main is folded (it is in the first energy well) when Si = 0
and that the domain is unfolded (it is in the second en-
ergy well) when Si = 1. The first term represents the
kinetic energy (~pi are the linear momenta of the units
and M is their mass) and the second term represents the
potential energy depending on the units positions ~ri and
on the spins Si. Finally, the third term represents the ef-
fect of the external chemical environment on the state of
the domains: if µi > 0, the unfolded state is favored, and
conversely, if µi < 0, the folded state is favored. From
the experimental point of view, the chemical potentials
µi may mimic the presence of some chemical substances,
which have the capability to induce or to impede the
units unfolding. An interesting example concerns the ef-
fect of ethidium molecules on the force-induced melting
of DNA.81 As discussed below in our model, the chem-
ical potential is able to shift the effective energy jump
between folded and unfolded states of a given bistable
system. This exactly corresponds to the experimental
observations in response to an increasing concentration of
ethidium, which reported an increase of the DNA transi-
tion force and of the effective energy jump between states
before and after the transition.81

It is important to remark that the introduced Hamilto-
nian function corresponds to a coarse-graining approach,
applied to the actual molecular architecture of the sys-
tem. Indeed, the concept of units above introduced corre-
sponds to a specific ensemble of atoms with a well-defined
behavior, summarized within the coarse-grained poten-
tial energy. Of course, we could have considered an exact
Hamiltonian with a very large number of degrees of free-
dom (all the atomic coordinates and momenta as, e.g.,
introduced in classical molecular dynamics), but we pro-
pose a simplification to provide analytic developments
and corresponding physical interpretations. Therefore,
when we mention a physical property of one unit (elastic
constant or others), we have to keep in mind that it rep-
resents the collective response of the atoms of the unit,
and not a real or intrinsic property of an exact Hamilto-
nian. Then, these properties of units may be considered
temperature-dependent being defined at the mesoscopic
scale. This is similar to the expansion of the Landau free
energy used to describe critical phenomena, where the

coefficients depend on temperature for the same reason.
The coarse-graining approach also leads to the following
issue in writing Eq.(1): since the extremities of a given
units ~ri−1 and ~ri are associated to the momenta ~pi−1

and ~pi, it means that we assume the mass concentrated
at points ~ri, while in the real case the mass is distributed
between ~ri−1 and ~ri on all the atoms composing the unit.
This is a typical approximation used to describe a one-
dimensional chain,82 but it should be kept in mind since
each unit is finally identified by the two positions of ex-
tremities and by one spin variable.

As an example, a concrete case can be described by
the following potential energy

U = −
N−1∑
i=1

λi(2Si − 1)(2Si+1 − 1)

+

N∑
i=1

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2 +

N∑
i=1

v(Si)

+

N−1∑
i=1

1

2
κ(Si)

(
~ti+1 − ~ti

)2
, (2)

where: (i) the first line represents an Ising interaction
among the states of the units (λi being the interaction
coefficients and 2Si − 1 = ±1 if Si = 0, 1), (ii) the sec-
ond line represents the spring-like behavior of the two-
state domains (k, ` and v are the elastic constant, the
equilibrium length and the basal energy, respectively, of
the states), and (iii) the third line represents a worm-
like-chain interaction among the units (κ is the bending
constant related to the persistence length Lp = `κ

kBT
and

~ti = (~ri − ~ri−1)/‖~ri − ~ri−1‖).
In the following sections, we will analyze in detail

the case without Ising and worm-like-chain interactions.
Anyway, it is important to add some comments concern-
ing these kind of interactions in order to understand the
relation with recent experimental activities. The Ising
scheme represents an interaction among the spin vari-
ables, with two adjacent units favored to be in the same
state if λi > 0 or favored to be in opposite states if λi < 0.
The typical case arising in protein structures corresponds
to a positive interaction and allows the interpretation
of cooperativity of the folding-unfolding process.83 An
interesting example of cooperativity in forced unfolding
concerns the case of tandem repeats in red cell spectrin.84

AFM-measured force-extension curves of thousands of
constructs with few repeats of spectrin have shown a sig-
nificant statistic of tandem repeat unfolding processes.
It means that two adjacent units unfold at the same
time (cooperatively), thus generating a single force peak
in the observed response.84 The mechanism at the base
of this transition lies in the strongly interconnected re-
peats, which unfold in synchrony. This is the typical
phenomenon modeled by an Ising model, as introduced
in Eq.(2). Also, a similar observation has been made on
Filamin A, where domain-domain interactions lead to a
hierarchy of unfolding forces that may be studied by an
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Ising scheme.85 An interesting system for studying inter-
actions and cooperativity is given by the ankyrin repeat
proteins. They present, contrarily to globular proteins,
very few long-range contacts and therefore only local in-
teractions are present.86 However, these structures show
a high degree of folding cooperativity, and are therefore
very stimulating for analyzing the folding-unfolding pro-
cess. In this system, it is relatively easy to add or remove
units, thus generating ideal models to compare experi-
ments and theories.86 We also note that the interactions
among domains may be affected by chemical substances,
which finally modify the folding pathway. As an example,
we can cite the effects of chaperones on maltose binding
proteins (MBP), recently observed by optical tweezers
measurements.87,88 From the theoretical point of view, it
means that the Ising interaction coefficients may depend
on the external chemical conditions.

Concerning the WLC scheme, we recall that it repre-
sents a geometric interaction, which provides an elastic
flexibility to a chain of objects, trying to align them along
the same direction. As an example, in Eq.(2), this form
of interaction has been introduced among the units of
the chain. It means that the situation with aligned units
is energetically favored. Nevertheless, it is interesting to
note that in most of protein structures, the WLC scheme
can be used to model the force-extension behavior of each
unit. It means that it should be implemented at the level
of the exact Hamiltonian (at atomic and/or molecular
scale), above introduced. It is the basic model chosen to
interpret the force-extension curves of force-spectroscopy
experiments, including the ones with folding/unfolding
transitions.42,49,50

The folding/unfolding of the units, here described by
the spin variables, is controlled by the mechanical bound-
ary conditions applied to the chain and by the chemical
potentials of the external environment. We consider here
a chain with the first extremity tethered at the origin of
the reference frame. In general, an arbitrary chain de-
scribed by Eq.(1) can be studied within the Helmholtz
ensemble or within the Gibbs ensemble of the statistical
mechanics. In the first situation, we fix the second ex-
tremity at a given point of the space while, in the second
situation, we apply an external force to the last unit. In
the following, we briefly describe the statistical mechan-
ics of both ensembles, eventually verifying that the pro-
posed approach yields results, which are coherent with
standard thermodynamics.

Within the Helmholtz ensemble we have a specific
Hamiltonian given by

HH = H(~q, ~p, ~S;~r, ~µ), (3)

where we introduced ~q = (~r1, ..., ~rN−1) (we fixed ~rN = ~r),

~p = (~p1, ..., ~pN−1) (we fixed ~pN = 0), ~S = (S1, ..., SN ),
and ~µ = (µ1, ..., µN ). In this scheme, ~r and ~µ are exter-

nally controlled variables and ~q, ~p and ~S are the dynam-
ical variables of the phase space. Therefore, the density

probability of the canonical ensemble is given by33,89

ρH(~q, ~p, ~S) =
1

ZH(~r, ~µ, T )
exp

[
−HH(~q, ~p, ~S;~r, ~µ)

kBT

]
, (4)

where the Helmholtz partition function reads

ZH(~r, ~µ, T ) (5)

=
∑

~S∈{0,1}N

∫
Q

∫
Q

exp

[
−HH(~q, ~p, ~S;~r, ~µ)

kBT

]
d~qd~p,

and where Q = R3(N−1). By means of this probabil-
ity density, one can determine the average value of any
macroscopic variable. In particular, the average value

of the force ~f = ∂HH
∂~r needed to fix ~rN = ~r and the

average value of each spin variable Si can be easily ob-
tained through the introduction of the Helmholtz free
energy F = −KBT logZH . Indeed, straightforward cal-

culations yield
〈
~f
〉

= ∂F
∂~r and

〈
~S
〉

= −∂F∂~µ , which

represent two macroscopic or thermodynamic relations.
Moreover, the first and second principles for quasi-static
transformations can be derived as follows from previ-
ous statements. First of all, we define a quasi-static
transformation through the time evolution of ~r(t), ~µ(t)
and T (t), which are considered as externally controlled
“slow-varying” variables. Under these hypotheses, we
can assume that the canonical distribution in Eq.(4) re-
mains valid also in this “weak” out-of-equilibrium regime.
Therefore, we can evaluate the rate of change of the
internal energy U , defined as the average value of the
Helmholtz Hamiltonian

dU
dt

=
∑
~S

∫
Q

∫
Q

d

dt
(HHρH) d~qd~p (6)

