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Abstract: The statistical mechanics and the thermodynamics of small systems are characterized by1

the non-equivalence of the statistical ensembles. Concerning a polymer chain or an arbitrary chain2

of independent units, this concept leads to different force-extension responses for the isotensional3

(Gibbs) and the isometric (Helmholtz) thermodynamic ensembles for a limited number of units4

(far from the thermodynamic limit). While the average force-extension response has been largely5

investigated in both Gibbs and Helmholtz ensembles, the full statistical characterization of this6

thermo-mechanical behavior has not been approached by evaluating the corresponding probability7

densities. Therefore, we elaborate in this paper a technique for obtaining the probability density of the8

extension when the force is applied (Gibbs ensemble) and the probability density of the force when the9

extension is prescribed (Helmholtz ensemble). This methodology, here developed at thermodynamic10

equilibrium, is applied to a specific chain composed of units characterized by a bistable potential11

energy, which is able to mimic the folding and unfolding of several macromolecules of biological12

origin.13

Keywords: small systems thermodynamics; Gibbs and Helmholtz ensembles; polymer chain;14

bistability; ensembles equivalence.15

1. Introduction16

The recent developments of thermodynamics and statistical mechanics concern the17

thermodynamics of small systems, kept far from the thermodynamic limit, and the stochastic18

thermodynamics, which is based on Langevin or stochastic differential equations. In the first theoretical19

approach, the small size of the system is carefully taken into account in order to analyze its effects20

on the overall behavior of the system [1,2] and, in particular, on the force-extension response in21

the case of macromolecular chains. One interesting feature of the small systems thermodynamics22

is the non-equivalence of the ensembles for finite sizes of the system, and the convergence to the23

equivalence of the ensembles in the thermodynamic limit [3–6]. In the second theoretical approach, the24

out-of-equilibrium statistical mechanics is introduced by means of the Langevin and Fokker-Planck25

equations, which represent the stochastic evolution of the phase-space variables and of their probability26

density, respectively [7–10]. In this context, the first and the second principles of the thermodynamics27

can be re-demonstrated [11–14] and other important fluctuation-dissipation theorems have been28

elaborated [15–21]. These results follow from the pioneering Sekimoto idea of the microscopic heat29

rate along a Brownian system trajectory [22,23]. Concerning the Brownian trajectory of a particle an30

interesting investigation concerns the generalization of the principle of the least action in a probabilistic31

situation, which is equivalent to the principle of maximization of uncertainty associated with the32
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stochastic motion [24]. Also, the well-known quantum uncertainty relation can be proved to hold33

for non-quantum but stochastic trajectories of a Brownian particle [25]. Furthermore, the entropy34

generation during the stochastic evolution of a system has been studied by means of the Gouy–Stodola35

theorem [26] and applied to the biological context to model in original way molecular machines [27]36

and to study the control and regulation of temperature in cells [28]. Other approaches for investigating37

the behavior of molecular motors are based on the over-damped Langevin equation and have been38

successfully compared to the experimental data of the F1-ATPase motor [29,30].39

Nowadays, importantly, these theoretical approaches can be experimentally verified with the40

employment of single-molecule devices (force spectroscopy), allowing the direct quantification of41

the elasticity and the dynamical properties of individual macromolecules [31,32]. As a matter of42

fact, specific devices like atomic-force microscopes, laser optical tweezers, magnetic tweezers and43

micro-electro-mechanical systems [33–38] have been employed to investigate proteins [39–41], RNA44

[42,43], and DNA [44–50].45

Typically, the units or elements of polymers and of other macromolecules may exhibit a bistable46

behavior or not, depending on their internal chemical structure. The general behavior and in particular47

the force-extension response of chains without bistability is nowadays rather well understood [4,48

51–54]. On the other hand, the complexity of chains with bistable units has been recently revealed49

through force-spectroscopy experiments and is the subject of promising research efforts. Indeed, the50

conformational transition between two states of each chain unit has been observed in polypeptides,51

nucleic acids and other molecules. The possibility to measure the dynamic response of bistable52

systems is very important for investigating the out-of-equilibrium statistical mechanics since the53

coupling and/or the competition between the purely mechanical characteristic times and the chemical54

characteristic times induced by the barrier separating the two states [55] can be directly probed and55

compared with theoretical results (see, e.g., [18,56,57]). Interestingly enough, for relatively short56

bistable molecular chains, the applied boundary conditions play an important role in defining their57

overall response [58–61].58

The first boundary condition corresponds to experiments conducted at constant applied force. It59

means that, in this case, one uses soft devices (low values of the intrinsic elastic constant of the devices)60

and the experiments are called isotensional. This configuration corresponds to the Gibbs statistical61

ensemble of the statistical mechanics, and leads to a plateau-like force-extension curve. The threshold62

force related to this plateau must be interpreted by the synchronized transition of all the chain units63

[46,62–67]. The second boundary condition corresponds to experiments conducted at prescribed64

displacement. This situation can be obtained by hard devices (high values of the intrinsic elastic65

constant of the devices) and experiments are called isometric. The process represents a realization of66

the Helmholtz statistical ensemble of the statistical mechanics, and the corresponding force-extension67

curve shows a sawtooth-like shape. This behavior proves that the units unfold sequentially in response68

to the increasing extension [39,41,66–73]. In any case, the differences between isotensional and isometric69

force-extension curves, or equivalently between Gibbs ans Helmholtz ensembles, disappear if the70

number of units is very large since, in the thermodynamic limit, the Gibbs and Helmholtz ensembles71

are statistically equivalent, as largely discussed in the recent literature [3,6].72

Typically in the theoretical analyses conducted to study the behavior of two-state systems under73

isotensional or isometric conditions (see previous works), the considered quantities correspond to the74

average values of the fluctuating variables. It means that one considers the average extension in the75

Gibbs ensemble and the average force in the Helmholtz ensemble. However, it is important to study76

the actual distributions of these fluctuating or stochastic variables in order to better understand the77

random behavior of these systems and to draw more refined comparisons with experiments. Indeed,78

it is important to underline that the experimental activities above outlined may probe not only the79

average values of the relevant quantities but also their actual distribution. Basically, this is achieved by80

a very large statistics of the trajectories of the system under investigation, which allows for a good81

exploration of the phase space and, consequently, for the determination of the pertinent probability82
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densities. Therefore, in this paper we propose a methodology to determine the exact distributions or83

probability densities of the pertinent quantities defined in both the Gibbs and the Helmholtz ensembles.84

