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The combination of bistability and cooperativity plays a crucial role in several biological and
artificial micro- and nano-systems. In particular, the exhaustive understanding of the mechanical
response of such systems under the effect of thermal fluctuations is essential to elucidate a rich
variety of phenomena. Here, a linear chain composed of elastic units, which are bistable (folded
or unfolded) and coupled through an Ising-like interaction, is selected as a case study. We assess
the macroscopic thermoelastic response of this chain in terms of its microscopic description. For
small systems, far from the thermodynamic limit, this response depends on the applied isometric
or isotensional boundary conditions, which correspond to the Helmholtz or Gibbs ensembles of the
statistical mechanics, respectively. The theoretical analysis is conducted through the spin variables
approach, based on a set of discrete quantities able to identify the folded or unfolded state of the
chain units. Eventually, this technique yields closed form expressions for the force-extension curves
and the average number of unfolded units, as function of the applied fields. In addition, it allows
to unveil a critical behavior of such systems, characterizing the operating regions with negative
differential stiffness (spinoidal phase).

I. INTRODUCTION

The thorough understanding and the tuning of the
physical properties of bistable and cooperative systems
are the object of extensive research activity [1, 2]. While
the bistability represents the tendency for a system to
be in only one of two distinct states, the cooperativity
concerns systems composed of several units with mutual
interactions. It means that, in bistable cooperative sys-
tems, each unit can undergo a transition between two
states and the transition of one unit affects the transition
of the others (because of the interactions among units).

This apparently simple scheme is able to induce very
complex behaviors in a large number of physical sys-
tems. Without the pretension of being exhaustive, we
can cite the snapping and unidirectional waves in elastic
metamaterials [3, 4], the mechanics of muscle contrac-
tion [5, 6], the magnetic, optical, and structural bista-
bility in spin-crossover nanocrystals [7, 8], the informa-
tion processing in biochemical reactions [9, 10], the pro-
tein folding-unfolding processes [11–14], the DNA over-
stretching and denaturation [15–18], and the physics of
force-spectroscopy experiments on macromolecules [19–
21]. This last example is particularly important since
force-spectroscopy experiments, conceived to measure
the force-extension relation of a single macromolecule,
were able for the first time to directly test the ther-
modynamics and the statistical mechanics of small sys-
tems [22, 23]. In particular, devices like atomic-force mi-
croscopes, laser optical tweezers, magnetic tweezers and
micro-electro-mechanical systems [24–29] have been em-
ployed to investigate proteins [30–32], RNA [33, 34], and
DNA [35–40].
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While the force-extension response of molecular chains
without bistability is considered to be well understood
[41–45], the real complexity of chains with bistable units
has only been revealed through the introduction of the
above force-spectroscopy techniques. In this context, the
mechanically induced folding/unfolding of the units of a
chain, governed by the conformational transition between
two states, has been detected in polypeptides, nucleic
acids and other molecules. Notably, for relatively short
bistable molecular chains (small systems thermodynam-
ics), the applied boundary conditions play an important
role in defining their overall response [46–49].

On the one side, isotensional experiments (conducted
at constant applied force by soft devices) correspond to
the Gibbs statistical ensemble, and lead to a plateau-like
force-extension curve with a threshold force characteriz-
ing the synchronized unfolding of all chain units [37, 50–
55]. On the other side, isometric experiments (conducted
at prescribed displacement by hard devices) represent a
realization of the Helmholtz statistical ensemble, and the
corresponding force-extension curve shows a sawtooth-
like shape, proving that the units unfold sequentially in
reaction to the increasing extension [30, 32, 54–61]. In
any case, the differences between isotensional and isomet-
ric force-extension curves disappear whenever the num-
ber of units is very large since, in the thermodynamic
limit, the Gibbs and Helmholtz ensembles become statis-
tically equivalent [62, 63]. A different point of view about
two-state systems driven by hard or soft devices has been
introduced to model plasticity, hysteretic behaviors and
martensitic transformations in solids [64–71].

The models proposed in the literature in order to ex-
plain the behavior of mechanical bistable chains typically
disregarded the interactions among the units, thus ne-
glecting the actual cooperativity of the system. Con-
versely, we propose here a model where a bistable chain
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is explicitly coupled to an Ising spin system, allowing
the understanding of the combination of bistability and
cooperativity. As a consequence, our model paradigmat-
ically represents most features of the above discussed real
systems. Previous attempts to integrate Ising chains in
mechanical systems only concerned the dynamics of a sin-
gle harmonic oscillator coupled to a linear chain of spins
[72, 73] and the analysis of ripples in strings [74]. To
complement this picture, our analysis fully describes the
(entropic and/or enthalpic) elastic response and the units
transitions in small systems, within both the Helmholtz
and the Gibbs ensembles of the statistical mechanics.
For instance, this approach can help the explanation of
the heterogeneous series of force-peaks observed in the
Helmholtz response during a protein unfolding process.
A first reported case concerns the tandem repeats in red
cell spectrin [75], where two adjacent units unfold at the
same time (cooperatively) because of their strong inter-
action. Moreover, a similar observation has been made
on Filamin A, where domain-domain interactions lead
to a hierarchy of unfolding forces that may be properly
studied by an Ising scheme [76]. From the continuum
mechanics point of view, our model may represent plastic
phenomena with nonlocal behaviours, i.e. with interac-
tions among the different regions of the plastic body.

The underlying idea of our method consists in associ-
ating to each unit a discrete variable (or spin), able to
define the folded or unfolded state of the unit itself. So,
the bistable potential function of each unit can be ap-
proximated by two quadratic potentials and the switch-
ing between them is controlled by the corresponding spin
variable (see Fig.1 for details). From the historical point
of view, the first model based on a discrete quantity, sim-
ilar to a spin variable, has been performed to predict
the response of skeletal muscles [77, 78]. This method
has been recently applied to different two-state systems
and molecular chains as well [79–82]. Both Gibbs and
Helmholtz ensembles can be considered by the spin vari-
ables approach, allowing to draw direct comparisons be-
tween isotensional and isometric conditions at thermo-
dynamic equilibrium. While the Gibbs ensemble will be
studied by means of the classical transfer matrix method
[83], typically adopted for one-dimensional interacting
models, the Helmholtz ensemble presents major difficul-
ties and will be approached by exploiting the Laplace
transform relationship between the Gibbs and Helmholtz
partition functions [84]. It is important to remark that we
are studying small systems (with the inequivalence of the
ensembles), and we need therefore to determine the exact
value of the partition functions and not their approxima-
tions holding for a large number of units, as usually done
for systems attaining the thermodynamic limit. We pro-
vide evidence that the cooperativity, measured by the
Ising interaction coefficient, strongly modifies the force-
extension response of the chain and its configurational
properties. In particular, under isometric conditions, we
thoroughly analyze the hierarchy of force peaks as func-
tion of the interaction coefficient. To complement the

equilibrium picture, we further characterize the critical-
ity of the spinoidal phase, describing the regions with
negative differential stiffness.

The structure of the paper is the following. In Sec-
tion II, we define the system under investigation and its
Hamiltonian function. In Section III and IV, we ana-
lyze the behavior of the chain with Ising interactions un-
der isotensional (Gibbs) and isometric (Helmholtz) con-
ditions, respectively. Since the problem of the Helmholtz
ensemble is solved here through a semi-analytic proce-
dure, we propose in Sections V, VI and VII additional
explicit asymptotic results describing the behavior of
the system under weak and strong Ising interactions
(ferromagnetic-like and antiferromagnetic-like). Finally,
in Section VIII, we generalize our results in order to take
account of a finite extensibility of the chain units, and we
illustrate its effect on the critical behavior of the system.

II. THE SYSTEM

We take into consideration a chain of m two-state el-
ements (see Fig.1a), each described by a bistable poten-
tial energy with a stable folded state and a metastable
unfolded state (see Fig.1b). The two potential wells in
Fig.1b can be characterized by the elastic constant k(Si),
the equilibrium length `0(Si) and the basal energy v(Si),
where Si is a discrete variable (or spin variable) assuming
values in {−1,+1}, used to distinguish one well from the
other. We state that Si = +1 corresponds to unfolded
elements, whereas Si = −1 corresponds to folded ones.
This description suggests that the bistable energy poten-
tial can be represented by two quadratic potentials ap-
proximating the real wells of the units (see again Fig.1b)
[81]. In this case, the discrete variables belong to the
phase space of the system and allow to specify the ex-
plored well for each unit. The introduction of the dis-
crete or spin variables also allows the direct implementa-
tion of an interaction between adjacent elements of the
chain, e.g. described by a classical Ising Hamiltonian.
The overall Hamiltonian of this system can be therefore
written as

H = −λ
m−1∑
i=1

SiSi+1 − µ
m∑
i=1

Si (1)

+

m∑
i=1

[
v(Si) +

1

2
k(Si) [‖~ri − ~ri−1‖ − `0(Si)]

2

]
.