=
∑
~S

∫
Q

∫
Q

(
∂HH

∂~µ
· d~µ
dt

+
∂HH

∂~r
· d~r
dt

)
ρHd~qd~p

+
∑
~S

∫
Q

∫
Q
HH

dρH
dt

d~qd~p

= −
〈
~S
〉
· d~µ
dt

+
〈
~f
〉
· d~r
dt

+
∑
~S

∫
Q

∫
Q
HH

dρH
dt

d~qd~p,

where all the sums on ~S are performed over {0, 1}N .
The first two terms represent the chemical and the me-
chanical work per unit of time, respectively, done on the
system, while the third one describes the rate of heat
entering the system. The latter can be further elab-
orated by defining η = F−HH

kBT
and ρH = eη. Since∑

~S

∫
Q
∫
Q e

ηd~qd~p = 1, the derivative with respect to

the time gives
∑

~S

∫
Q
∫
Q e

η η̇d~qd~p = 0, and since F
is independent of ~S, ~q and ~p, we can also write that∑

~S

∫
Q
∫
Q Feη η̇d~qd~p = 0. The last term in Eq.(6) can
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be therefore rewritten as∑
~S

∫
Q

∫
Q
HH

dρH
dt

d~qd~p =
∑
~S

∫
Q

∫
Q
HHe

η η̇d~qd~p (7)

=
∑
~S

∫
Q

∫
Q

(HH −F) eη η̇d~qd~p.

Now, since HH −F = −kBTη, we also have∑
~S

∫
Q

∫
Q
HH

dρH
dt

d~qd~p = −kBT
∑
~S

∫
Q

∫
Q
eηηη̇d~qd~p.

(8)

This expression can be easily interpreted by consider-
ing the average value of the variable η given by 〈η〉 =∑

~S

∫
Q
∫
Q e

ηηd~qd~p and its time derivatives

d 〈η〉
dt

=
∑
~S

∫
Q

∫
Q
eη η̇d~qd~p+

∑
~S

∫
Q

∫
Q
eηηη̇d~qd~p. (9)

Since the first integral is zero for previous calculations,
we eventually obtain∑

~S

∫
Q

∫
Q
HH

dρH
dt

d~qd~p = −kBT
d 〈η〉
dt

= T
dS
dt
, (10)

where we introduced the entropy of the system as

S = −kB 〈log ρH〉 = −kB
∑
~S

∫
Q

∫
Q
ρH log ρHd~qd~p.(11)

The first and the second principles of the thermodynam-
ics for quasi-static transformations can be finally summed
up through the balance equation

dU
dt

= −
〈
~S
〉
· d~µ
dt

+
〈
~f
〉
· d~r
dt

+ T
dS
dt
. (12)

Hence, we proved that the macroscopic thermodynamics
is perfectly coherent with the approach based on the spin
variables, introduced to analyze systems with conforma-
tional transitions. In addition, the average value of the
relation HH − F = −kBTη yields F = U − TS, which
corresponds to the macroscopic definition of Helmholtz
free energy. By differentiating with respect to the time,
we also have

dF
dt

= −
〈
~S
〉
· d~µ
dt

+
〈
~f
〉
· d~r
dt
− S dT

dt
, (13)

from which we can deduce the two already introduced

equations
〈
~f
〉

= ∂F
∂~r and

〈
~S
〉

= −∂F∂~µ and the important

relation S = −∂F∂T , giving the entropy in terms of the
Helmholtz free energy.

Concerning the Gibbs ensemble, we can introduce the
following extended Hamiltonian

HG = H(~q, ~p, ~S; ~µ)− ~f · ~rN , (14)

where the second term represents the energy associated
to the external force applied to the last unit of the chain.

Here, we introduced ~q = (~r1, ..., ~rN ), ~p = (~p1, ..., ~pN ), ~S =

(S1, ..., SN ), and ~µ = (µ1, ..., µN ). In this scheme, ~f and

~µ are externally controlled variables and ~q, ~p and ~S are
the dynamical variables of the phase space. Therefore,
the density probability of the canonical ensemble is given
by33,89

ρG(~q, ~p, ~S) =
1

ZG(~f, ~µ, T )
exp

[
−HG(~q, ~p, ~S; ~f, ~µ)

kBT

]
, (15)

where the Gibbs partition function reads

ZG(~f, ~µ, T ) (16)

=
∑

~S∈{0,1}N

∫
P

∫
P

exp

[
−HG(~q, ~p, ~S; ~f, ~µ)

kBT

]
d~qd~p,

and where P = R3N . As before, the most important ex-
pected values can be evaluated through the introduction
of the Gibbs free energy G = −kBT logZG. Simple cal-
culations yield indeed 〈~r〉 = −∂G

∂ ~f
(where ~r = ~rN ) and〈

~S
〉

= −∂G∂~µ , which represent two classical thermody-

namic relations. Also in this isotensional case, we can
introduce a quasi-static transformation through the time

evolution of ~f(t), ~µ(t) and T (t), which are, as before, ex-
ternally controlled “slow-varying” variables. We can as-
sume that the canonical distribution in Eq.(15) remains
valid and we can evaluate the rate of change of the aver-
age value of the Gibbs Hamiltonian, which is the so-called
enthalpy H
dH
dt

=
∑
~S

∫
P

∫
P

d

dt
(HGρG) d~qd~p (17)

=
∑
~S

∫
P

∫
P

(
∂HG

∂~µ
· d~µ
dt

+
∂HG

∂ ~f
· d
~f

dt

)
ρGd~qd~p

+
∑
~S

∫
P

∫
P
HG

dρG
dt

d~qd~p

= −
〈
~S
〉
· d~µ
dt
− 〈~r〉 · d

~f

dt
+
∑
~S

∫
P

∫
P
HG

dρG
dt

d~qd~p.

While the first two terms represent the power (chemical
and mechanical) supplied to the system, the third term is
the rate of heat transferred to the system. A calculation
similar to the one developed for the Helmholtz ensemble
allows us to rewrite this last term as follows

dH
dt

= −
〈
~S
〉
· d~µ
dt
− 〈~r〉 · d

~f

dt
+ T

dS
dt
, (18)

where the entropy for the Gibbs ensemble is given by

S = −kB 〈log ρG〉 = −kB
∑
~S

∫
P

∫
P
ρG log ρGd~qd~p. (19)

We can straightforwardly prove the thermodynamic re-
lation G = H − TS and we obtain the rate of change of
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the Gibbs free energy as

dG
dt

= −
〈
~S
〉
· d~µ
dt
− 〈~r〉 · d

~f

dt
− S dT

dt
. (20)

The last energy balance immediately delivers the rela-

tions 〈~r〉 = −∂G
∂ ~f

and
〈
~S
〉

= −∂G∂~µ , previously demon-

strated, and the result S = − ∂G
∂T , corresponding to the

macroscopic definition of entropy.
The two schemes here outlined represent a com-

plete description of the thermo-mechanical response of a
macromolecular chain undergoing conformational tran-
sitions under isometric or isotensional boundary condi-
tions. We proved that the introduction of additional
“spin” variables to describe the folding or unfolding of
the units leaves unaltered the general results of the ther-
modynamics, thus being well-grounded and promising
for applications. As an example, the application of this
methodology to the bistable freely jointed chain can be
found in the recent literature.76 It is important to re-
mark that the thermo-elastic response may be different
for the two introduced ensembles if we consider chains
composed of a small number N of units.33 On the other
hand, when the thermodynamic limit is attained (ide-
ally for N → ∞), the two ensembles become equiva-
lent and they exhibit the same physical response.37,52–55