This methodology is developed here for systems at thermodynamic equilibrium, as discussed below.85

In particular, for the Gibbs ensemble, we determine the distribution of the couple (ẋN , xN) where86

xN is the extension of a chain of N bistable elements (under applied deterministic force), and, for87

the Helmholtz ensemble, the distribution of ( ḟ , f ) where f is the measured force (under prescribed88

deterministic extension). When the number of the units approaches infinity (thermodynamic limit),89

the two ensembles become equivalent as previously stated [3,6]. This means that the force-extension90

responses converge to the same curves. Conversely, the above defined probability densities are not the91

same for N → ∞ since they are defined through different variables and can not be directly compared.92

The applied method is based on the spin variables approach, recently introduced to deal with bistable93

or multistable systems at thermodynamic equilibrium. The idea based on the spin variables approach94

consists in considering a discrete variable (or spin) associated to each bistable unit, able to define the95

state of the unit itself. It means that an arbitrary bistable potential energy function describing a chain96

unit can be reasonably approximated by two sping-like quadratic potentials representing the two wells97

and, therefore, the switching between them is governed by the behavior of an ad-hoc discrete or spin98

variable [74]. Of course, when we adopt the approximation of the energy wells with two quadratic99

functions, we lose the information about the energy barrier between the wells and therefore we can100

not use this version of our model to deal with out-of-equilibrium regimes [55]. This approach has101

been recently used to investigate the properties of several two-state systems and macromolecular102

chains [74–78]. Both the Gibbs and the Helmholtz ensembles can be studied by the spin variables103

methodology, permitting to draw direct comparisons between isotensional and isometric conditions,104

provided that we work at thermodynamic equilibrium. While the application of this technique to the105

Gibbs ensemble is more direct since the integration of the partition functions can be typically performed106

in closed form without particular difficulties, the approach used for the Helmholtz ensemble is more107

involved. Indeed, in this case the partition function can not be directly integrated but it can be obtained108

as Fourier transform of the Gibbs partition function, analytically continued on the complex plane. The109

mathematical details about this idea can be found in Refs.[74–76]. In the present analysis, this approach110

leads to closed form expressions for the probability densities defined above, and the final results can be111

interpreted by introducing a form of duality between the two ensembles, useful to better understand112

the specific features of the isotensional and isometric conditions. The system considered in this work is113

quite simple and it should be viewed as a toy-model useful to better introduce the concepts and discuss114

the results. Of course, this model and its analysis could be generalized by taking into account more115

refined features (energy difference between the states, heterogeneity, two- or three-dimensionality,116

cooperativity among the units and out-of-equilibrium evolution) in order to represent more realistic117

systems. Here, we reduced the complexity as far as possible with the aim of presenting the adopted118

methodology as effectively as possible.119

It is interesting to remark that models based on bistable elements with statistical transitions120

between the states have been also introduced to model plasticity, hysteretic behaviors and martensitic121

transformations in solids [79–86]. Similar mathematical approaches are also applied to study phase122

transforming cellular materials [87], band gap transmission in bistable systems [88], waves in bistable123

lattices [89–91], and energy harvesting [92].124

The structure of the paper is the following. In Section 2, we introduce the investigated model125

and we determine the partition functions under both the Gibbs and the Helmholtz ensembles. Here,126

we also discuss the force-extension relation for the two ensembles. In Section 3, we introduce the127

complete probability density for the system in the whole phase space. This is a preliminary information128

exploited afterwards to deal with the specific distributions of the two ensembles. Indeed, in Section 4,129

we obtain the probability density of the couple (ẋN , xN) versus f within the Gibbs ensemble, and in130

Section 5, we get the probability density of the couple ( ḟ , f ) versus xN within the Helmholtz ensemble.131
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Figure 1. Bistable symmetric potential energy of a single domain (blue dashed line) and its
approximation by means of four parabolic profiles (red solid lines).

A discussion concerning the duality and some conclusions on possible perspectives (Section 6) close132

the paper.133

2. Configurational partition functions and force-extension relations in Gibbs and Helmholtz134

ensembles135

The purpose of the present Section is to introduce a quite simple model which has the advantage136

to be analytically solvable for both the Gibbs isotensional ensemble and the Helmholtz isometric137

ensemble. The related mathematical analysis yields closed form expressions, which are beneficial to138

the thorough understanding of the physics of bistability (or, more generally, multistability) in complex139

systems, such as macromolecules of biological origin.140

We consider a one-dimensional system composed of N elements with mechanical bistability,141

connected in series to compose a chain. Each element of the chain is therefore represented by a142

symmetric potential energy function U(x) showing two minima at x = ±` (see Fig.1). As already143

described in the Introduction, to perform an analysis of the system reduced to essentials, we introduce144

a discrete variable y, which behaves as a spin, in place of considering the original bistable potential145

function represented in Fig.1 (blue dashed line). This spin variable pertains to the phase space of the146

system and, therefore, is a standard variable of the equilibrium statistical mechanics. The variable y147

assumes its values in the set S = {±1} and is used to identify the basin or well explored by the system.148

In conclusion, the original bistable energy function is substituted with the simpler mathematical149

expression150

U(x, y) =
1
2

k(x− y`)2. (1)

The potential energy in Eq.(1), by varying the value of the spin variable in S , generates the two151

parabolic wells represented in Fig.1 (red solid lines). While without an applied stretching the units152

are in each basin with the same probability (the average value of the end-to-end distance is zero), an153

applied stretching induces a preferential direction in the extension of the chain. This stretching can be154

applied by imposing a force f (positive or negative) or prescribing the position xN of the last element155

of the chain. Of course, in both cases, the first element is always tethered at the origin of the x-axis.156

These two possible mechanisms of stretching generate different stochastic mechanical behaviors of the157

system, which can be studied by calculating the corresponding configurational partition functions.158

2.1. The Gibbs ensemble159

In this case, we apply the force f to the last unit identified by its position xN . The total potential160

energy of the system under the Gibbs condition (isotensional ensemble) is therefore given by161

UG
tot(~x,~y; f ) =

N

∑
i=1

U(xi − xi−1, yi)− f xN , (2)
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where f is the force applied to the last element, ~x = (x1, x2, ..., xN) (continuous variables) and ~y =162

(y1, y2, ..., yN) (discrete variables). For this system, we can define the configurational partition function163

