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The thermoacoustic sound generation offers a promising wideband alternative to mechanically driven loudspeakers.
Over the past decade, the development of nanomaterials with new physico-chemical properties promoted a wide inter-
est in the thermophones technology. Indeed, several thermophone structures based on suspended nanowires, graphene
sheets, highly porous foams or sponges have been investigated. At the same time, theoretical models have been de-
veloped to predict the frequency and power spectra of these devices. However, most of models have taken into con-
sideration a solid homogeneous material for representing the thermophone generating layer, and its microstructure was
therefore neglected. If this assumption holds for thin dense materials, it is not acceptable for thick and porous thermo-
phone devices. Hence, a model able to describe the behavior of highly porous foam- or sponge-like generating layers is
proposed. It is based on a two temperature scheme since the thermal equilibrium is not typically attained between the
foam material and the embedded air. To do this, the fluid equations for the air are coupled with the heat equation for
the solid foam through boundary conditions mimicking the energy exchange at the contact surface between them. The
behavior of the main physical variables within the porous generating layer is explained and comparisons with recent
experimental results are thoroughly discussed.

I. INTRODUCTION

For now more than a century, sound generation has been
realized by means of electroacoustic transducers, which are
able to convert an electrical signal into sound waves. In the
classical scheme, a coil/magnet core induces the vibration of
a membrane, eventually generating an acoustic wave. Also,
piezoelectric materials are used for sound generation in spe-
cific situations, such as underwater applications or buzzer de-
vices. For both magnetic and piezoelectric systems, the oper-
ating principle is based on mechanical vibrations generating
sound. Despite the huge technological improvements of those
technologies over the past century some limitations remains.
Indeed, the mechanically based sound generation is a resonant
phenomenon meaning that a single loudspeaker is not able to
achieve a wideband response.

In the early 20th century, an alternative solution has been
proposed by De Lange,1 Arnold & Crandall,2 and Wente.3

They observed and theorized the thermoacoustic sound gen-
eration phenomenon. This is based on a material having a
low heat capacity and a high thermal and electrical conduc-
tivity. Whenever an electrical oscillating current is applied
to the sample, its temperature follows the current variations,
and the air in the vicinity of the sample will experience com-
pression and dilatation processes, thus generating a sound
wave (see Fig.1). Due to the low efficiency of this prin-
ciple and the limited availability of suitable materials, ther-
moacoustic sound generation was not largely exploited at that
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time. More recently, an efficient thermophone device made
of a thin aluminum film deposited on a porous silicon sub-
strate has been realized and analyzed.4 From then on, the de-
velopment of advanced nanotechnologies strongly promoted
the rapid progress of the thermoacoustic applications. Indeed,
over the past two decades many potential thermophones have
been proposed and investigated. Without any pretension to be-
ing exhaustive, one could cite: thermophones with suspended
nanowires (made of aluminum,5 gold,6 or silver7), graphene
thermophones (based on paper technology,8 foam structures,9

or laser scribing10) and multi walled nanotubes devices.11

The modeling of the thermoacoustic phenomena is im-
portant to analyse the behavior and design the structure of
the thermophone systems. The original theory proposed by
Arnold & Crandall2 was generalized in order to take into
consideration the heat stored by the thermophone material.12

Later, energy based models have been used to describe the
performances of thermophones deposited on a substrate.13,14

Also, the balance laws of continuum mechanics have been
used to elaborate models for planar,15 cylindrical,16 and spher-
ical thermophones.17 The same approach has been adopted to
study the plane waves propagation in different thermophone
configurations, such as the free field geometry,18 and the ther-
mophone on substrate with an air gap.19 Lastly, a multilayer
model taking the wave propagation in the solid thermophone
layer into account has been proposed.20

In most models, the generating thermophone layer is con-
sidered as a homogeneous solid material. Consequently, the
performances of the device are typically written in terms of
the so-called heat capacity per unit area (HCPUA), which is
defined as the product of the thickness of the layer Ll , its den-
sity ρs, and its heat capacity Cv,s. It is unanimously considered
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FIG. 1. Schematic of the thermoacoustic sound generation through
thermophone devices.