This equivalence property is valid for non-branched sin-
gle chains without confinements, i.e. freely fluctuating
in the whole space.54 Therefore, in our analysis, the only
constraints consist in the punctual boundary conditions
defining the Helmholtz and the Gibbs ensembles. How-
ever, it is noteworthy to mention that some particular
cases on non-equivalence between dual canonical ensem-
bles have been recently discussed for confined polymer
chains.90–92

III. TWO-STATE FREELY JOINTED CHAIN
WITH EXTENSIBLE UNITS: THE GIBBS
ENSEMBLE

We take into consideration a two-state freely jointed
chain composed of N domains. Here, instead of con-
sidering the units with an infinite elastic stiffness as
in Ref.76, we try to consider a finite elasticity for the
two-state domains. As previosly anticipated, the poten-
tial energy function of real domains is represented by a
function with two minima, corresponding to the folded
and unfolded configurations of the domain (dashed black
curve in Fig.2). We introduce two quadratic potential
curves, approximating the wells of this system, and a
spin variable Si for each unit, useful to identify the po-
tential well explored during the system evolution (see
again Fig.2). The switching of Si is controlled by the
boundary conditions applied to the system, here defined

by the force ~f (Gibbs ensemble). A first validation of
the spin approach to describe multistable potential en-
ergies has been performed in Ref.76, where we directly

ℓ(0) ℓ(1) ‖~r‖0

v(1)
k(0)

k(1)

U

v(0)

S = 0

S = 1

A

FIG. 2. Potential energy of a single unit of the two-state
freely jointed chain with extensible links (dashed black curve).
The potential wells are approximated through two parabolic
profiles identified by S = 0 and 1 (solid blues curves).

compared a real two-state system (dashed black curve
in Fig.2) with the approximation given by two parabolic
profiles governed by the spin variables (solid blue curves
in Fig.2). By means of Monte Carlo simulations and a
theoretical comparison (at thermodynamic equilibrium),
we verified that this method offers a very high accuracy
if A ≥ v(1)− v(0)� kBT , where A is the energy barrier
between the states and v(1)− v(0) represents the energy
jump (see Fig.2).

We start the analysis of the Gibbs ensemble by writing
the extended Hamiltonian of the system, as follows

HG =

N∑
i=1

~pi · ~pi
2M

+

N∑
i=1

v(Si)− µ
N∑
i=1

Si

+

N∑
i=1

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2 − ~f · ~rN , (21)

where all variables are defined in Section II. Moreover,
the quantities v(Si), k(Si) and `(Si) stand for the basal
energy, the elastic stiffness and the equilibrium length of
the potential wells, respectively (see Fig.2 for details).
From the physical point of view, the basal energy of a
potential well represents its minimum of energy, namely
the energetic level of the unit in its stable (or metastable)
state. The sequence of different basal energies for a unit
defines therefore the multi-basin energy landscape of the
unit itself, i.e. the most important description of its
chemical and physical behavior. Moreover, we introduce
~q = (~r1, ..., ~rN ) as the generalized vector containing all
positions, ~p = (~p1, ..., ~pN ) as the generalized vector con-

taining all momenta, and ~S = (S1, ..., SN ) as the vector
of all spin variables. For the sake of simplicity, we assume
that all chemical potentials µi take the same value µ.

Since the dynamical variables are ~q, ~p and ~S, the par-
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tition function is given by

ZG

(
~f
)

=
∑

~S∈{0,1}N

∫
P

∫
P

exp

−HG

(
~p, ~q, ~S

)
KBT

 d~pd~q

=
∑

~S∈{0,1}N

[∫
R3

exp

(
− 1

2MKBT
~p · ~p

)
d~p

]N

×
∫
R3

...

∫
R3

exp

[
−

N∑
i=1

v(Si)− µSi
KBT

+
~f · ~rN
KBT

−
N∑
i=1

k(Si)

2KBT
[‖~ri − ~ri−1‖ − `(Si)]2

]
d~r1...d~rN ,

(22)

where P = R3N . To begin the simplification of this ex-
pression, we can firstly calculate the integral over the
linear momentum ~p. Incidentally, we observe that the ki-
netic energy in Eq.(21) simply produces a non-influential

multiplicative constant in ZG

(
~f
)

. We considered this

term in Eq.(21) just to have a full Hamiltonian descrip-
tion of the system, coherently with Section II. Then,

we perform the change of variables ~ξ1 = ~r1 − ~r0, ...
~ξN = ~rN − ~rN−1, from which we have that d~r1...d~rN =

d~ξ1...d~ξN . So, by fixing ~r0 = 0, we obtain ~rN =
∑N
i=1

~ξi,
and the partition function becomes

ZG

(
~f
)

= (2πMKBT )3N/2

 ∑
S∈{0,1}

∫
R3

exp

[
−v(S)− µS

KBT

− k(S)

2KBT

[
‖~ξ‖ − `(S)

]2
+

~f · ~ξ
KBT

]
d~ξ

}N
. (23)

It is important to remark that within the Gibbs ensem-
ble, the elements of the chain do not interact and this
point leads to a factorized partition function, namely
in the form of a power with exponent N . We can fur-
ther simplify the calculation by means of the spherical

coordinates ~ξ = (ξ cosϕ sinϑ, ξ sinϕ sinϑ, ξ cosϑ). Be-
cause of the spherical symmetry of the problem, we set
~f = (0, 0, f). Since d~ξ = ξ2 sinϑdξdϕdϑ, ‖~ξ‖ = ξ and
~f · ~ξ = fξ cosϑ, we get the following simpler form of the
partition function

ZG(f) = (2πMKBT )3N/2(4π)N

 ∑
S∈{0,1}

exp

[
−v(S)− µS

KBT

]
∫ +∞

0

exp

[
− k(S)

2KBT
[ξ − `(S)]

2

] sinh
(

fξ
KBT

)
fξ
KBT

ξ2dξ

N .
(24)

Now, in order to specify the shape of the potential
wells represented in Fig.2, we consider `(0) = `, `(1) =
χ`, v(0) = 0, v(1) = ∆E and k(0) = k(1) = k. From now

on, we neglect the non influential multiplicative constant
within the partition function. Hence, we obtain

ZG(f) =


∫ +∞

0

e
− k

2KBT
[ξ−`]2

sinh
(

fξ
KBT

)
fξ
KBT

ξ2dξ (25)

+φ

∫ +∞

0

e
− k

2KBT
[ξ−χ`]2

sinh
(

fξ
KBT

)
fξ
KBT

ξ2dξ


N

,

where φ = exp
(
−∆E−µ

KBT

)
. We note that the chemical po-

tential µ acts on the system by simply shifting the jump
energy ∆E. The exact evaluation of previous integrals
can be easily done through the known result93∫ +∞

0

exp
(
−αx2

)
exp (βx)xdx

=
1

2α
+

β

4α

√
π

α
exp

(
β2

4α

)[
1 + erf

(
β

2
√
α

)]
, (26)

where, as usual, the error function erf(z) is defined
as erf(z) = 2√

π

∫ z
0

exp(−t2)dt.94 Indeed, if we rewrite

Eq.(25) in the form

ZG(f) = {I1 + φI2}N , (27)

we have

I1 =
KBT

4f

√
2πKBT

k
exp

(
f2

2kKBT

)
(28)

×
[(
`+

f

k

)
exp

(
`f

KBT

)[
1 + erf

(
k`+ f√
2kKBT

)]
−
(
`− f

k

)
exp

(
− `f

KBT

)[
1 + erf

(
k`− f√
2kKBT

)]]
,

and I2 can be simply obtained by replacing ` with χ`
in I1 (see Eq.(25)). Finally, Eq.(27) represents the exact
evaluation of the partition function for our system within
the Gibbs ensemble.