ZG, as follows164

ZG( f ) = ∑
y1∈S

... ∑
yN∈S

∫
<

...
∫
<

e−
UG

tot
kBT dx1...dxN , (3)

where the variable ~x is integrated whereas ~y is summed. We can now substitute Eq.(2) in Eq.(3). To165

evaluate the integral we apply the change of variables x1 − x0 = ξ1, x2 − x1 = ξ2,..., xN − xN−1 = ξN ,166

from which we get xN = ∑N
j=1 ξ j (with x0 = 0). The change of variables within the multiple integral is167

implemented here by simply recalling that d~x = Jd~ξ. In this expression, the quantity J is the so-called168

Jacobian of the transformation defined as J = |det[∂~x/∂~ξ]|, where [∂~x/∂~ξ]ij is the matrix of the first169

order partial derivatives ∂xi/∂ξ j. It can be easily proved that J = 1 for the proposed change of variables170

and, therefore, we finally get d~ξ = d~x, which strongly simplifies the calculation. Hence, we get171

ZG( f ) = ∑
~y∈SN

∫
<N

exp

{
N

∑
j=1

[
−

U(ξ j; yj)

kBT
+

f ξ j

kBT

]}
d~ξ =

{
∑

y∈S
I(y, f )

}N

, (4)

where the integral I(y, f ) is defined as172

I(y, f ) =
∫ +∞

−∞
exp

[
− k

2kBT
(ξ − y`)2 +

f ξ

kBT

]
dξ, (5)

and it can be calculated in closed form by means of the well-known expression173

∫ +∞

−∞
e−αx2

eβxdx =

√
π

α
e

β2
4α (α > 0). (6)

We eventually obtain the result174

I(y, f ) =

√
2πkBT

k
exp

[
y` f
kBT

+
f 2

2kBTk

]
. (7)

Coming back to the configurational partition function, we have175

ZG( f ) =

{
∑

y∈S

√
2πkBT

k
exp

[
y` f
kBT

+
f 2

2kBTk

]}N

,

or, finally,176

ZG( f ) =
(

8πkBT
k

) N
2
{

exp
(

f 2

2kBTk

)
cosh

` f
kBT

}N

. (8)

It is important to remark that within the Gibbs ensemble the elements of the chain do not interact and177

this point leads to a configurational partition function which is in the form of a power with exponent178

N.179

The extension of the chain can be directly calculated through the expression xN = −∂Utot/∂ f180

and its average value is therefore 〈xN〉 = 〈−∂Utot/∂ f 〉. It can be simply evaluated by means of the181

configurational partition function, as 〈xN〉 = kBT ∂/∂ f (log ZG). The calculation eventually gives182

〈xN〉
N`

=
f

k`
+ tanh

(
` f

kBT

)
. (9)
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Figure 2. Average force-extension curves and average spin variables (plotted by means of
dimensionless quantities) for the Gibbs ensemble with N = 5 and k`2

kBT =10, 15, 30, 100.

We can also calculate the average value of the spin variable 〈y〉 = 〈yi〉 ∀i, which is independent of the183

element considered in the chain and is given by184

〈y〉 = 〈yi〉 = tanh
(

` f
kBT

)
∀i. (10)

By combining Eq.(9) with Eq.(10), we immediately obtain 〈xN〉
N` = f

k` + 〈y〉 or, equivalently,185

f = k
(
〈xN〉

N
− ` 〈y〉

)
. (11)

This constitutive equation represents a spring-like behavior with an equilibrium length directly186

modulated by the average value of the spin variables.187

An application of Eqs.(9) and (10) can be found in Fig.2. The force-extension curves have been188

plotted with dimensionless quantities and only one parameter defines the shape of the response, namely189

the elastic constant taken here into consideration through the dimensionless ratio k`2

kBT . It represents190

the ratio between the elastic (enthalpic) energy and the thermal energy. In these force-extension191

curves, we note a force plateau (for f = 0) corresponding to the synchronized switching (sometimes192

called cooperative) of the N units. This behavior is confirmed by the average spin variable (which193

is independent of k`2

kBT ), showing a transition from -1 to +1, at the same threshold force f = 0 as194

the previously mentioned plateau. This force plateau is the classical result of force-spectroscopy195

experiments conducted with soft devices [62–67].196

2.2. The Helmholtz ensemble197

We can now introduce the second boundary condition corresponding to the Helmholtz ensemble.198

For imposing the isometric conditions, we consider the chain of bistable units with the two extremities199

tethered at the points x0 = 0 and xN = x, respectively. The total potential energy of the system can be200

therefore written as201

UH
tot(~x,~y; xN) =

N

∑
i=1

U(xi − xi−1, yi), (12)
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where xN = x is the fixed extremity of the chain, ~x = (x1, x2, ..., xN−1) (continuous variables) and202

~y = (y1, y2, ..., yN) (discrete variables). In Eq.(12) the potential energy U(x, y) of a single element is203

given in Eq.(1). The configurational partition function of this system can be written as204

ZH(xN) = ∑
y1∈S

... ∑
yN∈S

∫
<

...
∫
<

e−
UH

tot
kBT dx1...dxN−1. (13)

It it now important to remark that the isometric condition xN = x impedes the direct evaluation of the205

integral in Eq.(13), which becomes considerably difficult. The solution to this problem can be found206

by drawing a comparison between Eqs.(3) and (13), eventually leading to the following important207

property: the two configurational partition functions ZG and ZH are related through a bilateral Laplace208

transform, as follows209

ZG( f ) =
∫ +∞

−∞
ZH(x) exp

(
f x

kBT

)
dx. (14)

Moreover, if we let f = −iωkBT, we simply obtain210

ZG(−iωkBT) =
∫ +∞

−∞
ZH(x) exp (−iωx) dx, (15)

which can be interpreted by affirming that the Fourier transform of ZH gives the analytical continuation211

of ZG on the imaginary axis of the complex plane. Exploiting this point, we can directly invert the212

Fourier transform, eventually obtaining213

ZH(x) =
1

2π

∫ +∞

−∞
ZG(−iωkBT) exp (iωx) dω. (16)

Interestingly enough, we proved that the response of the system under the Helmholtz isometric214

ensemble can be analyzed through Eq.(16), which considers as a starting point, the configurational215

partition function of the Gibbs isotensional ensemble. Anyway, from Eq.(8), we have216

ZH(x) =
1

2π

(
8πkBT

k

) N
2 ∫ +∞

−∞
exp

(
−NkBTω2

2k

)
cosN(`ω) exp (iωx) dω. (17)