While the first line in Eq.(1) represents the Ising inter-
action among spin variables, the second line describes
the spring-like behavior of each unit placed between po-
sitions ~ri−1 and ~ri, ∀i = 1, ...,m. We remark that
λ > 0 tries to force all elements to be folded or unfolded
(ferromagnetic-like interaction), whereas λ < 0 tries to
force all elements to be alternatively folded and unfolded
(antiferromagnetic-like interaction). The parameter µ is
a sort of external field or chemical potential (µ > 0 tries
to unfold the domains and µ < 0 tries to fold them).
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FIG. 1. (a) Chain of m two-state units with Ising interactions. While the first end-terminal α is able to tether the first unit to
a given substrate, the second one β is able either to apply a force (Gibbs condition) or a position (Helmholtz condition) to the
last unit. (b) Potential energy of a single unit of the chain (dashed black curve). The potential wells are approximated through
two parabolic (i.e., quadratic) profiles (solid blues curves), identified by Si = −1 (folded state) and Si = +1 (unfolded state).

A first validation of the spin approach to describe
multistable potential energies has been performed in
Ref.[81], where we directly compared a real two-state sys-
tem (dashed black curve in Fig.1b) without Ising inter-
actions with the approximation given by two parabolic
profiles governed by the spin variables (solid blue curves
in Fig.1b), by obtaining a good agreement provided that
Eb ≥ v(1) − v(−1) � KBT (where Eb is the energy
barrier). However, the spin variables approach can be
adopted only when we work at thermodynamic equilib-
rium. As a matter of fact, the quadratic potentials and
the associated spin variables are not sufficient to describe
the dynamic regime since the relaxation times of the sys-
tem strongly depend on the energy barriers between the
potential wells, which are neglected within our approach.
This is a well-known result, encoded within the Kramers
rate formula, originally formulated to study chemical re-
actions [85], and recently generalized for arbitrary sys-
tems with nonconvex energy landscapes [86, 87].

In the following, we suppose to embed the system in a
thermal bath at the temperature T , we consider the sys-
tem at thermodynamic equilibrium and we study the ef-
fects of the Ising interactions on the mechanical and con-
figurational behavior within the Gibbs (applied external
force) or the Helmholtz (prescribed end-to-end distance)
ensembles (see Fig.1a).

III. TWO-STATE CHAIN WITH ISING
INTERACTIONS: THE GIBBS ENSEMBLE

We consider now the extended Hamiltonian

HG = −λ
m−1∑
i=1

SiSi+1 − µ
m∑
i=1

Si − ~f · ~rm (2)

+

m∑
i=1

[
v(Si) +

1

2
k(Si) [‖~ri − ~ri−1‖ − `0(Si)]

2

]
,

introduced to deal with the isotensional conditions. Here,
~f is the force applied to the last unit, identified by its
position ~rm. We suppose that quantities ~ri ∈ R3 and
Si ∈ {−1,+1} ∀i ∈ {1...m} belong to the phase space
of the system. Moreover, to fix the ideas, we always
consider ~r0 = 0. The statistical mechanics of the system
can be introduced by calculating the partition function,
as follows

ZG =
∑
S1

...
∑
Sm

∫
P

exp

[
−HG({Si}, {~ri})

KBT

]
d~r1...d~rm

=
∑
S1

...
∑
Sm

exp

(
λ

KBT

m−1∑
i=1

SiSi+1

)

× exp

(
µ

KBT

m∑
i=1

Si

)
exp

(
− 1

KBT

m∑
i=1

v(Si)

)

×
∫
P

exp

(
−1

2

m∑
i=1

k(Si)

KBT
[‖~ri − ~ri−1‖ − `0(Si)]

2

)

× exp

(
~f · ~rm
KBT

)
d~r1...d~rm, (3)

where P = R3m. The integral I =
∫
P ...d~r1...d~rm, shown

in the last two lines of Eq.(3), can be developed by means

of the change of variables ~ξ1 = ~r1 − ~r0, ~ξ2 = ~r2 − ~r1,...,
~ξm = ~rm − ~rm−1, giving

I =

∫
P

exp

(
−1

2

m∑
i=1

k(Si)

KBT

[
‖~ξi‖ − `0(Si)

]2)

× exp

(
~f

KBT
·
m∑
i=1

~ξi

)
d~ξ1...d~ξm. (4)

To further simplify this integral, by exploiting the

isotropy of the system, we suppose that ~f = (0, 0, f) and
we introduce the spherical coordinates for the vectors
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~ξi, namely ~ξi = (ξi cosϕi sin θi, ξi sinϕi sin θi, ξi cos θi).

Therefore, we easily obtain ‖~ξi‖ = ξi, ~f · ~ξi = fξi cos θi
and d~ξi = ξ2

i sin θidξidϕidθi, and we get for I the expres-
sion

I =

∫
D

exp

{
−1

2

m∑
i=1

k(Si)

KBT
[ξi − `0(Si)]

2

}

× exp

(
m∑
i=1

fξi cos θi
KBT

)
m∏
i=1

(
ξ2
i sin θidξidϕidθi

)
= (2π)m

∫
Am

exp

{
−1

2

m∑
i=1

k(Si)

KBT
[ξi − `0(Si)]

2

}

×
[
m∏
i=1

∫
C

exp

(
fξi cos θi
KBT

)
sin θidθi

]
m∏
i=1

ξ2
i dξi

= (4π)m
m∏
i=1

∫
A

exp

{
−1

2

k(Si)

KBT
[ξi − `0(Si)]

2

}

×
sinh

(
fξi
KBT

)
fξi
KBT

ξ2
i dξi, (5)

where D = Am×Bm×Cm withA = (0,+∞), B = (0, 2π),
and C = (0, π). The integral over A can be interpreted
as a convolution between the enthalpic response (repre-
sented by the exponential term) and the entropic one
(represented by the function sinh(z)/z). Anyway, the
integral I can be strongly simplified if we make the as-
sumption to deal with a freely jointed chain [84], with
elements of fixed lengths, i.e. without elasticity. It is
equivalent to say that k(+1) = k(−1) → +∞. This
hypothesis will be removed in a successive section of the
paper, where we will study an extensible chain with Ising

interactions. If we use the property
√

α
π e
−αx2 → δ(x) for

α→∞, then we simplify the result for I as follows

I =

m∏
i=1

∫
A
δ (ξi − `0(Si))

sinh
(

fξi
KBT

)
fξi
KBT

ξ2
i

`2
dξi, (6)

where we omitted a non-influential multiplicative con-
stant and ` = `0(−1) corresponds to the length of the
folded units. We finally obtain

I =

m∏
i=1

sinh
(
f`0(Si)
KBT

)
f`0(Si)
KBT

`20(Si)

`2
. (7)

Eventually, the partition function assumes the simpler
form

ZG =
∑
S1

...
∑
Sm

[
exp

(
λ

KBT

m−1∑
i=1

SiSi+1

)
(8)

× exp

(
µ

KBT

m∑
i=1

Si

)
exp

(
− 1

KBT

m−1∑
i=1

v(Si)

)

×
m∏
i=1

sinh
(
f`0(Si)
KBT

)
f`0(Si)
KBT

`20(Si)

`2

 .