Now, we are interested in extensible links with rel-
atively high values of the elastic constant k. There-
fore, we can use the asymptotic expression erf(x) '
1 − 1√

πx
exp(−x2), holding for large values of x.93,94 If

we consider f/k � `, we have that the arguments of

the error function are proportional to
√
k and the terms

erf( k`±f√
2kKBT

) converge exponentially to 1 with relatively

high values of k. Typical values of the elastic constants
obtained from experiments as well as ab initio calcula-
tions can be found in literature and are perfectly compat-
ible with such approximations.95–98 We define the vari-
able y = `f

KBT
(dimensionless force) and the parameter

α = KBT
k`2 (ratio between thermal energy and elastic one).

Hence, the partition function is given by the following ap-
proximation

ZG(f) = exp

(
Nαy2

2

)
(29)

×
(

sinh y

y
+ α cosh y + φχ

sinhχy

y
+ φα coshχy

)N
.
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FIG. 3. Force-extension response and average spin (left panel) and Gibbs free energy (right panel) for a system with variable
extensibility k = 0.4 jN/m, ∀j = 1, ..., 6. The Gibbs free energy G is represented in Joule. The calculation of the force-extension
response and the average spin is based on the exact result in Eq.(27) (red curves) and on the approximation in Eq.(30) (blue
curves). In left panel, we also added the response (green curve) for the system without extensibility (k →∞), studied through
Eq.(31). We adopted the parameters N = 5, ` = 0.5× 10−9m, T = 300K, χ = 3, ∆E = 20kBT = 8.28× 10−20J and µ = 0.

Finally, if we suppose to have α � 1, we obtain the
further approximation

ZG(f) =

(
sinh y

y
+ φχ

sinhχy

y

)N
exp

(
Nαy2

2

)
, (30)

which will be used throughout all this paper. The expo-
nential term depending on α is responsible for the elastic-
ity of the chain. The same result without bistability (i.e.
with φ = 0), has been discussed in recent literature.99,100

Moreover, the case with bistability but without extensi-
bility of the units is considered in Ref.76. In this situation
the partition function simply reduces to

lim
α→0

ZG(f) =

(
sinh y

y
+ φχ

sinhχy

y

)N
. (31)

As discussed in Section II, the macroscopic behavior of
this system is described by the Gibbs free energy G =
−kBT logZG. The force-extension response for the two-
state freely jointed chain with extensible elements under
isotensional condition can be found through

〈r〉 = −∂G
∂f

. (32)

On the other hand, if we define the average value of the

spin variables as 〈s〉 = 1
N 〈
∑N
i=1 Si〉, it is not difficult to

prove that

N 〈s〉 =
∂G
∂∆E

= −∂G
∂µ

. (33)

The explicit application of Eq.(32) to Eq.(30) yields

〈r〉 = N`

[
L(y) + χ2φL(χy) sinhχy

sinh y

1 + χφ sinhχy
sinh y

+ αy

]
, (34)

where L(y) = coth y − 1
y is the Langevin function. On

the other hand, by applying Eq.(33) to Eq.(30), we get

〈s〉 =
χφ sinhχy

sinh y

1 + χφ sinhχy
sinh y

, (35)

which does not depend on α. By combining Eqs.(34) and
(35), we can find the relationship

〈r〉 = N` [(1− 〈s〉)L(y) + 〈s〉χL(χy) + αy] , (36)

stating that the average extension of the extensible two-
state system is given by a combination of the responses
of two FJC models with length ` and χ`, and by a linear
term taking into account the elasticity of the system.
This result is similar in spirit to that presented in Ref.99.

An example of application of Eqs.(32) and (33) is
given in Fig.3, where force-extension curves, spin vari-
ables and Gibbs free energies are plotted for several val-
ues of k = 0.4 jN/m, ∀j = 1, ..., 6. We remark that
real macromolecular elastic constants are similar to or
larger than the values adopted in this analysis.95–98 In
the first panel, we compare the systems with extensibility,
described by the exact Eq.(27) or by the approximated
Eq.(30), and another without extensibility (k → ∞) de-
scribed by Eq.(31). First of all, we remark the very good
agreement between Eqs.(27) and Eq.(30) for the systems
with extensibility (red and blues curves, respectively).
This proves the acceptability of the proposed approxi-
mation. Moreover, it is interesting to note the different
asymptotic behavior of systems with finite and infinite
elastic constants. While the stiff system exhibits a ver-
tical asymptote for large forces (green curve), the elastic
ones shows an oblique asymptote (red and blues curves),
which slope represents the effective stiffness of the chain.
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In the force-extension curves, we observe a force plateau
corresponding to f∗ = ∆E

(χ−1)` (in the case of µ = 0).

Similarly, in the spin behavior we identify a transition
from 〈s〉 = 0 to 〈s〉 = 1 corresponding to the same force
f∗. We can explain these curves by means of a cooper-
ative process, which generates the transition of all units
at the same value of force f∗. Notably, the value of this
plateau force does not depend on the spring constant,
nor on the temperature. Such a result is readily inter-
preted in the framework of the Bell expression, originally
derived in the context of the adhesion of cells.101 While
the spin variable average remains unaltered by the elastic
constant, the force-extension response is sensibly modi-
fied, showing a variable slope in the regions before and
after the central plateau. The origin of the transition in
the force-extension curve and in the spin behavior can be
recognized in the Gibbs free energy, which shows a slope
change corresponding to the same force f∗. The knowl-
edge of chain behavior under the isotensional or Gibbs
ensemble is the starting point for the understanding of
the isometric ensemble, as discussed in the next Section.

IV. TWO-STATE FREELY JOINTED CHAIN
WITH EXTENSIBLE UNITS: THE
HELMHOLTZ ENSEMBLE

We consider now the isometric or Helmholtz ensemble,
where the last unit of the chain is considered tethered at
a given point ~r of the space. In this case, we can therefore
write the Hamiltonian of the system in the form

HH =

N−1∑
i=1

~pi · ~pi
2M

+

N∑
i=1

v(Si)− µ
N∑
i=1

Si

+

N∑
i=1

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2 , (37)

where ~rN = ~r is fixed. Consequently, we also considered
~pN = 0. In this situation, we introduce ~q = (~r1, ..., ~rN−1)
as the generalized vector containing all positions, ~p =
(~p1, ..., ~pN−1) as the generalized vector containing all mo-

menta, and ~S = (S1, ..., SN ) as the vector of all spin vari-
ables. As before, we assume that all chemical potentials
µi take the same value µ. The partition function can be

written in terms of these dynamic variables

ZH (~r) =
∑

~S∈{0,1}N

∫
Q

∫
Q

exp

−HH

(
~p, ~q, ~S

)
KBT

d~pd~q

=
∑

~S∈{0,1}N

[∫
R3

exp

(
− 1

2MKBT
~p · ~p

)
d~p

]N−1

×
∫
R3

...

∫
R3

exp

[
−

N∑
i=1

v(Si)− µSi
KBT

−
N∑
i=1

k(Si)

2KBT
[‖~ri − ~ri−1‖ − `(Si)]2

]
d~r1...d~rN−1,

(38)

where Q = R3N−3. It is not difficult to realize that the
calculation of this partition function is much more com-
plicated than the one obtained for the Gibbs ensemble.
Indeed, we can not apply a simple change of variables in
order to factorize the multi-dimensional integral. From
the physical point of view, this difficulty depends on the
fact that the isometric condition induces an effective in-
teraction among the units, fixing the sum of all vectors
~ri − ~ri−1 (for i from 1 to N). This problem will pro-
duce a final result which can not be written in the form
of a power with exponent N . An useful technique to
cope with this difficulty is the following. By comparing
Eqs.(22) and (38), we deduce that the two partition func-
tions ZG and ZH are related through a three-dimensional
bilateral Laplace transform, as follows

ZG(~f) =

∫
R3

ZH(~r) exp

(
~r · ~f
kBT

)
d~r, (39)

where, as usual, we neglect the non-influential multiplica-
tive constants. Moreover, by considering the spherical
symmetry of the problem, we easily obtain the inverse
relationship

ZH(r) =

∫ +∞

−∞
ZG(iη)

η

r
sin

ηr

kBT
dη, (40)

where we have introduced the analytic continuation of
the function ZG(r) to the imaginary axis, leading to
ZG(iη). By substituting Eq.(30) in Eq.(40), we get the
important integral expression

ZH(r) =

∫ +∞

−∞

{
sin y

y
+ χφ

sinχy

y

}N
× exp

(
−N αy2

2

)
y

r
sin

ry

`
dy. (41)