By using the Newton’s Binomial Theorem217

cosN x =
1

2N e−iNx
N

∑
t=0

(
N
t

)
e2itx, (18)

we obtain from Eq.(17) the partial result218

ZH(x) =
1

2π

(
8πkBT

k

) N
2 1

2N

N

∑
t=0

(
N
t

) ∫ +∞

−∞
exp

(
−NkBTω2

2k

)
exp [i(x + 2t`− N`)ω] dω. (19)

To go further, the integral in Eq.(19) can be done with the help of the standard expression219

∫ +∞

−∞
e−αx2

eiβxdx =

√
π

α
e−

β2
4α (α > 0), (20)

eventually obtaining220

ZH(x) =
1

2π

(
2πkBT

k

) N
2 N

∑
t=0

(
N
t

)√
2kπ

NkBT
exp

[
− k

2NkBT
(x + 2t`− N`)2

]
. (21)
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Figure 3. Average force-extension curves and average spin variables (plotted by means of
dimensionless quantities) for the Helmholtz ensemble with N = 5 and k`2

kBT =10, 15, 30, 100.

It is interesting to observe that the isometric configurational partition function here obtained can not221

be stated in power form (with exponent N). This point suggests that under the Helmholtz ensemble222

there is an effective interaction among the elements of the chain. The origin of this interaction is not223

explicitly defined in the potential energy of the system (i.e. in the bistable character of the units),224

but comes from the specific boundary conditions characterizing the Helmholtz ensemble. Indeed,225

the isometric conditions fix the end-to-end distance by generating an effective interaction among the226

extensions of the units.227

Now, we can evaluate the average value of the overall force 〈 f 〉 = −kBT∂/∂x(log ZH) applied to228

the system and the average value of the spin variables 〈y〉 =
〈

1
N ∑N

i=1 yi

〉
describing the transitions, as229

follows230

〈 f 〉 =
∑N

t=0 (
N
t )

k
N (x + 2t`− N`) exp

[
− k

2NkBT (x + 2t`− N`)2
]

∑N
t=0 (

N
t ) exp

[
− k

2NkBT (x + 2t`− N`)2
] , (22)

and231

〈y〉 =
1
N ∑N

t=0 (
N
t )(N − 2t) exp

[
− k

2NkBT (x + 2t`− N`)2
]

∑N
t=0 (

N
t ) exp

[
− k

2NkBT (x + 2t`− N`)2
] . (23)

An example of application of Eqs.(22) and (23) can be found in Fig.3, where we show the232

force extension response and the average spin variable for the Helmholtz ensemble. As before,233

the force-extension curves have been plotted with dimensionless quantities and only one parameter234

defines the shape of the response, namely the elastic constant taken here into consideration through235

the dimensionless ratio k`2

kBT . We observe that the force extension curve is composed of a number of236

peaks corresponding to the non-synchronized (sequential) switching of the units. Sometimes, this237

behavior is called non-cooperative in order to underline the independent transitions of the units. This238

is confirmed by the step-wise curve representing the average spin variable versus the chain extension.239

Each step corresponds to the switching of a unit induced by the increasing extension of the chain. This240

behavior agrees with previous theoretical and experimental results obtained with hard devices [66–73].241

3. Complete probability densities in the Gibbs and Helmholtz ensembles242

The results found in the previous Section concerning the Gibbs and Helmholtz partition functions243

and mechanical-configurational responses have been discussed for different systems in the scientific244
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literature concerning the thermodynamics of bistability and the folding-unfolding processes. As we245

will show below, they represent the basis for investigating the behavior of these systems in more detail.246

In particular, we are interested not only in the average value of the fluctuating quantities, but also in247

the comprehensive statistical behavior described by the complete probability densities. The knowledge248

of these more refined quantities allows for the determination of expected values of higher order such as249

variances, covariances and so on, very important to fully characterize the statistical properties of these250

systems. We define here the probability density of the system in the whole phase space within both the251

Gibbs and the Helmholtz statistical ensembles. These results will be used in the following Sections to252

find the probability density of the specific quantities characterizing the Gibbs and Helmholtz statistical253

ensembles.254

Concerning the Gibbs ensemble, we can define the total energy of the system as255

EG(~v,~x,~y; f ) =
N

∑
i=1

1
2

mv2
i + UG

tot(~x,~y; f ) =
N

∑
i=1

1
2

mv2
i +

N

∑
i=1

U(xi − xi−1, yi)− f xN , (24)

where vi is the velocity of the i-th particle of the chain and ~v,~x,~y ∈ <N while f ∈ <. The complete256

probability density in the phase space is therefore given by the canonical distribution257

ρG(~v,~x,~y; f ) =
exp

[
− 1

kBT EG(~v,~x,~y; f )
]

(√
2πkBT

m

)N
ZG( f )

, (25)

where the term
(√

2πkBT
m

)N
has been added to normalize the kinetic part of the Boltzmann factor and258

the configurational partition function ZG( f ) is given in Eq.(8). Of course, we have that259

∑
~y∈{−1,+1}N

∫
~x∈<N

∫
~v∈<N

ρG(~v,~x,~y; f )d~vd~x = 1∀ f ∈ <. (26)

Similarly, for the Helmholtz ensemble we can define the total energy as260

EH(~v,~x,~y; xN) =
N−1

∑
i=1

1
2

mv2
i + UH

tot(~x,~y; xN) =
N−1

∑
i=1

1
2

mv2
i +

N

∑
i=1

U(xi − xi−1, yi), (27)

where, as before, vi is the velocity of the i-th particle of the chain and ~v,~x ∈ <N−1, ~y ∈ <N while261

xN ∈ <. In this case, the complete probability density in the phase space is given by the canonical262

distribution263

ρH(~v,~x,~y; xN) =
exp

[
− 1

kBT EH(~v,~x,~y; xN)
]

(√
2πkBT

m

)N−1
ZH(xN)

, (28)

where the term
(√

2πkBT
m

)N−1
has been added to normalize the kinetic part of the Boltzmann factor264

and the configurational partition function ZH(xN) is given in Eq.(21). Of course, we have that265

∑
~y∈{−1,+1}N

∫
~x∈<N−1

∫
~v∈<N−1

ρH(~v,~x,~y; xN)d~vd~x = 1∀xN ∈ <. (29)