as the most important parameter describing the thermophone
performances. It should be strongly reduced for obtaining an
efficient thermoacoustic generation. This principle is well ver-
ified for dense and thin film thermophones. However, new
thick foam like materials assembled by chemical vapor depo-
sition (CVD) are gaining interest because of their good effi-
ciency and their higher mechanical stability.21 In spite of the
interesting features of these materials, exhibiting a porosity
larger than about 90%, no theoretical model exists to accu-
rately describe their behavior. Therefore, a two temperature
model is presented here in order to gain a deeper insight into
the thermoacoustic behavior of thermophones based on highly
porous foam like materials. This model introduces the local
non-equilibrium between the temperatures of the solid foam
and the air embedded inside it.22–26 It means that two differ-
ent temperatures are considered for each phase of the gen-
erating layer. The balance equations for the air are coupled
with the heat equation for the foam through a set of boundary
conditions describing the exchange of energy at each contact
surface between air and foam. This is the most important dif-
ference between our model and previous ones: while in previ-
ous models, the heat exchange between generating layer and
air occurs only at the two external surfaces, in the present case
the actual distribution of air within the pores and the heat ex-
changes at any foam-air contact are considered. This process
is able to explain the high efficiency observed in real thermo-
phones based on foam- or sponge-like materials. A complete
description of the main physical variable inside the generating
layer is given together with a comparison between experimen-
tal and theoretical results for both thin film thermophones and
thick porous thermophones.

The paper is structured as follows. In Section II, the two
temperature theory can be found and a technique to solve the
main equations in the case of a thermophone radiating planar
waves in free field is proposed. In Section III, an acoustic
diffraction theory, based on the classical Rayleigh’s second
integral, is introduced and used later on to draw a comparison
with experimental results. In Section IV, the behavior of the
most important physical variables is analyzed in order to clar-
ify the thermoacoustic processes in a porous structure. Then,
the two temperature model is compared with previous models
and with experimental data taken from the recent literature.
For the sake of completeness, the models are applied to both
thin film thermophones and thick porous thermophones.
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Front Medium

x
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FIG. 2. Schematic of a porous thermophone radiating in free field
(symmetrically in back and front media). The thermophone layer has
a width Ll and foam branches of average diameter Ls. The volumetric
source S0 is supplied to the foam structure by Joule effect.

II. TWO TEMPERATURE THEORETICAL MODEL FOR A
THERMOPHONE IN FREE FIELD

The general conservation equations for mass, linear mo-
mentum and energy in a fluid medium can be written as27

1
B

∂ p
∂ t
−αT

∂T
∂ t

+~∇ ·~v = 0, (1)

ρ
∂~v
∂ t

=−~∇p+µ∇
2~v+(λ +µ)~∇(~∇ ·~v), (2)

ρCp
∂T
∂ t
−αT T0

∂ p
∂ t

= κ∇
2T, (3)

where the pressure p(~r, t) [Pa], the temperature variation
T (~r, t) [K] and the particle velocity vector~v(~r, t) [m/s] are the
main variables depending on time t [s] and position vector~r
[m]. Moreover, ρ is the density [kg/m3], B the Bulk Mod-
ulus [Pa], αT the coefficient of volumetric expansion [1/K],
λ and µ the first and second viscosity coefficients [Pa·s], Cp
the specific heat at constant pressure [J/(kg·K)], T0 the ambi-
ent temperature [K] and, finally, κ the thermal conductivity
[W/(m·K)]. All these parameters will be considered as con-
stants for a given fluid medium. These equations represent
the linearized motion of the fluid around the equilibrium state
identified by T = T0, p = p0 and~v = 0.