The analysis of such an integral for α = 0 has been per-
formed in recent literature.76 Previous investigations con-
sidered the case with α = 0 and φ = 0, thus dealing with
the classical FJC model under isometric condition.102–105

However, the presence of a finite elasticity of the units,
quantified by the parameter α 6= 0, completely modifies
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FIG. 4. Definition of the contour Γ on the complex plane with
an arbitrary radius r.

the approach to be used to obtain a closed form expres-
sion for ZH(r). Here, we elaborate Eq.(41) in order to
get such a closed form expression, useful to better explain
the chain behavior within the Helmholtz ensemble. The
function to integrate in Eq.(41) is regular on the real axis
and analytic (or holomorphic) on a strip |Im y| < M for
an arbitrary M ∈ R. Then, instead of integrating on the
whole real axis, we can use the path Γ shown in Fig.4.
This will be useful to elaborate the partition function in-
tegral and to write it in a form with singularities at the
origin. Therefore, we can write

ZH(r) = −i
∫

Γ

{
sin y

y
+ χφ

sinχy

y

}N
× exp

(
−N αy2

2

)
y

r
exp

(
i
ry

`

)
dy. (42)

By developing the power in previous expression and by
using the expansion

sinn x =
1

(2i)n
einx

n∑
t=0

(
n

t

)
(−1)te−2itx, (43)

we obtain

ZH(r) =
1

2N iN+1r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)(
k

q

)
×(−1)p+q(χφ)k

∫
Γ

e−iΛye−N
αy2

2
dy

yN−1
, (44)

where we defined

Λ = k −N + 2p− χk + 2χq − r

`
. (45)

The integral appearing in Eq.(44) is well defined since
the path Γ excludes the singularity at the origin from
the integration.

To perform the calculation of the Helmholtz partition
function, we have to determine the value of

Im(a, b) =

∫
Γ

eiaye−by
2 dy

ym
. (46)

Although this development is an essential part of this pa-
per, for the sake of clarity, the calculations are discussed
in Appendices A and B. We first reduce the calculation
of Eq.(46) to a simpler integral (Appendix A), and then
we solve it through the Hermite elements with negative

index (Appendix B). Eventually, the integral Im(a, b) de-
fined in Eq.(46) can be calculated through the expression

Im(a, b) =
√
π

{
b
m−1

2 e−
a2

4b (2i)mH−m

(
− a

2
√
b

)
(47)

+1(−a)

m−1∑
k=0

(ia)m−1−k(−4b)k/2

ik!(m− 1− k)!
Γ

(
k + 1

2

)[
1 + (−1)k

]}
,

where 1(x) represents the Heaviside step function, de-
fined as 1(x) = 1 if x ≥ 0, and 1(x) = 0 if x < 0, and
H−m (z) represent the Hermite elements with negative
index, which are a direct generalization of the classical
Hermite polynomials (see Appendix B). To conclude, we
can use Eq.(47) to obtain the final form of the Helmholtz
partition function

ZH(r) = − 1

2r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)(
k

q

)
(−1)p+q

×(χφ)k

[
√
π

(
Nα

2

)N−2
2

e−
Λ2

2NαH−N+1

(
Λ√
2Nα

)

+ 1(Λ)

[N2 −1]∑
h=0

(−1)N−1π
(

Λ
2

)N−2

h!(N − 2− 2h)!

(
Nα

2Λ2

)h , (48)

where [x] represents the floor function giving the greatest
integer that is less than or equal to x, and Λ depends
on k, p and q through Eq.(45). This result is the most
important achievement of this paper and allows us to
determine the complete response of the two-state freely
jointed chain with extensible lengths in terms of force-
extension curve and average value of the spin variables.
Interestingly enough, Eq.(48) represents a closed form ex-
pression since all sums are performed over finite ranges
and the Hermite elements are known recursively, as dis-
cussed in Appendix B. As a check of the procedure, we
can see that if α = 0 (i.e., infinite stiffness) the first term
within the brackets vanishes and the second one is given
only by the addend with h = 0. Hence, the partition
function simplifies to give

lim
α→0

ZH(r) =
π

2(N−1)(N − 2)!r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)
×
(
k

q

)
(−1)p+q(χφ)k(−Λ)N−21(Λ), (49)

in perfect agreement with Ref.76. In any case, we remark
that Eqs.(48) and (49) can not be written as a power
with exponent N . It means that, within the Helmholtz
ensemble, there is an effective interaction among the el-
ements induced by the isometric boundary conditions.
However, this interaction is not explicitly written in the
Hamiltonian of the system (as, e.g., in the Ising model)
but comes from the prescribed positions of the two chain
extremities.

All thermodynamic properties can be evaluated
through the Helmholtz free energy F = −kBT logZH

10



r
Nℓ

0 1 2 3

〈f
〉ℓ

k
B
T

0

10

20

30

40

50

60

k → ∞

k = 1.5N/m

r

Nℓ

0 1 2 3

N
〈s
〉

0

2

4

6

8

k → ∞

k = 1.5N/m

FIG. 5. Force-extension response (top panel) and average spin
(bottom panel) for a system with extensibility (k = 1.5N/m)
and a system without extensibility (k → ∞). The calcula-
tion for the system with extensibility is based on Eq.(48) (red
curves) while the system without extensibility has been stud-
ied through Eq.(49) (blue curves). In the top panel, we also
added the Gibbs force-extension responses for both cases. We
adopted the parameters N = 8, ` = 0.5× 10−9m, T = 300K,
χ = 3, ∆E = 20kBT = 8.28× 10−20J and µ = 0.

(see Section II). For instance, the force-extension re-
sponse is given by the expression

〈f〉 =
∂F
∂r

, (50)

and the average value of the spin variable is as follows

N 〈s〉 =
∂F
∂∆E

= −∂F
∂µ

. (51)

Of course, both 〈f〉 and 〈s〉 could be written in closed
form by performing the indicated derivatives. However,
for the sake of brevity, we omit this development and we

show an example of application of Eqs.(50) and (51) in
Fig.5, where we compare an elastic system described by
Eq.(48) with a stiff one described by Eq.(49). In the
top panel, we show the force extension curve for the
stiff system with k → ∞ and for the elastic one with
k = 1.5N/m. To better compare the responses, we also
added the Gibbs force-extension responses for both cases.
In the bottom panel, the average value of the spin vari-
ables is also represented for the stiff and the soft systems.
These results prove a non-cooperative behavior charac-
terized by a progressive unfolding of units in response to
the increasing overall length. This behavior corresponds
to a series of peaks in the force-extension curves and to
a staircase function for the spin variable. Any peak or
step corresponds to an unfolding process induced by the
increasing extension. The overall behavior is therefore
completely different from the Gibbs ensemble, where all
units undergo the conformational transition at the same
time. Anyway, for the soft system, we observe a sensibly
reduced peak-to-peak force in the force extension curve
and, correspondingly, a smoother transition in the steps
of the average spin variable. Therefore, it is important to
underline that relatively soft polymers (with small elas-
tic constant) can have peak-to peak forces much smaller
than ones predicted by the two-state freely jointed chain.

In Fig.6, one can find the force-extension response (top
panel), the average spin variable (bottom-left panel) and
the Helmholtz free energy (bottom-right panel) for a sys-
tem with variable extensibility k = 0.4 jN/m, ∀j =
1, ..., 6. We can observe the progressive increase of the
peak-to-peak force of each unfolding transition with in-
creasing values of the elastic constant. At the same time,
the transition are sharper for stiffer systems, as clearly
visible in the average spin curves. The origin of the force
peaks in the force extension curve can be highlighted in
the Helmholtz free energy curves, which are character-
ized by a series of “smooth cusps” able to generate the
force peaks by derivation with respect to the position.