The two probability densities here described will be used to obtain a full statistics representing the266

behavior of the two isotensional and isometric ensembles.267
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4. Probability density of the couple (ẋN , xN) versus f within the Gibbs ensemble268

Since the force f is imposed within the Gibbs ensemble, we can measure the extension of the269

chain which is a random variable that must be defined by its probability density in order to have a270

complete description of its behavior. Here, for the sake of completeness, we elaborate the probability271

density $G(ẋN , xN ; f ) for the couple (ẋN , xN), where we defined ẋN = vN . In this case, to obtain this272

probability density we have to sum or to integrate all the variables different from vN and xN in the273

complete density probability defined in Eq.(25). It means that we can write274

$G(ẋN , xN ; f ) = ∑
~y∈{−1,+1}N

∫
x1

...
∫

xN−1

∫
v1

...
∫

vN−1

ρH(~v,~x,~y; xN)dvN−1...dv1dxN−1...dx1 (30)

= ∑
~y∈{−1,+1}N

∫
x1

...
∫

xN−1

∫
v1

...
∫

vN−1

exp
[
− 1

kBT EG(~v,~x,~y; f )
]

(√
2πkBT

m

)N
ZG( f )

dvN−1...dv1dxN−1...dx1.

Now, it is not difficult to recognize that the integral over the positions x1,...,xN−1 immediately leads to275

the configurational partition function of the Helmholtz ensemble and the integral over the velocities276

v1,...,vN−1 can be directly calculated with the classical Gaussian integral. Eventually, we obtain277

$G(ẋN , xN ; f ) =
√

m
2πkBT

exp
(

1
2

mẋ2
N

) exp
(

f xN
kBT

)
ZH(xN)

ZG( f )
. (31)

This is the most important result of this section and represents the probability density of the couple278

(ẋN , xN) for any value of the applied force f within the Gibbs ensemble.279

We remark that this probability density can be factorized in two terms representing the density280

of ẋN and the density of xN . The first factor simply corresponds to the Maxwell distribution for the281

one-dimensional velocity282

$G(ẋN) =

√
m

2πkBT
exp

(
1
2

mẋ2
N

)
. (32)

On the other hand, it is interesting to observe that the second configurational term depends on the283

ratio between the two partition functions284

$G(xN ; f ) = exp
(

f xN
kBT

)
ZH(xN)

ZG( f )
. (33)

This configurational density is correctly normalized because of the Laplace integral relationship285

between Gibbs and Helmholtz partition functions, reported in Eq.(14). The explicit form of286

$G(ẋN , xN ; f ) can be found by using the results given in Eqs.(8) and (21). The substitution yields287

the final expression288

$G(ẋN , xN ; f ) =
√

m
2πkBT

exp
(

1
2

mẋ2
N

) 1
2N ∑N

t=0 (
N
t ) exp

[
− k

2NkBT (xN + 2t`− N`)2 + f xN
kBT

]
2π
√

NkBT
2kπ

{
exp

(
f 2

2kBTk

)
cosh ` f

kBT

}N . (34)
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Figure 4. Three-dimensional representation of the Gibbs density $G(xN ; f ) (see Eq.(33)) obtained with
N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.).

By means of this expression, we can give another proof of the result giving the average value of xN .289

Indeed, we can write290

〈xN〉 =
∫ +∞

−∞

∫ +∞

−∞
xN$G(ẋN , xN ; f )dẋNdxN

=
∫ +∞

−∞

∫ +∞

−∞
xN

√
m

2πkBT
exp

(
1
2

mẋ2
N

) exp
(

f xN
kBT

)
ZH(xN)

ZG( f )
dẋNdxN

=
∫ +∞

−∞

√
m

2πkBT
exp

(
1
2

mẋ2
N

)
dẋN

∫ +∞

−∞
xN

exp
(

f xN
kBT

)
ZH(xN)

ZG( f )
dxN . (35)

Now, the first integral is equal to 1 and the second one can be elaborated as follows291

〈xN〉 = kBT
1

ZG( f )
∂

∂ f

∫ +∞

−∞
exp

(
f xN
kBT

)
ZH(xN)dxN . (36)

By using again the Laplace integral relation between Gibbs and Helmholtz partition functions, reported292

in Eq.(14), we easily get293

〈xN〉 = kBT
1

ZG( f )
∂

∂ f
ZG( f ) = kBT

∂

∂ f
log ZG( f ), (37)
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Figure 5. Two-dimensional representation of the Gibbs density $G(xN ; f ) (see Eq.(33)) obtained with
N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.).

which is the well-known thermodynamic result.294

An example of application of the results obtained in the present Section is given in Figs.4, 5, 6295

and 7. Since the kinetic component $G(ẋN) is simply given by the Maxwell distribution, we focus296

our attention to the configurational part given by $G(xN ; f ). Accordingly, in Figs.4 and 5, we show a297

three-dimensional and a two-dimensional representation of the Gibbs density as function of xN for298

a given applied force f . These results are represented for four different levels of thermal agitation299

in order to understand the effects of the disorder on the switching behavior between the states. The300

parameters used in this study are N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.). It is301

interesting to observe that, in spite of the simple shape of the force-extension response characterized302

by a force plateau at f = 0 with a synchronized switching of the units, the probability density of the303

quantity xN is multimodal for the force range characterizing the transition region. Indeed, in order to304

obtain the probability density of xN for a given applied f we have to section the plots in Figs.4 and 5305

with a plane parallel to the xN-axis and, at the same time, perpendicular to the f -axis. So doing, in the306

central transition region, we can observe the emergence of a series of peaks in the probability density307

confirming its multimodal character. This can be observed in Fig.6, where we plotted several curves308

$G(xN ; f ) (see Eq.(33)), for different values of the applied force f . We can observe the symmetric and309

multimodal profile of the probability density for f = 0 (at the center of the transition region) and310

the asymmetric and monomodal shape of the density for a large applied force (out of the transition311

region). We remark the multimodal character of the probability density of xN in spite of the simple312

force plateau observed in the force-extension response. To conclude this analysis, we underline that313
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Figure 6. Examples of multimodal curves obtained through the Gibbs density $G(xN ; f ) (see Eq.(33)).
On the left panel, the two-dimensional representation of the Gibbs density is shown with the cuts
corresponding to the curves plotted on the right panel. We used N = 5, ` = 1 (a.u.), k = 15 (a.u.),
kBT=1 (a.u.) and different values of the applied force f , as indicated in the legend.
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Figure 7. Variance of xN obtained by the Gibbs density $G(xN ; f ). As before, we used N = 5, ` = 1
(a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.).