We have now to approach the problem of calculating
the sums over the spin variables. To this aim, a more
symmetric form of Eq.(8) can be obtained by observing
that

m∏
i=1

ci =
√
c1

[
m−1∏
i=1

√
cici+1

]
√
cm, (9)

which is a property valid for real numbers ci > 0 ∀i. Ac-
cordingly, we have

ZG =
∑

S1,...,Sm

exp

(
µ

2KBT
S1

)
exp

(
− v(S1)

2KBT

)√
c1

×
m−1∏
i=1

{
exp

(
λ

KBT
SiSi+1

)
exp

[
µ(Si + Si+1)

2KBT

]
× exp

[
− v(Si)

2KBT
− v(Si+1)

2KBT

]√
cici+1

}
× exp

(
µ

2KBT
Sm

)
exp

(
− v(Sm)

2KBT

)√
cm, (10)

where we defined

ci =
sinh

(
f`0(Si)
KBT

)
f`0(Si)
KBT

`20(Si)

`2
. (11)

To further elaborate the partition function, we also con-
sider `0(−1) = `, v(−1) = 0, `0(+1) = χ`, and v(+1) =
∆E, where χ is the ratio between unfolded and folded
lengths, and ∆E is the energy jump between the wells
(see Fig.1). We can adopt the technique of the transfer
matrix [83] and then we can directly write

ZG = ~wTTm−1 ~w, (12)

where we have

~w =
√

2

( √
p√
q

)
, (13)

T = 2

(
pe

λ
KBT

√
pqe
− λ
KBT

√
pqe
− λ
KBT qe

λ
KBT

)
, (14)

with the parameters

p =
1

2
e
− µ
KBT

sinh(ξ)

ξ
, (15)

q =
1

2
e

µ
KBT χφ

sinh(χξ)

ξ
, (16)

and the coefficients

φ = e
− ∆E
KBT , (17)

ξ =
f`

KBT
, (18)

representing the Boltzmann factor calculated with ∆E
and the normalized force. Since we are studying the
thermodynamics of small systems (small values of m), we
need to calculate the exact value of the partition function
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FIG. 2. Average normalized extension (a) and average number of unfolded units (b) versus the applied normalized force for
a chain with Ising interactions under isotensional (Gibbs) conditions. The curves have been obtained with ∆E = 7KBT ,
m=4, χ = 2, µ = 0, and λ = 0,±1,±2KBT . The black dashed curves correspond to the chain without interactions (λ = 0),
the dark red (or dark gray) curves to ferromagnetic-like Ising interactions (λ > 0) and the orange (or light gray) curves to
antiferromagnetic-like interactions (λ < 0).

given in Eq.(12) and not its approximation evaluated for
a large value of m, corresponding to the thermodynamic
limit. To develop the calculation of ZG, we can simply
calculate the eigenvalues of T

λ1,2 =
1

x

[
(p+ q)±

√
(p+ q)

2 − 4pq (1− x4)

]
, (19)

where we also introduced x = e
− λ
KBT . We underline that

if λ1 corresponds to the sign ’+’ and λ2 to the sign ’-’,
then we get λ1 > λ2 > 0. Now, we need to explicitly
determine the matrix power Tm−1. Hence, we use the
matrix function theory [88], and we get after straightfor-
ward calculations

Tm−1 =
λm−1

1 − λm−1
2

λ1 − λ2
T +

λ1λ
m−1
2 − λ2λ

m−1
1

λ1 − λ2
I, (20)

where I is the 2×2 identity matrix. The partition function
then assumes the form

ZG =
λm−1

1 − λm−1
2

λ1 − λ2
α+

λ1λ
m−1
2 − λ2λ

m−1
1

λ1 − λ2
β, (21)

where α and β can be obtained through long but straight-
forward calculations as

α = ~wTT~w =
x
(
1 + x2

)
(λ1 + λ2)

2 − 2xλ1λ2

1 + x2
, (22)

β = ~wT ~w = x (λ1 + λ2) . (23)

Finally, the explicit exact form of the Gibbs partition
function is

ZG(f) =
x

1 + x2

[
λm1

(
1 + x2λ1 + λ2

λ1 − λ2

)
+λm2

(
1− x2λ1 + λ2

λ1 − λ2

)]
, (24)

written as function of x, λ1 and λ2. This is the most im-
portant result of this section and allows us to determine
the mechanical and configurational macroscopic behav-
ior of the whole chain under isotensional conditions. As
usual, we obtain the force-extension response as

〈r〉 = KBT
∂ logZG
∂f

= KBT
1

ZG

∂ZG
∂f

, (25)

where 〈r〉 represents the average value of the extension,
measured in the direction of the applied force. We also
note that the quantity Si+1

2 gives 0 for folded elements
and 1 for unfolded elements. Therefore, we have that
〈∑m

i=1
Si+1

2 〉 is the average number of unfolded elements.
On the other hand, the term

∑m
i=1 v(Si) of the Hamilto-

nian in Eq.(2) can be also written as
∑m
i=1

Si+1
2 ∆E and,

therefore, we have that
∑m
i=1

Si+1
2 = ∂HG

∂∆E . It follows

that 〈∑m
i=1

Si+1
2 〉 can be evaluated through the expres-

sion

〈
m∑
i=1

Si + 1

2
〉 =

∑
~S

∫
∂HG
∂∆E e

− HG
KBT d~r∑

~S

∫
e
− HG
KBT d~r

, (26)

where ~S = (S1, ..., Sm) and ~r = (~r1, ..., ~rm). Then,
Eq.(26) can be simplified to give

〈
m∑
i=1

Si + 1

2
〉 = −KBT

∂ logZG
∂∆E

= −KBT
1

ZG

∂ZG
∂∆E

,

(27)

which is the final expression for the average value of un-
folded domains. It is useful to introduce here the Gibbs
free energy of the system G = −KBT logZG. The above
expected values can be reformulated in terms of this ther-
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modynamic function as follows

〈r〉 = −∂G
∂f

, (28)

〈
m∑
i=1

Si + 1

2
〉 =

∂G
∂∆E

. (29)

The knowledge of ZG or G allows therefore the determi-
nation of both the average extension of the chain and
the average number of unfolded units as function of the
applied force and temperature.

An application of Eqs.(28) and (29) can be found in
Fig.2. First of all, we discuss the curves for λ = 0, i.e.
without Ising interactions: in the force-extension curve
(Fig.2a), we note a force plateau corresponding to the
synchronized unfolding of the m units. This behavior
is confirmed by the number of unfolded units (Fig.2b),
which shows a transition from 0 to m, at the same thresh-
old force as the previously mentioned plateau. This force
plateau is the classical result of force-spectroscopy ex-
periments conducted with soft devices [50–55]. The Ising
interactions modify this scenario as follows: if λ > 0, the
units are favored to be in the same state and the transi-
tion is therefore sharper than the one observed for λ = 0;
on the other hand, if λ < 0, it is easier to unfold the
first units and the response is therefore smoother. It is
interesting to note that, for strong antiferromagnetic-like
interactions, even with f = 0, we can have a positive
number of unfolded units because of the energetic com-
promise between λ and ∆E. Indeed, when we observe
unfolded units with f = 0, the cooperativity effect is
stronger than the energy jump between folded and un-
folded states. We finally remark that the curves in Fig.2
are valid for any value of ` and T . If, as an example,
we consider ` = 0.4nm and T = 300K, we get a plateau
force at f = 70pN, which is coherent, e.g., with the DNA
overstretching transition [48].

IV. TWO-STATE CHAIN WITH ISING
INTERACTIONS: THE HELMHOLTZ ENSEMBLE

We consider now the Helmholtz ensemble where the
last element of the chain is fixed at a given arbitrary
position (isometric condition). The Hamiltonian reads

HH = λ

m−1∑
i=1

SiSi+1 − µ
m∑
i=1

Si (30)

+

m∑
i=1

[
v(Si) +

1

2
k(Si) [‖~ri − ~ri−1‖ − `0(Si)]

2

]
,

where ~rm = ~r is fixed. The phase space is therefore
composed of ~ri ∀i = 1, ...,m − 1 and Si ∀i = 1, ...,m.

Hence, the partition function can be written as

ZH =
∑
S1

...
∑
Sm

∫
Q

exp

[
−HH({Si}, {~ri})

KBT

]
d~r1...d~rm−1

=
∑
S1

...
∑
Sm

exp

(
λ

KBT

m−1∑
i=1

SiSi+1

)

× exp

(
µ

KBT

m∑
i=1

Si

)
exp

(
− 1

KBT

m∑
i=1

v(Si)

)

×
∫
Q

exp

(
−1

2

m∑
i=1

k(Si)

KBT
[‖~ri − ~ri−1‖ − `0(Si)]

2

)
×d~r1...d~rm−1, (31)

where Q = R3(m−1). It is not difficult to realize that the
calculation of ZH is much more complicated than the
one performed for ZG. Indeed, in this case, we can not
apply a simple change of variables in order to factorize
the multi-dimensional integral. From the physical point
of view, this difficulty depends on the fact that the iso-
metric condition induces an effective interaction among
the units, fixing the sum of all vectors ~ri − ~ri−1 (for i
from 1 to m). Then, we have now the combination of
two forms of interaction among the units, the first be-
ing implicitly encoded in the isometric condition and the
second explicitly implemented through the Ising scheme.
An useful technique to cope with this difficulty is the
following. By comparing Eqs.(3) and (31), we deduce
that the two partition functions ZG and ZH are related
through a three-dimensional bilateral Laplace transform,
as follows

ZG(~f) =

∫
R3

ZH(~r) exp

(
~r · ~f
kBT

)
d~r, (32)

where, as usual, we neglect the non-influential multiplica-
tive constants in the partition functions. Moreover, by
considering the spherical symmetry of the problem, we
easily obtain the inverse relationship