A further analysis concerns the variation of the peak-
to-peak force with the elastic constant k and the tem-
perature T . In Fig.7, we can observe the shape of
the first peaks for two temperatures T = 300K and
T = 750K and for several values of k = (0.3+0.15n)N/m,
n = 0, ..., 18. We can observe the strong reduction of
the force peak with increasing elastic constant and/or
temperature. Concerning the decrease of the peak with
the temperature, we remark that the spinoidal behavior
of the force extension curve (negative slope in some re-
gions) is characterized by a critical temperature, defined
as follows. For supercritical temperatures, the slope (or
the effective stiffness) is always positive and for subcrit-
ical temperatures, it is negative in some regions. This
concept of critical temperature for the chain within the
Helmholtz ensemble is similar to the concept of Curie
temperature governing the ferromagnetic-paramagnetic
transition in magnetic materials. This point has been re-
cently discussed in Refs.74–76. Interestingly enough, we
notice that the chain with a negative effective stiffness

11
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FIG. 6. Force-extension response (top panel), average spin variable (bottom-left panel) and Helmholtz free energy (bottom-
right panel) for a system with variable extensibility k = 0.4 jN/m, ∀j = 1, ..., 6. The Helmholtz free energy F is represented in
Joule. The calculation is based on Eq.(48). We also added the Gibbs force-extension responses (black curves) to facilitate the
comparison. We adopted the parameters N = 5, ` = 0.5× 10−9m, T = 300K, χ = 3, ∆E = 20kBT = 8.28× 10−20J and µ = 0.

(spinoidal behavior), exhibited in specific working condi-
tions, can be viewed as a metamaterial74 and this prop-
erty can be mimicked in bioinspired nanostructures.106 In
Fig.8, one can find the the variation of the peak-to-peak
force (as defined in Fig.7) in terms of elastic constant
and temperature. We can see that the force peak be-
comes negligible for low values of k and high values of T .
This plot shows the importance of considering the correct
value of k for modeling the folding-unfolding processes of
macromolecular chains. Indeed, the force peaks are typ-
ically considered as output of real experiments and their
values are used to draw quantitative conclusions about
mechanical and thermodynamic properties of the macro-
molecule.

To conclude, we show in Fig.9 the behavior of the sys-
tem as a function of the number of units of the chain.
This is an important analysis since concerns the valid-
ity of the ensembles equivalence in the thermodynamic
limit. In Fig.9, one can find the results for N from 2 to
8 for a system with an elastic constant k = 1N/m. It is
interesting to remark that for an increasing value of N ,
the peak-to-peak force is progressively reduced, confirm-

ing the convergence of the Helmholtz ensemble to the
Gibbs ensemble for N → ∞. Indeed, if two ensembles
are equivalent, the corresponding force-extension curves
must coincide. This is perfectly coherent with known
results concerning the ensembles equivalence in the ther-
modynamic limit, as discussed in recent literature.54,55

V. CONCLUSIONS

In this work, we discussed the spin variables approach
used to describe the folding/unfolding behavior of chains
with conformational transitions. We briefly reviewed the
statistical mechanics of a chain within the Helmholtz (iso-
metric) and Gibbs (isotensional) ensembles by proving
that the additional spin variables do not modify the stan-
dard results of the macroscopic thermodynamics. In par-
ticular, the first and second principles hold on, provided
that we slightly modify the average calculation method of
microscopic quantities, namely by simply adding the sum

over the spin variables ~S besides the classical integra-
tion over the variables (~q, ~p). This approach is similar to

12
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the introduction of the number of particles in the grand
canonical ensemble of statistical mechanics as effective
variable summed in the partition function and controlled
by the chemical potential. The introduction of the spin
variables approach allows therefore to describe the fold-
ing/unfolding of macromolecular chains by introducing
simpler forms of the potential energy, thus facilitating

the calculation of the partition functions. It means that
each basin of the energy landscape can be approximated
with a quadratic potential, which leads to an easier in-
tegration. The knowledge of the partition function is
useful to directly determine the force-extension response
of the chain within the statistical ensemble considered.
Moreover, the average value of the spin variables as func-
tion of the externally controlled quantities (positions or
forces) is useful to characterize and measure the coop-
erativeness (or synchronization) of the folding/unfolding
processes. As an example, a potential energy with two
energy wells separated by a given energy barrier can be
substituted with a couple of quadratic potentials, which
are, as discussed above, easier to handle from the math-
ematical point of view. The switching between the two
quadratic wells is automatically controlled by the asso-
ciated spin variable, as result of the externally applied
boundary conditions. This procedure is based on an ap-
proximation since the above substitution of the original
potential energy with two quadratic wells removes the
portion of curve between the wells, corresponding to the
energy barrier. If we work at thermodynamic equilibrium
this assumption leads to accurate results (see also Ref.76)
since the system explores only the bottom of the basins
and does not feel the energy barrier between them. On
the other hand, if we work within the out-of-equilibrium
regime, the energy barrier plays a crucial role in deter-
mining the characteristic times of the process.

The idea of the spin variables has been exploited in
the second part of the paper, where we analyzed in detail
the case of a two-state freely jointed chain with extensi-
ble links. With respect to previous literature, we added
in this work the extensibility of the units, which is an
important point to describe real macromolecules but, at
the same time, makes the mathematical problem consid-
erably more involved.

Concerning the Gibbs ensemble, we obtained the exact
partition function by direct integration, and then we in-
troduced an approximation yielding a simpler expression
useful for further developments. We thoroughly verified
the validity of this approximation in the standard ranges
of variability of the parameters. The partition function is
then used to calculate the elastic response of the system
and the average value of the spin variable. This quantity
exhibits a transition, for a given applied force, describing
the cooperative (or synchronized) behavior of the Gibbs
response.

The following development concerns the Helmholtz en-
semble. In this case, the direct calculation of the parti-
tion function can not be done because of the isometric
condition, which generates an effective interaction among
the units of the chain. It means that the partition func-
tion can not be factorized as in the case of the Gibbs
ensemble, where the units are de facto independent. So,
the adopted technique is based on the property stating
that the Gibbs and Helmholtz partition functions are
connected through a Laplace transform. This property is
exploited in classical literature to prove the equivalence of
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right panel) for a system with a variable number of units N = 2, 3, 4, 5, 6, 7, and 8. The Helmholtz free energy F is represented
in Joule. The calculation is based on Eq.(48). We also added the Gibbs force-extension responses (black curves) to facilitate
the comparison. We adopted the parameters k = 1N/m, ` = 0.5 × 10−9m, T = 300K, χ = 3, ∆E = 20kBT = 8.28 × 10−20J
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the ensembles in the thermodynamic limit.33,37 Indeed,
the Laplace transform between ZG and ZH allows one
to prove that the Legendre transform holds between the
free energies G and F for large values of N . Alternatively,
we use here the Laplace property between the partition
functions to find an explicit form of ZH for a system
with an arbitrary elastic constant and an arbitrary num-
ber of units in the chain. Interestingly enough, we obtain
the closed form expression for this partition function in
terms of the Hermite elements with negative index. They
represent the natural generalization of the classical Her-
mite polynomials Hn(z), obtained by considering nega-
tive values for n. Although they have been introduced
in the mathematical literature,107 to the author knowl-
edge this is the first application to a notable physical
problem. The knowledge of the partition function allows
the determination of the force-extension curve and of the
average value of the spin variable. The latter exhibits
a stepwise behavior, well explaining the non-cooperative
(or non-synchronized) nature of the Helmholtz response.
In conclusion, the conducted analysis has generalized the

results on the two-state freely jointed chain76 to the case
with a finite extensibility of the macromolecule domains.

It is important to discuss in more detail the exper-
imental implications of the analysis conducted in our
work. We underline that both the experiments conducted
with soft devices (Gibbs ensemble) and hard devices
(Helmholtz ensemble) can be relevant to obtain quan-
titative properties of individual macromolecules. For in-
stance, concerning the soft devices, the following infor-
mation can be extracted from one experiment:

• from an experimental force-extension curve simi-
lar to that shown in Fig.3 (left panel), we can
easily measure the transition force f∗ (height of
the plateau) and the transition extension (χ − 1)`
(width of the plateau), which are structural prop-
erties of the molecule with conformational transi-
tions;

• most importantly, from previous quantities, we can
easily determine the energy jump ∆E between the
folded (native) and unfolded states of the units of
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the chain, a crucial property of the system, which
is difficult to measure without force-spectroscopy
techniques; this evaluation is based on the relation
f∗ = ∆E

(χ−1)` , discussed in Section III.