the knowledge of the full statistics for the system allows us to determine all possible expected values.314

As an example, we show in Fig.7 the behavior of the variance of the position in terms of the applied315

force f and the thermal energy kBT. We note that the variance is higher in the transition region, where316

the two states of each unit can coexist. Moreover, we observe a larger variance for higher temperatures,317

as expected. Finally, we also note that the multimodal character of the probability density is smeared318

out by the integration process applied to calculate the variances. This behavior will be shown to be319

dual with respect to the Helmholtz ensemble response, which is the subject of the next Section.320
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5. Probability density of the couple ( ḟ , f ) versus xN within the Helmholtz ensemble321

The problem of finding the probability density for f and ḟ when xN is imposed is more322

complicated since, in this case, the variables f and ḟ do not belong to the phase space and, therefore,323

we can not integrate the superfluous variables in order to get the searched density. To cope with this324

problem, we first introduce the standard technique to deal with a function of random variable. We325

suppose to have two random variables x and y, linked by a function y = g(x). If Fx(x) and fx(x)326

are distribution function and probability density of the random variable x, we search for the same327

quantities Fy(y) and fy(y) for y = g(x). We use the symbol ξ for the elements of the probability space328

and we can write329

Fx(x) = Pr {ξ : x(ξ) ≤ x} , (38)

and330

fx(x) =
d

dx
Fx(x). (39)

Moreover, we can state that331

Fy(y) = Pr {ξ : y(ξ) ≤ y} = Pr {ξ : g(x(ξ)) ≤ y}

=
∫

g(x)≤y
fx(x)dx =

∫ +∞

−∞
1(y− g(x)) fx(x)dx, (40)

where 1(z) is the Heaviside step function. Therefore, we can obtain the probability density of y = g(x)332

by differentiation333

fy(y) =
d

dy
Fy(y)

=
d

dy

∫ +∞

−∞
1(y− g(x)) fx(x)dx

=
∫ +∞

−∞
δ(y− g(x)) fx(x)dx, (41)

where we have introduced the Dirac delta function δ(z). This method based on the delta functions can334

be used to approach the problem of finding the Helmholtz probability density. To apply this technique,335

we need to write the variables f and ḟ in terms of the variables of the phase space of the system. Given336

the total potential energy UH
tot(~x,~y; xN) = ∑N

i=1 U(xi − xi−1, yi), we can simply write337

f =
∂UH

tot
∂xN

= k(xN − xN−1 − yN`) (42)

and338

ḟ =
d
dt

∂UH
tot

∂xN
=

N−1

∑
i=1

∂2UH
tot

∂xi∂xN

dxi
dt

=
N−1

∑
i=1

∂2UH
tot

∂xi∂xN
vi =

∂2UH
tot

∂xN−1∂xN
vN−1 = −kvN−1 (43)

Now, given the complete probability density ρH(~v,~x,~y; xN), we can obtain the density for the desired339

variables f and ḟ as follows340

$H( ḟ , f ; xN) = ∑
~y

∫
~x∈<N−1

∫
~v∈<N−1

δ

(
f − ∂UH

tot
∂xN

)
δ

(
ḟ − ∂2UH

tot
∂xN−1∂xN

vN−1

)
ρH(~v,~x,~y; xN)d~xd~v. (44)
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This expression can be simplified delivering341

$H( ḟ , f ; xN) = ∑
~y

∫
~x∈<N−1

∫
~v∈<N−1

δ ( f − kxN + kxN−1 + kyN`) δ
(

ḟ + kvN−1
)

×
exp

[
− 1

kBT EH(~v,~x,~y; xN)
]

(√
2πkBT

m

)N−1
ZN

H (xN)

d~xd~v, (45)

where we used the notation ZH(xN) = ZN
H (xN) in order to specify that the Helmholtz partition342

function corresponds to a system with N units. Indeed, in the following calculations, we will also need343

the same function calculated for a system with N − 1 units. The elaboration of $H( ḟ , f ; xN) can be344

continued as follows345

$H( ḟ , f ; xN) =
1(√

2πkBT
m

)N−1
ZN

H (xN)

×∑
~y

∫
~x∈<N−1

∫
~v∈<N−1

δ ( f − kxN + kxN−1 + kyN`) δ
(

ḟ + kvN−1
)

× exp

(
− m

2kBT

N−1

∑
i=1

v2
i

)
exp

(
− k

2kBT

N

∑
i=1

(xi − xi−1 − yi`)
2

)
d~xd~v, (46)

=
1(√

2πkBT
m

)N−1
ZN

H (xN)

∫
<N−2

exp

(
− m

2kBT

N−2

∑
i=1

v2
i

)
dv1...dvN−2

×
∫
<

1
k

δ

(
1
k

ḟ + vN−1

)
exp

(
− m

2kBT
v2

N−1

)
dvN−1

×∑
~y

∫
~x∈<N−1

1
k

δ

(
f
k
− xN + xN−1 + yN`

)
exp

(
− k

2kBT

N−2

∑
i=1

(xi − xi−1 − yi`)
2

)

× exp
(
− k

2kBT
(xN−1 − xN−2 − yN−1`)

2
)

exp
(
− k

2kBT
(xN − xN−1 − yN`)

2
)

d~x,

(47)

where we used the property δ(ax) = 1
|a| δ(x). We remember now that

∫ +∞
−∞ exp(−αx2) =

√
π
α for α > 0,346

we perform the integrals of the delta functions over vN−1 and xN−1, and we get347

$H( ḟ , f ; xN) =
1√

2πkBT
m ZN

H (xN)

1
k

exp
(
− m

2k2kBT
ḟ 2
)

exp
(
− 1

2kkBT
f 2
)

×∑
~y

∫
~x∈<N−2

1
k

exp

(
− k

2kBT

N−2

∑
i=1

(xi − xi−1 − yi`)
2

)

× exp
(
− k

2kBT
(xN −

1
k

f − yN`− xN−2 − yN−1`)
2
)

dx1...dxN−2. (48)
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We can now recall the explicit definition of ZN
H (xN) (see Eq.(13)), and we also introduce the exact348

expression for ZN−1
H (xN−1)349

ZN
H (xN) = ∑

y1∈S
... ∑

yN∈S

∫
<

...
∫
<

exp

(
− k

2kBT

N

∑
i=1

(xi − xi−1 − yi`)
2

)
dx1...dxN−1, (49)