To begin, a thermophone radiating in free field is consid-
ered, as shown in Fig.2. The central active layer of the thermo-
phone is assumed to be made of a porous material with a very
high porosity (e.g., larger than 90%), with an undeformable
solid microstructure. Therefore, a model is elaborated to take
into account the effect of the fluid (typically air) embedded
within the pores of the active solid phase, i.e. the coupling
between the fluid and the micro- or nano-structured porous
solid in the active region. The fluid motion within the pores
of the thermophone region can be described by Eqs.(1)-(3).
However, due to the possible high frequency of the electric
energy supplied, the local thermal equilibrium is not attained
between fluid and solid phases. Therefore, the conservation
equations in the fluid can be coupled with the energy conser-
vation for the solid phase, where an input power density S0 is
introduced (Joule effect), and a temperature Ts 6= T is consid-
ered. The combination of such equations represents the non
thermal equilibrium between fluid and solid. In other terms,
since the temperatures of fluid and solid are sensibly different
on the two sides of a real contact interface, a phenomenologi-
cal two-temperature model has to be considered to effectively
take account of this non thermal equilibrium. Moreover, to
better take into consideration the morphology of the porous
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FIG. 3. Two-temperature representation of the porous thermophone.
In each layer, a temperature T is associated to the air within the pores,
and a temperature Ts 6= T is associated to the foam branches. The
interfaces control the energy exchange between foam and air.

structure within the generation layer, an exchange of energy
at the contact surfaces between pores and foam branches is
introduced. This scheme can be mimicked by a series of inter-
faces, which are represented in Fig.3. Each layer is therefore
described by the following set of equations

1
B

∂ p
∂ t
−αT

∂T
∂ t

+~∇ ·~v = 0, (4)

ρ
∂~v
∂ t

=−~∇p+µ∇
2~v+(λ +µ)~∇(~∇ ·~v), (5)

ρCp
∂T
∂ t
−αT T0

∂ p
∂ t

= κ∇
2T, (6)

ρsCv,s
∂Ts

∂ t
= κs∇

2Ts +S0, (7)

where the last equation represent the added energy conser-
vation in the solid foam and the subscript s is used for the
solid/foam parameters. For instance, Cv,s is the specific heat
at constant volume of the foam [J/(kg·K)]. For the sake of sim-
plicity, this system is investigated in the one-dimensional case
(plane wave propagation along the x axis) with an harmonic
time dependence. Then, one gets

iω
B

p− iωαT T +
dv
dx

= 0, (8)

iωρv =−dp
dx

+(λ +2µ)
d2v
dx2 , (9)

iωρCpT = κ
d2T
dx2 + iωαT T0 p, (10)

iωρsCv,sTs = κs
d2Ts

dx2 +S0, (11)

where i is the imaginary unit. Importantly, in these equations,
the terms ρsCv,s and κs must be considered as the homoge-
nized values over the whole volume of the generation layer.
Indeed, the two temperature model implicitly considers two
effective phases (air and foam, in our case), both occupying
the whole region of the thermophone layer. Therefore, for
each phase the homogenized values for all physical proper-
ties have to be considered.22–26 However, since the materials
display a very high porosity, the homogenized parameters are
adopted only for the foam phase.

The energy exchange between air in the pores and solid
branches is written in the boundary conditions that are sum-
marized below. To write these conditions, the definition of the
heat flux is introduced in the air phase as q = −κdT/dx and

in the solid foam phase as qs =−κsdTs/dx. Moreover, instead
of considering the pressure p, the normal surface tension p̃ is
adopted as p̃ = p− (λ +2µ)dv/dx, which takes into account
the viscous stress. Now, in each layer of the thermophone
(layers from 1 to N, see Fig.3), there are four variables p̃,v,T
and q for the air and two variables Ts and qs for the branches.
On the other hand, in the back and front media (layers 0 and
N + 1), there are only the variables for the air, namely p̃,v,T
and q. An index 0≤ i≤ N +1 is associated to these variables
to identify the layer where they are defined. For the interfaces
within the thermophone (from x2 to xN), one has

p̃i−1(xi) = p̃i(xi), (12)
vi−1(xi) = vi(xi), (13)
Ti−1(xi) = Ti(xi), (14)