ZH(r) =

∫ +∞

−∞
ZG(iη)

η

r
sin

ηr

KBT
dη, (33)

where ZG(iη) is the analytic continuation of the partition
function ZG(f) for the Gibbs ensemble, given in Eq.(24).
The integral in Eq.(33) can be simplified by the change

of variable y = η`
KBT

, leading to

ZH(r) =

∫ +∞

−∞
ZG

(
iy
KBT

`

)
y

r
sin

yr

`
dy, (34)

where, as before, we neglected the non-influential multi-
plicative constant. Coherently with our assumptions, the
variables p and q assume the form

p =
1

2
e
− µ
KBT

sin y

y
=
p̃

y
, (35)

q =
1

2
e

µ
KBT χφ

sinχy

y
=
q̃

y
. (36)
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Accordingly, the eigenvalues of the transfer matrix be-
come

λ1,2 =
1

xy

[
p̃+ q̃ ±

√
(p̃+ q̃)2 − 4p̃q̃(1− x4)

]
=
λ̃1,2

y
,

(37)

where p̃ = py, q̃ = qy, and λ̃1,2 = λ1,2y. Hence, the
analytic continuation of the Gibbs partition function be-
comes

ZG

(
iy
KBT

`

)
=

x

1 + x2

1

ym
(38)

×
[
λ̃m1

(
1 + x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)
+ λ̃m2

(
1− x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)]
,

where, importantly, λ̃1 and λ̃2 depend on y only through
sin y and sinχy. In particular, when χ is an integer (or
also a rational number), ZG is composed of a periodic
function of y divided by ym. So we have

ZG

(
iy
KBT

`

)
=

1

ym
P (y), (39)

where P (y) = P (y + Ly) for a given Ly and we have

P (y) =
x

1 + x2
(40)

×
[
λ̃m1

(
1 + x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)
+ λ̃m2

(
1− x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)]
.

If we consider integer values of χ, P (y) is periodic with
a period of Ly = 2π, and it can be developed in Fourier
series, as follows

P (y) =

+∞∑
k=−∞

Cke
iky, (41)

where

Ck =
1

2π

∫ 2π

0

P (y)e−ikydy. (42)

The values of Ck can be obtained numerically by calculat-
ing the integrals through classical numerical techniques
(we verified that the simple Simpson’s rule is sufficient to
obtain accurate results). Once determined the Ck coeffi-
cients, the Helmholtz partition function can be obtained
analytically as follows. To begin, we have from Eq.(33)

ZH(r) = −i
∫

Γ

ZG

(
iy
KBT

`

)
y

r
e
yr
` dy. (43)

Here, we used the Euler formula e
iry
` = cos ry` + i sin ry

` ,
and we observed that the integral with cos ry` is zero since

ZG
(
iyKBT`

)
is an even function of y. Moreover, since

the function to integrate is regular on the real axis and
holomorphic on a strip |Imy| < M for an arbitrary M ∈
R, we can use the path Γ shown in Fig.3. This will be
useful to elaborate the partition function integral and to

ε

Im y

Re yΓ

0

FIG. 3. Definition of the contour Γ on the complex plane with
an arbitrary radius ε.

write it in a form with singularities at the origin. Indeed,
we have

ZH(r) = −i
∫

Γ

P (y)

ym
y

r
e
iry
` dy (44)

= −i
∫

Γ

1

ym

+∞∑
k=−∞

Cke
iky y

r
e
iry
` dy

= −i
+∞∑

k=−∞

Ck
1

r

∫
Γ

1

ym−1
ei(k+ r

` )ydy, (45)

where the last integral is well defined since the path Γ ex-
cludes the singularity at the origin from the integration.
We know that an application of the residue theorem de-
livers [81]∫

Γ

eiay

ym
dy =

{
0 if a > 0,

−2πim am−1

(m−1)! if a ≤ 0.
(46)

Therefore,

ZH(r) = i

+∞∑
k=−∞

Ck
r

2πim−1

(
k + r

`

)m−2

(m− 2)!
1
(
−k − r

`

)

=
2πim

r

+∞∑
h=−∞

C−h

(
r
` − h

)m−2

(m− 2)!
1
(
h− r

`

)
, (47)

where 1(x) represents the Heaviside step function, de-
fined as 1(x) = 1 if x ≥ 0, and 1(x) = 0 if x < 0. Finally,

ZH(r) =
2πim

r(m− 2)!

+∞∑
h=−∞

(Ch)∗
(r
`
− h
)m−2

1
(
h− r

`

)
,

(48)

where we used the property stating that C−h = (Ch)∗,
which is valid for the Fourier coefficients of a real peri-
odic function. The result obtained in Eq.(48) is exact
for χ ∈ N, but it is based on the numerical computa-
tion of the coefficients Ck (semi-analytic procedure). The
limitation introduced by considering integer values for χ
does not restrict the physical interpretation of the re-
sults. Moreover, this procedure can be easily generalized
in order to consider arbitrary rational values for χ (of
course, the function P (y) remains periodic with χ ∈ Z).
Furthermore, in next sections, we also discuss additional
asymptotic results, which are not based on restrictions
over the values of the parameter χ.
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FIG. 4. Force-extension response (a), average number of un-
folded units (b) and Helmholtz free energy (c) for a chain
with Ising interactions under isometric (Helmholtz) condi-
tions. The curves have been obtained with ∆E = 5KBT ,
m=5, χ = 2, µ = 0, and λ = 0,±0.5,±1KBT . The black
dashed curves correspond to the chain without interactions
(λ = 0), the dark red (or dark gray) curves to ferromagnetic-
like Ising interactions (λ > 0) and the orange (or light gray)
curves to antiferromagnetic-like interactions (λ < 0).

It is important to remark that our semi-analytic pro-
cedure, leading to Eq.(48) and based on the numerical
implementation of Eq.(42), is very efficient for the de-
termination of the Helmholtz partition function. Indeed,
the direct numerical calculation of the original integral
in Eq.(34), grounded on the knowledge of the Gibbs par-
tition function given in Eq. (38), is a really hard – if not
impossible – task since the integrand function is decreas-
ing (as 1/ym−1) and oscillating for any r in the whole
interval between 0 and mχ`. Since we need the quantity
logZH(r) to analyze the system behavior, all the oscil-
lations of the integrand function (also for large values of
|y|) play an important role in defining the result. For
this reason, our procedure leads to very accurate results,
being based on the analytic determination of the integral
over Γ and on the numerical evaluation of the integrals
over (0, 2π) defined in Eq.(42), which are much more sta-
ble than the one defined in Eq.(34).

By mean of ZH given in Eq.(48), we can find the force-
extension response through the expression

〈f〉 = −KBT
∂

∂r
logZH(r) =

∂F
∂r

, (49)

and the average value of unfolded domains with the re-
lation

〈
m∑
i=1

Si + 1

2
〉 = −KBT

∂

∂∆E
logZH(r) =

∂F
∂∆E

, (50)

where we introduced the Helmholtz free energy of the
system F = −KBT logZH . An example of application
can be found in Fig.4, where we show the force exten-
sion response, the average number of unfolded units and
the Helmholtz free energy for a chain stretched under
isometric conditions and with a variable Ising interac-
tion coefficient. First of all, concerning the case with
λ = 0, we observe that the force extension curve is com-
posed of a number of peaks corresponding to the non-
synchronized (sequential) unfolding of the units. This is
confirmed by the step-wise curve representing the aver-
age number of unfolded units versus the chain extension.
Each step corresponds to the unfolding of a unit induced
by the increasing extension of the chain. This behavior
agrees with previous theoretical and experimental results
[54–61]. This scenario is modified by the introduction of
the Ising interactions. If λ > 0, the unfolding of the
first units requires a larger force peak since the units are
favored to remain in the initial folded state. On the con-
trary, the unfolding of the last units requires a smaller
force since most of the units are already unfolded and
they prefer to be in the same state as the majority. This
interpretation equally holds for the plot of the average
value of unfolded units, where we can also note that the
antiferromagnetic-like behavior may induce the unfolding
of some units also without the applied force. The origin
of the non-synchronized transitions can be highlighted in
the Helmholtz free energy curves, characterized by a se-
ries of cusps able to induce the force peaks in the force
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FIG. 5. Spinoidal phase diagram showing the end-points of
the spinoidal intervals (with ∂f/∂r < 0) versus the temper-
ature of the system (T > T0). Different Ising interaction
coefficients λ have been considered. Gray arrows indicate the
increasing values of λ. The curves have been obtained with
∆E = 5KBT0, m = 5, χ = 2 and µ = 0. The parame-
ters ` and T0 are arbitrary (typical values are ` = 1nm and
T0 = 300K).

extension curve. To conclude, the Ising interactions in-
duce a specific cooperativity, which can be detected in the
modification of the hierarchy of forces in the sawtooth-
like response, as recently observed in force spectroscopy
experiments of proteins (e.g., in Filamin A) [76].