ZN−1
H (xN−1) = ∑

y1∈S
... ∑

yN−1∈S

∫
<

...
∫
<

exp

(
− k

2kBT

N−1

∑
i=1

(xi − xi−1 − yi`)
2

)
dx1...dxN−2. (50)

So, in Eq.(48), we can identify the partition function ZN−1
H (xN−1) calculated for xN−1 = xN − 1

k f − yN`,350

by obtaining351

$H( ḟ , f ; xN) =
1

k2
√

2πkBT
m

exp
(
− m

2k2kBT
ḟ 2
)

exp
(
− 1

2kkBT
f 2
)

×
∑yN

ZN−1
H

(
xN − 1

k f − yN`
)

ZN
H (xN)

, (51)

or, equivalently,

$H( ḟ , f ; xN) =
1

k2
√

2πkBT
m

exp
(
− m

2k2kBT
ḟ 2
)

exp
(
− 1

2kkBT
f 2
)

×
ZN−1

H

(
xN − 1

k f − `
)
+ ZN−1

H

(
xN − 1

k f + `
)

ZN
H (xN)

. (52)

This is the final result for the probability density within the Helmholtz ensemble. It is interesting352

to observe that it can be written in terms of the two partition functions ZN
H (xN) and ZN−1

H (xN−1),353

corresponding to systems of size N and N − 1, respectively.354

We can split this probability density in two independent components describing separately ḟ and355

f , as follows356

$H( ḟ ) =
1

k
√

2πkBT
m

exp
(
− m

2k2kBT
ḟ 2
)

, (53)

357

$H( f ; xN) =
1
k

exp
(
− 1

2kkBT
f 2
) ZN−1

H

(
xN − 1

k f − `
)
+ ZN−1

H

(
xN − 1

k f + `
)

ZN
H (xN)

, (54)

and we can prove the normalization of the two results. For the first density function $H( ḟ ), the358

normalization directly comes from the classical integral
∫ +∞
−∞ exp(−αx2) =

√
π
α for α > 0. For proving359

the normalization of the second density function $H( f ; xN), we have to study the integral360

∫ +∞

−∞
exp

(
− 1

2kkBT
f 2
) [

ZN−1
H

(
xN −

1
k

f − `

)
+ ZN−1

H

(
xN −

1
k

f + `

)]
d f . (55)

To do this, we observe that from Eqs.(49) and (50) we easily get the relation361

ZN
H (x) = ∑

y

∫ +∞

−∞
ZN−1

H (η) exp

(
− k

2kBT

N

∑
i=1

(x− η − y`)2

)
dη, (56)
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Figure 8. Three-dimensional representation of the Helmholtz density $H( f ; xN) (see Eq.(54)) obtained
with N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.).

which can be also written as362

ZN
H (x) =

∫ +∞

−∞
ZN−1

H (ηa) exp

(
− k

2kBT

N

∑
i=1

(x− ηa − `)2

)
dηa (57)

+
∫ +∞

−∞
ZN−1

H (ηb) exp

(
− k

2kBT

N

∑
i=1

(x− ηb + `)2

)
dηb. (58)

We can then make the changes of variables ηa + ` = ξ and ηb − ` = ξ, leading to363

ZN
H (x) =

∫ +∞

−∞
exp

[
− k

2kBT
(x− ξ)2

] [
ZN−1

H (ξ − `) + ZN−1
H (ξ + `)

]
dξ. (59)

Now, by letting x− ξ = f /k we eventually obtain that364

ZN
H (x) =

1
k

∫ +∞

−∞
exp

(
− 1

2kkBT
f 2
) [

ZN−1
H

(
xN −

1
k

f − `

)
+ ZN−1

H

(
xN −

1
k

f + `

)]
d f . (60)
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Figure 9. Two-dimensional representation of the Helmholtz density $H( f ; xN) (see Eq.(54)) obtained
with N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.).

Finally, this result proves that $H( f ; xN) is correctly normalized, being true that
∫ +∞
−∞ $H( f ; xN)d f = 1.365

We also prove that we can re-obtain the well known expression for the average value of the force in the366

Helmholtz ensemble. To do this we consider the expression367

〈 f 〉 =
∫ +∞

−∞
f $H( f ; xN)d f (61)

=
1
k

∫ +∞

−∞
f exp

(
− 1

2kkBT
f 2
) ZN−1

H

(
xN − 1

k f − `
)
+ ZN−1

H

(
xN − 1

k f + `
)

ZN
H (xN)

d f , (62)

and we apply the change of variable xN − f /k = ξ leading to368

〈 f 〉 = k
∫ +∞

−∞
(xN − ξ) exp

(
− k

2kBT
(xN − ξ)2

)
ZN−1

H (ξ − `) + ZN−1
H (ξ + `)

ZN
H (xN)

dξ

= −kBT
1

ZN
H (xN)

∂

∂xN

∫ +∞

−∞
exp

(
− k

2kBT
(xN − ξ)2

) [
ZN−1

H (ξ − `) + ZN−1
H (ξ + `)

]
dξ

= −kBT
1

ZN
H (xN)

∂

∂xN
ZN

H (xN)

= −kBT
∂

∂xN
log ZN

H (xN) (63)
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Figure 10. Examples of monomodal curves obtained through the Helmholtz density $H( f ; xN) (see
Eq.(54)). On the left panel, the two-dimensional representation of the Helmholtz density is shown with
the cuts corresponding to the curves plotted on the right panel. We used N = 5, ` = 1 (a.u.), k = 15
(a.u.), kBT=1 (a.u.) and different values of the prescribed position xN , as indicated in the legend.
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Figure 11. Variance of f obtained by the Helmholtz density $H( f ; xN). As before, we used N = 5,
` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.).

where we used Eq.(59). As a conclusion, we proved that the classical thermodynamic relation for the369

average value of the force is consistent with our development.370

A numerical application of the results proved in this Section can be found in Figs.8, 9, 10 and 11.371

Similarly to the Gibbs analysis, also in this case, we observe that the kinetic part of the probability372

density $H( ḟ ) is a simple Gaussian function and therefore we study in more detail the configurational373
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density $H( f ; xN). Coherently with this planning, in Figs.8 and 9, we show the three-dimensional and374

the two-dimensional representation of the Helmholtz density as function of f and for a prescribed375

extension xN . As before, the results have been obtained for four different temperatures to observe the376

effects of the thermal agitation on the transition processes. The parameters used in this study are the377

same already adopted for the Gibbs analysis, namely N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4,378