Concerning the hard devices, the following issues clarify
the relation with experiments:

• first of all, we can easily measure the number of
units of the chain, which directly corresponds to
the number of peaks in the force-extension curve;

• in order to explore the whole range of the exten-
sion of the chain, the typical experimental protocol
uses a fixed pulling velocity of the moving extrem-
ity of the molecule; correspondingly, the peaks of
force depend on the pulling velocity, and this de-
pendence can be used to evaluate the height of the
energy barrier A between the folded (native) and
unfolded states; further details can be found in re-
cent literature;108,109

• the Helmholtz response is crucial to investigate the
cooperativity. To begin, we clarify the term cooper-
ativity, which is used with two different meanings in
this context. Firstly, when we describe the different
behavior of the Gibbs and Helmholtz ensembles, we
observe a cooperative versus non-cooperative re-
sponse, but it should be better to use the term
synchronization since these distinct responses are
generated by the different boundary conditions (im-
posed force or imposed extension) and not by ac-
tual unit-unit interactions. Secondly, the real co-
operativity is observed when the transition of one
element affects the transition of the others (this
process is induced by interactions among units).83

So said, the Helmholtz response of a repeat chain
(for instance repeat protein) is very useful to inves-
tigate the real cooperativity generated by the in-
teractions. Indeed, both the long- and short-range
interactions among domains of a protein strongly
modify the force peaks observed in the Helmholtz
force-extension curve. The sequence of transitions
defines the unfolding pathway and the force peak
of each unit is small if there is a strong interac-
tion with previously unfolded units and is large if
the interaction is negligible. Therefore, the coop-
erativity is observed through a heterogeneous hier-
archy of force peaks. As discussed in Section II,
this phenomenon has been observed in spectrin84

and filamin A.85 The understanding of coopera-
tivity can be improved by implementing the Ising
model within the potential energy of the system
(see below) and by comparing the results with the
behavior of other repeat protein structures.86–88

• an important factor, which affects the sawtooth-
like force-extension response under isometric con-
ditions is the intrinsic elasticity of the units; here,
we clearly proved that a weak stiffness of the chain

may strongly reduce the force peaks of the re-
sponse (see, e.g., Fig.6), thus reducing the possibil-
ity of using hard devices to study cooperativity and
other conformational properties. It means that the
best results can be obtained with quite stiff macro-
molecules.

The spin variable approach will be adopted in the near
future to study more complicated situations. As antici-
pated in Section II, important energy terms that must be
taken into consideration concern the interaction among
the folding/unfolding states of the units (e.g. through
an Ising-like interaction term), and the semi-flexibility of
real chains (e.g. through the classical WLC scheme). It
is interesting to note that an interaction term based on a
Ising mechanism can be only considered after the intro-
duction of the spin variables for the units of the chain.
This point makes the spin variables approach suitable
and appropriate for such a generalization. Also, the con-
sideration of the semi-flexibility through the WLC model
is important to correctly describe the properties of ds-
DNA and several proteins, which show a given persis-
tence length. Another perspective concerns the dynamics
of the folding/unfolding process, which must be studied
in the context of the out-of-equilibrium statistical me-
chanics. Recently, the dynamics of systems with a multi-
basin energy landscape has been studied.64,79,108,109 This
analysis should be completed by investigating the dynam-
ics of the whole system, described by continuous (me-
chanical) coordinates and discrete spin variables. It is
worth noting that the spin variable approach can be used
in this context for decoupling the mechanical character-
istic times (induced by the spring-like behavior of wells)
from the times induced by the transition rates between
the wells, which depend on the energy barrier as classi-
cally described by the Kramers theory.78

Finally, it is interesting to remark that the statistical
mechanics and the dynamics of systems with multi-well
energy are useful to model other physical situations in-
cluding, but not limited to, cell adhesion, macromolecu-
lar hairpins, skeletal muscles, ferromagnetic alloys, nano-
indented substrates and plastic materials.71,75,77,80
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Appendix A: An integral calculation

To perform the calculation of the Helmholtz partition
function we have to determine the value of

Im(a, b) =

∫
Γ

eiaye−by
2 dy

ym
, (A1)

where a ∈ R, b > 0, m ∈ N and the path Γ is given in
Fig.4. To this aim, we begin to introduce the closed paths
ABCD shown in Fig.10. To understand the suitability of
this approach, we firstly consider the segment CD on the
paths shown in Fig.10. Here, we have y = s + iβ where
s ∈ R is a variable and β ∈ R is a constant that we will
determine with the purpose of simplifying the integral
calculation. Therefore, we get∫

CD

eiaye−by
2 dy

ym

= −
∫ +R

−R
eia(s+iβ)e−b(s+iβ)2 ds

(s+ iβ)m

= −e−aβebβ2

∫ +R

−R
eis(a−2bβ)e−bs

2 ds

(s+ iβ)m
, (A2)

and we can let β = a/(2b) to remove the imaginary ex-
ponential from the integral. Hence, the result can be
written as∫

CD

eiaye−by
2 dy

ym
= −e− a

2

4b

∫ +R

−R

e−bs
2ds

(s+ i a2b )
m
, (A3)

and, applying the limit for R → ∞ and the change of
variable η =

√
bs, it assumes the final form

lim
R→∞

∫
CD

eiaye−by
2 dy

ym
= −bm−1

2 e−
a2

4b

∫ +∞

−∞

e−η
2dη

(η + i a
2
√
b
)m
.

(A4)

This expression, of course, is valid for both negative and
positive values of a.

For the calculation of the integral in Eq.(A1), we have
to consider two separate cases. If a > 0 or β > 0, the
path shown in Fig.10(a) does not contain the origin of the
complex plane and therefore the function to integrate is
holomorphic within the path. In this situation, we can
directly apply the Cauchy theorem stating that(∫

AB

+

∫
BC

+

∫
CD

+

∫
DA

)
eiaye−by

2 dy

ym
= 0. (A5)

Now, in the limit for R → ∞, it is not difficult to prove
that the integrals on the segments BC and DA vanish
and we get the first result for a > 0

Im(a, b) = b
m−1

2 e−
a2

4b

∫ +∞

−∞

e−η
2dη

(η + i a
2
√
b
)m
. (A6)

If a < 0 or β < 0, the path shown in Fig. 10(b) contains
the origin of the complex plane, which corresponds to a

r

Im y

Re y

Γ 0A B

CD β > 0

−R R

(a)

r

Im y

Re y

Γ 0A B

CD

β < 0

−R R

(b)

FIG. 10. Definition of the contours ABCD on the complex
plane for β > 0 (a) and β < 0 (b).

singular point of the function to integrate. Hence, the
residue theorem delivers(∫

AB

+

∫
BC

+

∫
CD

+

∫
DA

)
eiaye−by

2 dy

ym

= −2πiRes

{
eiaye−by

2

ym
, 0

}
, (A7)

where the residue can be easily calculated since the sin-
gular point is a pole or order m

Res

{
eiaye−by

2

ym
, 0

}
=

1

(m− 1)!

dm−1

dym−1

(
eiaye−by

2
)
y=0

.

(A8)

The derivative in Eq.(A8) can be elaborated through the
general rule

dm−1

dym−1
[f(y)g(y)] =

m−1∑
k=0

(
m− 1

k

)
dkf(y)

dyk
dm−1−kg(y)

dym−1−k .

(A9)

If g(y) = eiay, we simply have

dm−1−kg(y)

dym−1−k = (ia)m−1−keiay. (A10)

On the other hand, if f(y) = e−by
2

, the calculation of
the derivative of order k is more involved. One method
is based on the well-known integral∫ +∞

−∞
e−

x2

4b eixydx =
√

4πbe−by
2

, (A11)
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which can be exploited as follows

dkf(y)

dyk
=

1√
4πb

∫ +∞

−∞
e−

x2

4b (ix)keixydx. (A12)

Hence, if we consider y = 0, we get(
dkf(y)

dyk

)
y=0

=
ik√
4πb

∫ +∞

−∞
xke−

x2

4b dx. (A13)

Then, we observe that the result is different from zero
only for k even. In particular, we eventually obtain(
dkf(y)

dyk

)
y=0

=

{
(−4b)n√

π
Γ
(
n+ 1

2

)
if k = 2n,

0 if k = 2n+ 1,
(A14)

where Γ(z) is the Euler Gamma function. By combining
Eqs.(A9), (A10) and (A14), we can rewrite the residue
defined in Eq.(A8) as

Res

{
eiaye−by

2

ym
, 0

}
(A15)

=

m−1∑
k=0

(ia)m−1−k

k!(m− 1− k)!