A form of criticality can be noticed for the Helmholtz
response of the bistable Ising chain. To do this, in the
force-extension curves shown in Fig.4a, we can identify
the spinoidal regions, characterized by a negative slope
or, equivalently, by a negative differential stiffness. It
means that, for each force peak observed in Fig.4a, we
have a spinoidal interval with ∂f/∂r < 0. It is inter-
esting to study the evolution of these spinoidal regions
in terms of the temperature. In general, we can say
that the system is or not in a spinoidal phase depend-
ing on values of r and T . We can therefore determine a
sort of phase diagram, as shown in Fig.5, where the end-
points of each spinoidal interval (on the extension axis)
are shown versus the temperature. While the left end-
point corresponds to the maximum of the force peak, the
right end-point corresponds to the following minimum.
These curves have been represented for different values
of the interaction coefficient λ to explore the effects of the
Ising scheme on this critical behavior. Importantly, we
can observe that each spinoidal interval disappears for a
given temperature, which is a critical temperature for the
system. Hence, for a given chain composed of m units,
there are m different critical temperatures, one for each
unfolding process. We remark that, for a system with-

out Ising interactions, the critical temperature is larger
for the last unfolded units. This contrast among critical
temperatures is further amplified for antiferromagnetic-
like systems. On the other hand, a given intensity of
ferromagnetic-like interactions is able to equilibrate the
critical temperatures among the unfolding processes (see,
e.g., the curves in Fig.5 corresponding to λ = +1KBT0).
This point can be explained by observing that λ > 0
favors the simultaneous unfolding of the units, thus in-
ducing a similar behavior of these ones. We can say that
the ferromagnetic-like interactions induce a resistance to
fluctuations within the system. It means that all unfold-
ing processes do not lose their snap-through response for
a given range of temperature. The bistability resistant
to fluctuations is an important concept for micro-and
nano-mechanical systems with non-convex elastic energy,
where one attempts to sustain the bistability at possibly
large temperatures [2]. We remark that the observation
of a negative differential stiffness for subcritical tempera-
tures and of a positive differential stiffness for supercrit-
ical temperatures can be interpreted by stating that the
system behaves as a metamaterial [79, 80]. In a follow-
ing section, we will also explore the effect of the intrinsic
stiffness of the units on this critical behavior.

V. HELMHOLTZ RESPONSE UNDER WEAK
ISING INTERACTIONS

We investigate in more detail the particular case with
weak Ising interaction, i.e. |λ| � KBT , by consider-
ing both ferromagnetic-like and antiferromagnetic-like in-
teractions. Under this condition, we will introduce an
asymptotic development yielding a closed form expres-
sion of ZH , not needing the numerical calculation of the
coefficients Ch. To this aim, we observe that ZH can
be written as in Eq.(34), and therefore we can develop
ZG
(
iyKBT`

)
in Taylor series with respect to the param-

eter λ. We easily find that

ZG

(
iy
KBT

`

)
=

[
1 +

λ

KBT
(m− 1)

]
(a+ b)m

− 4λ

KBT
(m− 1)ab(a+ b)m−2 +O(λ2). (51)

The first order approximation in Eq.(51) (which is valid
for |λ| � KBT ) can be easily integrated to obtain the
Helmholtz partition function. Here, we defined

a =
sin y

y
, (52)

b = χφ
sinχy

y
. (53)

In this section, we consider µ = 0 to simplify the following
calculations. We have to determine

ZH(r) = −i
∫

Γ

ZG

(
iy
KBT

`

)
y

r
ei
ry
` dy (54)

=

[
1 +

λ

KBT
(m− 1)

]
I1 −

4λ

KBT
(m− 1)I2,
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FIG. 6. Force-extension response (a-c) and average number of unfolded units (b-d) for weak Ising interactions with
ferromagnetic-like behavior (a-b) and antiferromagnetic-like behavior (c-d). In each panel, the response without interactions
(λ = 0, black dashed curves) is shown together with the exact result (orange or light gray curves) obtained through Eq.(48) and
the first order approximation (dark red or dark gray curves) given in Eq.(61). The curves have been obtained with ∆E = 5KBT ,
m = 5, χ = 2, µ = 0 and λ = ±0.3KBT .

where we used the approximation of ZG given in Eq.(51).
We firstly calculate the quantity I1, as follows

I1 = −i
∫

Γ

(a+ b)m
y

r
ei
ry
` dy (55)

= −i
∫

Γ

m∑
k=0

(
m

k

)(
sin y

y

)m−k (
χφ

sinχy

y

)k
y

r
ei
ry
` dy.

Since

sinm−k y =
1

(2i)m−k

m−k∑
p=0

(
m− k
p

)
(−1)peiy(m−k−2p),

sink(χy) =
1

(2i)k

k∑
q=0

(
k

q

)
(−1)qeiχy(k−2q), (56)

we find

I1 = −i
∫

Γ

1

ym

m∑
k=0

m−k∑
p=0

k∑
q=0

(
m

k

)(
m− k
p

)(
k

q

)
1

(2i)m

×(−1)p+q (χφ)
k
eiy(m−k−2p+χk−2qχ) y

r
ei
ry
`

=
1

2mim+1

1

r

m∑
k=0

m−k∑
p=0

k∑
q=0

(
m

k

)(
m− k
p

)(
k

q

)

×(−1)p+q (χφ)
k
∫

Γ

eiy(m−k−2p+χk−2qχ)

ym−1
dy. (57)

Now, we use the result in Eq.(46) and we obtain

I1 =
π

2m−1

1

r(m− 2)!

m∑
k=0

m−k∑
p=0

k∑
q=0

(
m

k

)(
m− k
p

)(
k

q

)
×(−1)p+q (χφ)

k
(−Λ)

m−2
1(Λ), (58)
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where −Λ = m − k − 2p + χk − 2χq + r
` . Similarly, we

calculate the integral I2 given by

I2 = −i
∫

Γ

ab(a+ b)m−2 y

r
ei
ry
` dy

= −i
∫

Γ

m−2∑
k=0

(
m− 2

k

)
bk+1am−1−k y

r
ei
ry
` dy

= −i
m−2∑
k=0

k+1∑
q=0

m−1−k∑
p=0

(
m− 2

k

)(
k + 1

q

)(
m− 1− k

p

)
×
∫

Γ

y

r
ei
ry
` (−1)p+q

1

(2iy)m
(χφ)

k+1
eiχy(k+1−q)

×e−iχyqeiy(m−1−k−p)e−iypdy, (59)

and, by using again the integral in Eq.(46), we eventually
obtain

I2 =
π

2m−1

1

r(m− 2)!

m−2∑
k=0

k+1∑
q=0

m−1−k∑
p=0

(
m− 2

k

)(
k + 1

q

)
×
(
m− 1− k

p

)
(−1)p+q (χφ)

k+1
(−Λ0)

m−2
1 (Λ0) ,

(60)

where −Λ0 = m−1−k−2p−2χq+χk+χ+ r
` . Finally,

the partition function reads

ZH(r) =
π

2m−1r(m− 2)!

[
1 +

λ

KBT
(m− 1)

]
×

m∑
k=0

m−k∑
p=0

k∑
q=0

(
m

k

)(
m− k
p

)(
k

q

)
×(−1)p+q (χφ)

k
(−Λ)

m−2
1(Λ)

− π

2m−1r(m− 2)!

4λ

KBT
(m− 1)

×
m−2∑
k=0

k+1∑
q=0

m−1−k∑
p=0

(
m− 2

k

)(
k + 1

q

)(
m− 1− k

p

)
×(−1)p+q (χφ)

k+1
(−Λ0)

m−2
1(Λ0). (61)

This is the final form of the Helmholtz partition func-
tion, calculated under the hypothesis of weak Ising in-
teraction. In this expression, there are no limitations
concerning the parameter χ. We note that, for λ = 0,
we obtain the partition function of the system without
Ising interactions, discussed in recent literature [81]. In
Fig.6, one can find some results for λ = 0, λ = +0.3KBT
and λ = −0.3KBT . We plotted the force-extension
curves and the average number of unfolded units for
both ferromagnetic-like and antiferromagnetic-like inter-
actions. In each case, we compared the approximated re-
sult stated in Eq.(61) (dark red or dark gray curves), the
exact result given in Eq.(48) (orange or light gray curves),
and the response without Ising interactions (black dashed
curves). We note a good agreement between approxi-
mated and exact results both for λ < 0 and λ > 0. Con-
cerning the interpretation of the curves, the discussion

reported at the end of Section IV remains valid for all
results of Fig.6.