2.1, 2.8 (a.u.). We give here a description of the behavior of the system within the Helmholtz ensemble379

which is exactly dual with respect to the response of the Gibbs ensemble. Indeed, we observe that380

in spite of the saw-tooth shape of the force-extension response, the probability density of f is quite381

always monomodal. More precisely, it can be bimodal only with some sets of parameters and only for382

forces being in the transition region between two peaks of the force-extension curve. Anyway, we can383

affirm that this density is monomodal in the most cases of practical interest. To better explain this point,384

we observe that in order to obtain the probability density of f for a prescribed xN , we have to section385

the plots in Figs.8 and 9 with a plane parallel to the f -axis and, at the same time, perpendicular to the386

xN-axis. By performing this operation, in spite of the complex shape of $H( f ; xN), we get monomodal387

functions (with the exceptions discussed above). This can be observed in Fig.10, where we plotted388

several curves $H( f ; xN) for different values of the prescribed extension xN . As before, we remark389

that the knowledge of the full probability density for the Helmholtz case can be used to determine390

the expected values of higher order. As an example, in Fig.11 we plotted the variance of the force f ,391

necessary to impose the extension xN . Interestingly enough, the variance is an increasing function of392

the temperature, as expected, and shows some peaks in correspondence to the switching of state of393

each unit. This is coherent with the general idea that the variance of the physical quantities is larger in394

proximity to a phase transition. Again, we underline the dual behavior of the Gibbs and Helmholtz395

ensembles. Indeed, while the variance for the Gibbs case is given by a single peak corresponding to the396

synchronized transition of the units, for the Helmholtz ensemble we have a peak for each transition,397

underlying the sequential behavior of this process.398

6. Discussion and conclusions399

In this work we considered the comparison of Gibbs (isotensional) and Helmholtz (isometric)400

ensembles of the (equilibrium) statistical mechanics in the context of the stretching of chains of bistable401

units. The thermodynamics of the force-extension relations leads to different responses of the two402

ensembles for small systems, i.e. far from the thermodynamic limit. In particular, the Gibbs response403

is characterized by a force plateau corresponding to the synchronized transitions of the units, whereas404

the Helmholtz response can be viewed as a saw-tooth curve representing the sequential transitions405

of the units. We remark that, when the number of units approaches infinity, the two ensembles406

become equivalent from the statistical point of view and, therefore, the two Gibbs and Helmholtz407

force-extension responses become coincident. This general picture, well known in the context of the408

thermodynamics of small systems, has been widely confirmed experimentally by means of the force409

spectroscopy methodologies (see Introduction).410

From the theoretical point of view, this scenario has been complemented here by introducing411

a method to elaborate the full statistics of these processes at thermodynamic equilibrium, i.e. by412

the calculation of the probability density of the fluctuating quantities and not only of their average413

values. The added information is useful to draw full comparisons with experiments and to extract414

more statistical features valuable from the theoretical point of view. As an example, the knowledge415

of the complete probability density can be used to evaluate expected values of higher order such as416

variances, covariances and so forth. Concerning the comparison with experiments, the devices today417

available to observe the mechanical response of macromolecules (force spectroscopy tweezers) are418

very refined and allow not only for the measurement of the average values of the main quantities but419

also to probe the distributions of the same quantities. This can be done by collecting the information420

of many trajectories of the system and to extract from those data the statistical picture of the system421
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evolution. It means that it is important to update the theoretical devices in order to be able to calculate422

the probability density of the fluctuating quantities in terms of the deterministic applied ones.423

Within the Gibbs ensemble, we apply a deterministic force and we measure a stochastic extension.424

So, we developed here a method to give the probability density of this extension and its rate with425

respect to the time. On the other hand, within the Helmholtz ensemble, we prescribe a deterministic426

extension and we measure a stochastic force. Therefore, we obtained in this work the probability427

density of the force and its time derivative. It is interesting to observe that in both cases these428

probability densities can be always written in terms of a combination of the two Gibbs and Helmholtz429

partition functions. This is a typical outcome in statistical mechanics, where all relevant quantities430

are typically written by means of the partition functions. We remark that, in the case of the number431

of units approaching infinity, we have the ensemble equivalence as above said. It means that the432

force-extension curves are the same for both ensembles but the probability densities are not the same433

because are simply defined on different variables.434

The results obtained for the specific case of a chain of bistable elements show the emergence of435

an intriguing duality between the two ensembles. For the isotensional condition, the force-extension436

curve is monotone with a characteristic force plateau and the density $(xN ; f ) is multimodal in the437

transition region (near xN = 0 and f = 0). Conversely, for the isometric condition, the force-extension438

curve is composed of a series of peaks while the density $( f ; xN) is simply monomodal. This duality439

is also reflected in the behavior of the variances of these processes. In the Gibbs ensemble we obtained440

a monomodal variance σ2
x with the symmetric peak at f = 0, whereas in the Helmholtz ensemble we441

obtained a multimodal variance σ2
f with a peak for each transition value of xN . Of course, the peaks of442

variance must be explained through large fluctuations characterizing the switching of the units states443

(classically, it is typical for the phase transitions).444

To go further with this analysis, in the next future we will take into consideration the case of445

bistable elements with two potential wells at different equilibrium length (as considered in this paper)446

and different equilibrium energy (here we supposed the same energetic level for the two basins). The447

introduction of the energy difference ∆E between the states will be useful to describe more realistic448

systems, such as protein domains and other macromolecules of biological origin. Another perspective449

concerns the consideration of the out-of-equilibrium thermodynamics useful to evaluate the dynamics450

(the time evolution) of the introduced probability densities, with application to the interpretation of451

force spectroscopy experiments. To do this, we plan to use our spin variables coupled with a first order452

dynamics governed by the Kramers rates, which depend on the energy barrier between the wells.453

To conclude, it is important to underline that the thermodynamics of small systems and454

bistable-multistable systems is relevant not only for the studies concerning macromolecules and455

biophysics but only for several applications to nanoscience and nanotechnology, namely for the better456

understanding of plasticity, hysteretic behaviors and martensitic transformations in solids, micro- and457

nano-magnetism, ferromagnetic alloys, nano-indented substrates, bistable nanosystems for energy458

harvesting and transport phenomena in bistable nano-systems such as, e.g., tunnel effect transistors.459
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