(−4b)k/2

2
√
π

Γ

(
k + 1

2

)[
1 + (−1)k

]
.

Therefore, the residue theorem written in the form of
Eq.(A7), and considered for R→∞, gives the final result
for a < 0

Im(a, b) = b
m−1

2 e−
a2

4b

∫ +∞

−∞

e−η
2dη

(η + i a
2
√
b
)m

(A16)

−
m−1∑
k=0

2πi(ia)m−1−k

k!(m− 1− k)!

(−4b)k/2

2
√
π

Γ

(
k + 1

2

)[
1 + (−1)k

]
.

To conclude, Eq.(A6) for a > 0 and Eq.(A16) for a < 0
represent the integral Im(a, b) defined in Eq.(A1) in terms
of a second integral, which is the subject of the following
Appendix B.

Appendix B: The Hermite elements with
negative index

First of all, we observe that the integral

Jm(x) =

∫ +∞

−∞

e−η
2

dη

(η + ix)m
, (B1)

appearing in Eqs.(A6) and (A16) with x = a/(2
√
b), is

simpler than Im(a, b) since it is calculated over the real
axis and there is no imaginary exponent in the func-
tion to integrate. To approach its calculation, we re-
call the following integral representation of the Hermite
polynomials93,94

Hm(z) =
2m√
π

∫ +∞

−∞
(iη + z)me−η

2

dη

=
(2i)m√

π

∫ +∞

−∞
(η − iz)me−η2

dη. (B2)

If we compare Jm with the last representation of Hm, we
note that Jm is formally related to H−m, which repre-
sents an Hermite element with negative index. We un-
derline that the representation of the Hermite polyno-
mials in Eq.(B2) makes sense also for negative values of
m. However, we will see that these functions are not
polynomials but they exhibit several properties similar
to those of the classical Hermite polynomials. To the
author knowledge, these functions have been firstly in-
troduced and studied in Ref.107 but no other analysis or
application can be found in the literature. Anyway, by
replacing m with −m in Eq.(B2), we define

H−m(z) =
1

(2i)m
√
π

∫ +∞

−∞

e−η
2

dη

(η − iz)m , (B3)

and we introduce their properties. Following Ref.107, we
firstly analyse the first element H−1(z). We simply have

H−1(z) =
1

2i
√
π

∫ +∞

−∞

e−η
2

dη

η − iz

=
1

2i
√
π

∫ +∞

−∞

η + iz

η2 + z2
e−η

2

dη

=
1

2
√
π

∫ +∞

−∞

z

η2 + z2
e−η

2

dη. (B4)

Indeed, the imaginary part is zero since it corresponds to
an odd function integrated over the symmetric interval
(−∞,+∞). From Eq.(B4), we deduce that H−1(z) is an
odd function of z. Then we can study H−1(z) for z > 0.
Under this hypothesis, we define u = η/z and we obtain

H−1(z) =
1

2
√
π

∫ +∞

−∞

e−u
2z2

du

1 + u2
(z > 0), (B5)

from which we easily deduce the particular value
limz→0+ H−1(z) =

√
π/2. In addition, Eq.(B5) allows

us to get a differential equation for H−1(z) (z > 0). By
differentiation, we have

d

dz
H−1(z) = − z√

π

∫ +∞

−∞

u2e−u
2z2

du

1 + u2

= − z√
π

∫ +∞

−∞

(
1 + u2

1 + u2
− 1

1 + u2

)
e−u

2z2

du

= −1 + 2zH−1(z). (B6)

Now, the differential equation H ′−1(z) = −1 + 2zH−1(z)
is linear and can be directly solved for z > 0 with the
initial condition H−1(0+) =

√
π/2 proved above. A

straightforward calculation yields

H−1(z) =

√
π

2
ez

2

[1− erf (z)] , z > 0. (B7)

Since H−1(z) is odd, i.e. H−1(−z) = −H−1(z), we can
also calculate its values for z < 0. By means of the first
two functionsH0(z) = 1 ∀z andH−1(z) given in Eq.(B7),
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we can determine all other Hermite elements with nega-
tive index through the following recursive formula

H−(n+1)(z) =
1

2n
H−(n−1)(z)−

z

n
H−n(z). (B8)

Following again Ref.107, Eq.(B8) can be proved as follows

H−(n−1)(z) =
1

(2i)n−1
√
π

∫ +∞

−∞

e−η
2

dη

(η − iz)n−1

=
1

(2i)n−1
√
π

∫ +∞

−∞

η − iz
(η − iz)n e

−η2

dη

=
1

(2i)n−1
√
π

∫ +∞

−∞

ηe−η
2

dη

(η − iz)n

− iz

(2i)n−1
√
π

∫ +∞

−∞

e−η
2

dη

(η − iz)n . (B9)

Now, the first integral in the result of Eq.(B9) can be
elaborated by parts, eventually obtaining∫ +∞

−∞

ηe−η
2

dη

(η − iz)n = −n
2

∫ +∞

−∞

e−η
2

dη

(η − iz)n+1
. (B10)

Therefore, Eq.(B9) becomes H−(n−1)(z) =
2nH−(n+1)(z) + 2znH−n(z), which is equivalent to
Eq.(B8). This recursive law allows us to affirm that
H−n(z) is odd if n is odd and that H−n(z) is even if n
is even. We underline that the Hermite elements with
n < 0 are not polynomials, contrarily to the classical
Hermite polynomials, defined with n > 0. Many other
interesting properties of this sequence of functions can
be found in Ref.107. For the sake of completeness, the
first functions are reported below for z > 0

H0(z) = 1,

H−1(z) =
√
π

2 ez
2

erfc (z) ,

H−2(z) = 1
2 −

√
π

2 zez
2

erfc (z) ,

H−3(z) = − 1
4z +

√
π

4

(
1
2 + z2

)
ez

2

erfc (z) ,

H−4(z) = 1
12

(
1 + z2

)
−
√
π

4 z
(

1
2 + 1

3z
2
)
ez

2

erfc (z)

(B11)

where erfc(z) = 1 − erf(z) is the complementary error
function. Their plot can be found in Fig.11. From the

computational point of view, the calculation of ez
2

erfc (z)
must be done with the following asymptotic expansion
(for z > 4)93,94

√
πzez

2

erfc (z) ∼ 1 +

M∑
m=1

(−1)m
1 · 3...(2m− 1)

(2z2)m
,(B12)

with a sufficiently large value of M .
Coming back to the calculation of the integral defined

in Eq.(B1), we have finally obtained the following result,
written in terms of the functions H−m(z)

Jm(x) = (2i)m
√
πH−m(−x). (B13)

The integral Im(a, b) defined in Eq.(A1) can be therefore
solved by Eq.(A6) for a > 0 and by Eq.(A16) for a < 0,

z
-10 -5 0 5 10

H
−
n
(z
)

-1

-0.5

0

0.5

1
H

−1(z)

H
−2(z)

H
−3(z)

H
−4(z)

H
−5(z)

FIG. 11. Plot of the first Hermite elements with negative
index. We observe that H−n(z) is odd if n is odd and that
that H−n(z) is even if n is even.

rewritten and unified here in the compact form

Im(a, b) =
√
π

{
b
m−1

2 e−
a2

4b (2i)mH−m

(
− a

2
√
b

)
(B14)

+1(−a)

m−1∑
k=0

(ia)m−1−k(−4b)k/2

ik!(m− 1− k)!
Γ

(
k + 1

2

)[
1 + (−1)k

]}
,

where 1(x) represents the Heaviside step function, de-
fined as 1(x) = 1 if x ≥ 0, and 1(x) = 0 if x < 0.
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