VI. HELMHOLTZ RESPONSE UNDER
STRONG ISING FERROMAGNETIC-LIKE

INTERACTIONS

We introduce here an asymptotic development con-
cerning the case of a strong Ising ferromagnetic-like in-

teraction. If λ → +∞, then x = e
− λ
KBT → 0, and it is

not difficult to obtain the asymptotic expression for the
analytic continuation of ZG. The result is

ZG

(
iy
KBT

`

)
= exp

[
λ(m− 1)

KBT

]
(62)

×
{[

sin(y)

y

]m
+

[
χφ

sin(χy)

y

]m}
.

Therefore, we easily determine the Helmholtz partition
function, as follows

ZH(r) = −i
∫

Γ

ZG

(
iy
KBT

`

)
y

r
ei
ry
` dy (63)

= −i
∫

Γ

exp

[
λ(m− 1)

KBT

]
1

(2i)m

m∑
k=0

(
m

k

)
(−1)k

1

r

×
[
eiy(m−2k) + (χφ)

m
eiχy(m−2k)

] 1

ym−1
ei
ry
` dy.

To conclude the calculation, we can use the integral in
Eq.(46) and we get the final result

ZH(r)=
π

2m−1(m− 2)!r
exp

[
λ(m− 1)

KBT

] m∑
k=0

(
m

k

)
(−1)k

×
[(
m− 2k +

r

`

)m−2

1
(

2k −m− r

`

)
+ (χφ)

m

×
(
χm− 2χk +

r

`

)m−2

1
(

2χk − χm− r

`

)]
, (64)

which is valid for strong ferromagnetic-like Ising inter-
actions. An application of this expression is shown in
Fig.7. In particular, we compare the approximated result
in Eq.(64) (yellow or light gray curve) with the exact re-
sponse obtained from Eq.(48) for λ = 0.5, 1, 1.5, ..., 7KBT
(red or gray curves) and with the response without Ising
interactions (black dashed curve). In Fig.7, one can find
the force-extention curves, the average number of un-
folded units and the Helmholtz free energy. It is interest-
ing to discuss the evolution of the overall behavior of the
system with an increasing interaction coefficient. Indeed,
as λ is increased, the units are progressively favored to
be in the same state, and therefore there is an increasing
average number of units which unfolds at r = m`. It
means that the number of unfolding processes at r = m`
is a growing function of the Ising coefficient λ, going from
1 with λ = 0 to m with λ approaching infinity. This can
be seen in Fig.7b, where this process is represented by
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FIG. 7. Force-extension response (a), average number of un-
folded units (b) and Helmholtz free energy (c) for a chain with
strong ferromagnetic-like interactions. In each panel, the re-
sponse without interactions (λ = 0, black dashed curves) is
shown together with the exact results for an increasing fer-
romagnetic interaction (λ = 0.5jKBT∀j = 1, ..., 14, red or
gray curves) and the asymptotic expansion (λ → ∞, yellow
or light gray curves) given in Eq.(64). The curves have been
obtained with ∆E = 5KBT , m = 5, χ = 2 and µ = 0.

the series of red curves (or gray) with increasing λ, and
it ends with the yellow (or light gray) curve obtained
through Eq.(64). The latter means that all units un-
fold at the same time at r = m` when λ → ∞, and
this behavior is perfectly caught by the asymptotic de-
velopment. Accordingly, the peaks in the force-extension
curve are strongly modified by increasing λ: while the
first peak becomes more and more pronounced, the oth-
ers are progressively reduced, as shown in Fig.7a. As a
matter of fact, the first peak corresponds to the simulta-
neous unfolding of the units when λ is very large. Hence,
in the limiting case of λ→∞, the force-extension curve
is composed of only one peak (yellow or light gray curve),
as one can see in Fig.7a. Of course, the origin of peaks
modification in the force-extension curve and of the steps
structure in the average number of unfolded units can be
observed in the plot of the Helmholtz free energy, shown
in in Fig.7c. Here, we can see the evolution of the typ-
ical cusps with the increasing Ising coefficient. As an
example, the collapse of all the force peaks into a single
unfolding event explains the tandem repeats behavior in
red cell spectrin, where two units unfold simultaneously
because of a strong cooperativity [75].

VII. HELMHOLTZ RESPONSE UNDER
STRONG ISING ANTIFERROMAGNETIC-LIKE

INTERACTIONS

We discuss here the development of the theory un-
der strong Ising antiferromagnetic-like interactions. As
before, we can develop the analytic continuation of the
Gibbs partition function in a power series of λ → −∞,

i.e. for x = e
− λ
KBT → +∞. The result can be eventually

obtained as

ZG

(
iy
KBT

`

)
= xm−1

{
P
m
2 [1 + (−1)m]

+
1

2
P
m−1

2 S [1− (−1)m]

}
(65)

=

{
xm−1P

m
2 if m is even,

xm−1SP
m−1

2 if m is odd,

where

S =
sin(y)

y
+ χφ

sin(χy)

y
, (66)

P =
sin(y)

y
χφ

sin(χy)

y
. (67)

We will develop the asymptotic theory for both the cases
with m odd and even. We first elaborate the Helmholtz
partition function for m odd

ZH(r) = −i
∫

Γ

ZG

(
iy
KBT

`

)
y

r
ei
ry
` dy (68)

= −ix
m−1

r
(χφ)

m−1
2

∫
Γ

[
sin

m+1
2 (y) sin

m−1
2 (χy)

+χφ sin
m−1

2 (y) sin
m+1

2 (χy)
] 1

ym−1
ei
ry
` dy.
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Here, we use the relation

sink y =
1

(2i)k

k∑
p=0

(
k

p

)
(−1)peiy(k−2p), (69)

and we get

ZH(r) = −ix
m−1

r
(χφ)

m−1
2

∫
Γ

1

ym−1
ei
ry
` (70)

×

 1

(2i)
m+1

2

m+1
2∑

p=0

(m+1
2

p

)
(−1)peiy(

m+1
2 −2p)

× 1

(2i)
m−1

2

m−1
2∑

q=0

(m−1
2

q

)
(−1)qeiyχ(m−1

2 −2q)

+χφ
1

(2i)
m−1

2

m−1
2∑

q=0

(m−1
2

q

)
(−1)qeiy(

m−1
2 −2q)

× 1

(2i)
m+1

2

m+1
2∑

p=0

(m+1
2

p

)
(−1)peiyχ(m+1

2 −2p)

dy.

Then, straightforward calculations deliver

ZH(r) = − ix
m−1

r(2i)m
(χφ)

m−1
2

m+1
2∑

p=0

m−1
2∑

q=0

(m+1
2

p

)(m−1
2

q

)
(71)

×(−1)p+q
[∫

Γ

e−iyΛa

ym−1
dy + χφ

∫
Γ

e−iyΛb

ym−1
dy

]
,

where

Λa = 2p− m+ 1

2
− χm− 1

2
+ 2χq − r

`
, (72)

Λb = 2q − m− 1

2
− χm+ 1

2
+ 2χp− r

`
. (73)

Hence, by using Eq.(46), we get the final result

ZH(r) =
2π

2m

exp
[
− λ
KBT

(m− 1)
]

(m− 2)!

1

r
(χφ)

m−1
2 (74)

×
m+1

2∑
p=0

m−1
2∑

q=0

(m+1
2

p

)(m−1
2

q

)
(−1)p+q

×
[
(−Λa)

m−2
1 (Λa) + χφ (−Λb)

m−2
1 (Λb)

]
,

which is valid for m odd.
We calculate now the same quantity for m even

ZH(r) = −i
∫

Γ

ZG

(
iy
KBT

`

)
y

r
ei
ry
` dy (75)

= −i
∫

Γ

xm−1

[
sin(y)

y
χφ

sin(χy)

y

]m
2 y

r
ei
ry
` dy

= − ix
m−1

r(2i)m
(χφ)

m
2

m
2∑

p=0

m
2∑

q=0

(m
2

p

)(m
2

q

)
(−1)p+q

×
∫

Γ

1

ym−1
exp [−iyΛc] dy

where Λc = 2p − m
2 + 2χq − χm2 − r

` . Finally, by using
again Eq.(46), we get

ZH(r) =
2π

2m

exp
[
− λ
KBT

(m− 1)
]

(m− 2)!

1

r
(χφ)

m
2 (76)

×
m
2∑

p=0

m
2∑

q=0

(m
2

p

)(m
2

q

)
(−1)p+q (−Λc)

m−2
1 (Λc) ,

which is valid for m even. The solutions given in Eqs.(74)
and (76) represent the most important result of this sec-
tion and must be discussed as follows.

An example of application of Eq.(74) for m odd can
be found in Fig.8, where force-extension curves, average
number of unfolded units and Helmholtz free energy are
represented for several values of λ. When we consider an
increasing value of |λ| (λ < 0), we observe that the first
force peaks tend to disappear while the last ones become
more and more pronounced (Fig.8a). This is coherent
with the assumption that, in an antiferromagnetic-like
system, the favored states are alternatively folded and
unfolded. Accordingly, with an increasing value of |λ|
(λ < 0), we have an increasing number of unfolded units
in the initial configuration with r = 0. Clearly, the max-
imum value of this number of unfolded units with r = 0
is (m− 1)/2 and not (m+ 1)/2 since the unfolded units
are costly from the energetic point of view and the sys-
tem chooses the configuration with the smallest number
of unfolded units between (m−1)/2 and (m+1)/2. This
overall interpretation of Fig.8 must be improved to better
understand the yellow (or light gray) curves correspond-
ing to λ → ∞. So, if we look at Eq.(74), we note that
ZH(r) is different from 0 when Λa > 0 or Λb > 0. It
means

2p− m+ 1

2
− χm− 1

2
+ 2χq − r

`
> 0, (77)

or

2q − m− 1

2
− χm+ 1

2
+ 2χp− r

`
> 0. (78)

Now, the maximum values of p and q are m+1
2 and m−1

2 ,
respectively. Hence, we have

r

`
< 2

m+ 1

2
− m+ 1

2
− χm− 1

2
+ 2χ

m− 1

2
(79)

or

r

`
< 2

m− 1

2
− m− 1

2
− χm+ 1

2
+ 2χ

m+ 1

2
. (80)

Equivalently,

r

`
<
m+ 1

2
+ χ

m− 1

2
< mχ (81)

or

r

`
<
m− 1

2
+ χ

m+ 1

2
< mχ, (82)

where mχ is the upper limit of r
` , attained when all

elements are unfolded. It means that the total length
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FIG. 8. Force-extension response (a), average number of un-
folded units (b) and Helmholtz free energy (c) for a chain
with strong antiferromagnetic-like interactions and an odd
number of units. In each panel, the response without inter-
actions (λ = 0, black dashed curve) is shown together with
the exact results for an increasing antiferromagnetic interac-
tion (λ = −0.25jKBT ∀j = 1, ..., 6, red or gray curves) and
the asymptotic expansion (λ → −∞, yellow or light gray
curve) given in Eq.(74). The curves have been obtained with
∆E = 5KBT , m = 5, χ = 2 and µ = 0.
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FIG. 9. Force-extension response (a), average number of un-
folded units (b) and Helmholtz free energy (c) for a chain
with strong antiferromagnetic-like interactions and an even
number of units. In each panel, the response without inter-
actions (λ = 0, black dashed curve) is shown together with
the exact results for an increasing antiferromagnetic interac-
tion (λ = −0.25jKBT ∀j = 1, ..., 6, red or gray curves) and
the asymptotic expansion (λ → −∞, yellow or light gray
curve) given in Eq.(76). The curves have been obtained with
∆E = 5KBT , m = 4, χ = 2 and µ = 0.
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of the unit can not exceed m−1
2 + χm+1

2 (which is the
highest value between Eqs.(81) and (82)). The value
m+1

2 + χm−1
2 corresponds to m+1

2 folded domains and
m−1

2 unfolded domains: this is the starting configuration
for the strong antiferromagnetic system, which can be

represented as ~S = {↑↓↑↓↑} for m = 5, where {↑} repre-
sents a folded unit and {↓} an unfolded one. This config-
uration is stable with r = 0. When we apply a sufficient
extension, the unfolded domains become more stable, and
we have an inversion in the alternating disposition lead-

ing to ~S = {↓↑↓↑↓}. This transition can be observed
through the single peak in the force-extension yellow (or
light gray) curve (Fig.8a) and in the shift from 2 to 3
of the average number of unfolded units (yellow or light
gray curve in Fig.8b). As a matter of fact, in this case,
we can not unfold all elements because of the hypothesis
of large (ideally infinite) antiferromagnetism (λ→ −∞).
For this reason, ZH(r) is defined for r < m−1

2 `+ m+1
2 χ`

and not for r < mχ`, as in previous cases.

A similar discussion holds for the case with m even.
An example of application of Eq.(76) is shown in Fig.9.
While the red (or gray) curves with an increasing value
of |λ| (λ < 0) are similar to those shown in Fig.8, the
yellow (or light gray) curves representing the asymptotic
behavior for λ → −∞ are different and require some
comments. In this case, ZH(r) is different from 0 if
Λc > 0, or if 2p − m

2 + 2χq − χm2 − r
` > 0. Now, p

and q assume the same maximum value m
2 and there-

fore we have r
` < 2m2 − m

2 + 2χm2 − χm2 or equivalently,
r
` <

m
2 +χm2 . It is evident that

(
m
2 + χm2

)
` is the length

of the chain with m
2 folded domains and m

2 unfolded do-
mains. So, if λ→ −∞, the number of unfolded domains
is a constant equal to m

2 and ZH(r) is defined only for

r <
(
m
2 + χm2

)
`. In this case, we have no inversion of

the configuration, which corresponds to ~S = {↓↑↓↑} or

to ~S = {↑↓↑↓} for λ → −∞ and m = 4. These two
configuration are indeed completely equivalent from the
energetic point of view and they are therefore indistin-
guishable. As a conclusion, if λ → −∞, the force ex-
tension curve is a monotonically increasing function of r
(without peaks), the average number of unfolded units is
a constant equal to m/2 and the Helmholtz free energy
is without cusps (yellow or light gray curves in Fig.9).

VIII. CHAIN WITH ISING INTERACTIONS
AND EXTENSIBLE UNITS

We consider now a chain of bistable units character-
ized by a finite elastic constant. We start the analysis
by considering the Gibbs ensemble defined through the
extended Hamiltonian given in Eq.(2). Here, for the sake
of simplicity, we suppose that the folded and unfolded
basins of the potential energy shown in Fig.1 exhibit the
same elastic constant k(−1) = k(+1) = κ. In this case,
it is not difficult to prove that Eq.(7) of Section III can

be substituted by the approximated result

I = exp

(
f2

2κKBT

) m∏
i=1

sinh
(
f`0(Si)
KBT

)
f`0(Si)
KBT

`20(Si)

`2
, (83)

which can be easily proved by calculating the exact solu-
tion of Eq.(5) and by considering its approximation for
finite relatively high values of κ. The details of this cal-
culation can be found in recent literature [82]. Typical
values of κ for real macromolecules are compatible with
such approximations [89]. Coherently with Eq.(83), the
Gibbs partition function can be obtained as

ZG(f) =
x

1 + x2
exp

(
mαξ2

2

)
(84)

×
[
λm1

(
1 + x2λ1 + λ2

λ1 − λ2

)
+ λm2

(
1− x2λ1 + λ2

λ1 − λ2

)]
,

where, with respect to Eq.(24) of Section III, we added
an exponential term, which is quadratic in the normal-
ized force ξ = f`

KBT
and defined through a coefficient

α = KBT
κ`2 . This latter represents the ratio between the

thermal energy and the elastic one, thus measuring the
compromise between the enthalpic contribution and fluc-
tuations. The parameters x, λ1 and λ2 remain defined
as in Section III.

Concerning the Helmholtz ensemble, the system is de-
scribed by the Hamiltonian in Eq.(31), where, as before,
we assume that k(−1) = k(+1) = κ. The calculation
of the corresponding partition function is based on the
Laplace transform relation between the Gibbs and the
Helmholtz ensembles, summed up in Eq.(34). If we con-
sider integer values for the parameter χ (ratio between
unfolded and folded length), the analytic continuation of
the Gibbs partition function assumes the form

ZG

(
iy
KBT

`

)
=

1

ym
exp

(
−mαy

2

2

)
P (y), (85)

where P (y) is the periodic function defined in Eq.(40)
and described by the Fourier coefficients given in Eq.(42).
The Helmholtz partition function can be finally deter-
mined as follows

ZH(r) = −i
∫

Γ

ZG

(
iy
KBT

`

)
y

r
e
yr
` dy

= −i
∫

Γ

P (y)

ym
y

r
e−

mαy2

2 e
iry
` dy

= −i
+∞∑

k=−∞

Ck
1

r

∫
Γ

1

ym−1
e−

mαy2

2 ei(k+ r
` )ydy

= −i
+∞∑

k=−∞

Ck
1

r
Jm−1

(
k +

r

`
,
mα

2

)
(86)

where we used the Fourier development of the function
P (y) in order to perform the calculation. To complete
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FIG. 10. Force-extension response for a chain of interacting units with finite intrinsic stiffness κ. We used the values κ`2 =
100KBT (a), and κ`2 = 200KBT (b). In each panel, the response without interactions (λ = 0, black curves) is shown together
with the results with λ = +1KBT (dark red or dark gray curves) and λ = −1KBT (orange or light gray curves). The Gibbs
and Helmholtz responses correspond to dashed and solid lines, respectively. The curves have been obtained with ∆E = 5KBT ,
m = 5, χ = 2 and µ = 0.

the task, we have to calculate a sequence of integral of
the form

JN (a, b) =

∫
Γ

eiaye−by
2 dy

yN
, (87)

where a ∈ R, b > 0, N ∈ N and the path Γ is given in
Fig.3. An application of the complex variable method
allows us to obtain the closed form expression for this
integral, as follows [82]

JN (a, b) =
√
π

{
b
N−1

2 e−
a2

4b (2i)NH−N

(
− a

2
√
b

)
(88)

+1(−a)

N−1∑
h=0

(ia)N−1−h(−4b)h/2

ih!(N − 1− h)!
Γ

(
h+ 1

2

)[
1 + (−1)h

]}
,

where 1(x) represents the Heaviside step function, and
H−N (z) are the generalization of the Hermite polynomi-
als, obtained by considering negative indices. They can
be defined as [82, 90]

H−N (z) =
1

(2i)N
√
π

∫ +∞

−∞

e−η
2

dη

(η − iz)N , (89)

and they can be obtained recursively through the follow-
ing formula [82, 90]

H−(N+1)(z) =
1

2N
H−(N−1)(z)−

z

N
H−N (z), (90)

initialized with H0(z) = 1 ∀z ∈ R and H−1(z) =√
π

2 ez
2

[1− erf (z)] for z > 0 and H−1(z) odd, i.e.
H−1(−z) = −H−1(z) [82, 90]. This recursive law al-
lows us to affirm that H−N (z) is odd if N is odd and

that H−N (z) is even if N is even. We underline that
the Hermite elements with N < 0 are not polynomials,
contrarily to the classical Hermite polynomials, defined
with N > 0. Many other interesting properties of this
sequence of functions can be found in Ref.[90].

An application of the Gibbs and Helmholtz partition
functions, stated in Eqs.(84) and (86), respectively, is
presented in Fig.10, where we show the force-extension
curves for two values of the constant κ, and for three
values of the coefficient λ. Firstly, we note that the con-
stant slope of the final part of the force-extension curves
represents the finite effective stiffness of the chain, af-
ter the unfolding processes. Moreover, it is interesting
to remark that the softer systems exhibit a sensibly re-
duced force peaks in the Helmholtz response. This point
can be also noticed by drawing a comparison between
Fig.4a, obtained for κ → ∞, and Fig.10, correspond-
ing to finite values of κ. A similar phenomenon can be
also observed in the phase diagram showing the critical
behavior of the spinoidal response of the system. In-
deed, we plotted in Fig.11 four phase diagrams corre-
sponding to four different values of the elastic constant.
We observe that the critical temperature of the unfold-
ing processes is an increasing function of κ, similarly to
the previously discussed force peaks of the Helmholtz re-
sponse. Besides, as already seen in Fig.5 concerning the
case with κ→∞, antiferromagnetic-like interactions am-
plify the dissimilarity among the critical temperatures,
while ferromagnetic-like interactions reduce this contrast,
eventually producing a more uniform response of the un-
folding processes.
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FIG. 11. Spinoidal phase diagrams obtained for four differ-
ent values of the intrinsic stiffness κ of the units (defined by
κ`2 = 100, 133, 166, 200KBT0). They show the end-points of
the spinoidal intervals versus the temperature of the system
(T > T0). The curves have been obtained with ∆E = 5KBT0,
m = 5, χ = 2, µ = 0 and five different values of the Ising inter-
action coefficient λ = 0,±0.5,±1KBT0. Gray arrows indicate
increasing values of λ. The parameters ` and T0 are arbitrary
(typical values are ` = 1nm and T0 = 300K).

IX. CONCLUSIONS

We investigated the properties of a chain of two-state
units coupled through an Ising interaction scheme, pro-
viding a paradigmatic description of the effects of bista-
bility and cooperativity in biological and artificial micro-
and nano-systems. Accordingly, we studied our model by
means of the statistical mechanics of small systems, i.e.
far from the thermodynamic limit. It means that, for a
limited number m of units of the chain, the Gibbs and
Helmholtz statistical ensembles are not equivalent and we
ultimately obtain two different isotensional and isometric
responses, well recognized, e.g., in force-spectroscopy ex-

periments. Some of the most interesting findings of this
paper concern the influence of the cooperativity, mea-
sured by the Ising coefficient λ, on the mechanical behav-
ior and on the configurational features of the system. In
particular, we analyzed the force-extension curve under
isotensional conditions, obtaining a sharper or smoother
transition depending on λ, and under isometric condi-
tions, getting a variable hierarchy of force peaks as func-
tion of the cooperativity. Also, the unfolding processes of
the units have been characterized by plotting the num-
ber of unfolded units versus the mechanical quantity (f
or r) inducing the chain stretching. This point allows
the interpretation of the unfolding processes as synchro-
nized or simultaneous under isotensional conditions, and
as non-synchronized or sequential under isometric condi-
tions. This result underlines the convenience of the spin
variables to investigate the configurational properties of
the system.

From the methodological point of view, we under-
line that the spin variables approach is useful to elabo-
rate semi-analytic or closed-form expressions for the rele-
vant observables. More specifically, to solve the problem
within the Gibbs ensemble, we coupled this spin variables
approach with the classic transfer matrix technique to
take account of the interactions. On the other hand, to
overcome the complexity induced by the isometric con-
ditions, we made use of the Laplace transform between
Gibbs and Helmholtz partition functions. This expedi-
ent consents to study the Helmholtz ensemble response
by solving a given integral, based on the analytic contin-
uation of the Gibbs partition function on the imaginary
axis. In addition, we proposed explicit asymptotic re-
sults describing the behavior of the system under weak
and strong Ising interactions (for both the ferromagnetic-
like and the antiferromagnetic-like schemes).

To give a complete picture of the equilibrium behavior
of the system, we also investigated a form of critical-
ity exhibited by the system. In particular, our analysis
highlights the critical behavior of the spinoidal regions,
characterizing the part of the isometric response show-
ing a negative differential elastic stiffness. We prove that
each unfolding process exhibits a critical temperature de-
fined by stating that we measure a negative differential
stiffness for subcritical temperatures and a positive dif-
ferential stiffness for supercritical temperatures. This be-
havior is influenced by the cooperativity, which has the
capability to make the critical temperatures of the un-
folding processes more uniform. We can therefore state
that a positive cooperativity increases the resistance to
fluctuations, making the spinoidal intervals equally sta-
ble to temperature variations.

While being a paradigmatic model for the understand-
ing of several phenomena, our chain with Ising interac-
tions should be improved to better represent more real-
istic situations. One drawback concerns the uniformity
of all parameters defining the properties of the units. In-
deed, in order to correctly model the actual mechanical
behavior of heterogeneous structures, such as proteins,
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we would have the possibility to freely choose these pa-
rameters for each unit. Nevertheless, this heterogeneity
consists in a form of quenched disorder, which is much
more complicated to be taken into account by classical
statistical mechanics methods. However, it should be im-
portant to introduce this point since it could allow to de-
termine the full unfolding pathway, which depends on the
system microstructure. As an example, this is directly
related to the biological function of a protein. Another
improvement concerns the dynamics of the unfolding pro-
cesses, which should be studied in the context of the out-
of-equilibrium statistical mechanics. It is worth noting
here that the spin variable approach can be used for de-
coupling two kinds of characteristic times: (i) the purely

mechanical times induced by the stiffness of each basin
of the potential energy, and (ii) the times induced by the
transition rates between the basins, which depend on the
energy barrier as classically described by the Kramers
theory. This approach should permit to consider out-
of-equilibrium unfolding processes, typically induced in
isometric force-extension experiments conducted at fixed
pulling velocity of the tethered chain.
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