Ts,i−1(xi) = Ts,i(xi), (15)
qi(xi) = qi−1(xi)+g(Ts,i(xi)−Ti(xi)), (16)

qs,i(xi) = qs,i−1(xi)−g(Ts,i(xi)−Ti(xi)), (17)

for all i = 2, ...,N. While the first four relations represent the
classical continuity of normal stress, velocity and tempera-
tures, the last two relations represent the energy exchanged
between solid branches and air. Indeed, if Ts,i(xi) ≥ Ti(xi)
a positive quantity of energy leaves the foam and moves to
the surrounding air. This process is controlled by a new
parameter g [W/(m2·K)], describing the fluid/solid coupling
at the interfaces. Concerning the first interface at x1 (back
medium/thermophone), the result is

p̃0(x1) = p̃1(x1), (18)
v0(x1) = v1(x1), (19)
T0(x1) = T1(x1), (20)
q1(x1) = q0(x1)+g(Ts,1(x1)−T1(x1)), (21)

qs,1(x1) =−g(Ts,1(x1)−Ti(x1)), (22)

and, finally the last interface equation at xN+1 (thermo-
phone/front medium) is written as

p̃N(xN+1) = p̃N+1(xN+1), (23)
vN(xN+1) = vN+1(xN+1), (24)
TN(xN+1) = TN+1(xN+1), (25)

qN+1(xN+1) = qN(xN+1)+g(Ts,N(xN+1)−TN(xN+1)), (26)
0 = qs,N(xN+1)−g(Ts,N(xN+1)−TN(xN+1)). (27)

It is interesting to observe that this proposed two-temperature
model differs form the classical two-temperature model de-
scribed in the literature.22–26 Indeed, in our case the exchange
of energy is confined at all interfaces representing the contacts
between air and foam. This process is not continuous and
therefore it is not implemented within the balance equations
defined in each layer (see Eqs.(8)-(11)). On the other hand, it
is important to also note that in this thermophone model the
heating of the air is a process distributed (although not contin-
uously) within the whole region of the generation layer (at all
the air/foam contacts) and not only at the external interfaces
(at x1 and xN+1) as in the classical thermophone models.20

For this reason, it is able to represent the behavior of thick
and porous thermophone devices.
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The solution for the physical variables defined in each layer
of the model can be found as follows. From Eq.(8) the pres-
sure can be obtained as

p = αT BT − B
iω

dv
dx

. (28)

Then, the normal surface tension p̃ becomes

p̃ = αT BT − (λ +2µ +
B
iω

)
dv
dx

. (29)

Using Eq.(29) along with Eqs.(8)-(11), the velocity is eventu-
ally found as

v =− 1
iωρ

[
αT B+

iωρCv

αT T0B
(λ +2µ +

B
iω

)

]
dT
dx

+(λ +2µ +
B
iω

)
κ

iωραT T0B
d3T
dx3 , (30)

where the thermodynamic relationship between the specific
heats ρ(Cp−Cv) = T0α2

T B has been used. The fourth order
differential equation for T can be then found in the form

0 = (λ +2µ +
B
iω

)κ
d4T
dx4 −ω

2
ρ

2CvT

−
[
(λ +2µ +

B
iω

)iωρCv +(iωρκ +α
2
T T0B2)

]
d2T
dx2 , (31)

coherently with recent investigations.20 The solutions of
Eq.(31) represent thermal modes and acoustical modes that
will be described by θth and kac, respectively. The tempera-
ture in the fluid can be therefore written as

T = Ae−ikacx +Be+ikacx +Ce−θthx +De+θthx. (32)

On the other hand, from the energy conservation in the solid,
Eq.(11), the temperature Ts can be easily written as

Ts = Ee−θsolidx +Fe+θsolidx +Ts,0, (33)

with Ts,0 being the particular solution of Eq.(11) given by

Ts,0 =
S0

ρsCv,siω
. (34)

In previous solutions A,B,C,D,E and F are constants to be
determined. In order to obtain the values of θth and kac the
following parameters are introduced

γ =
Cp

Cv
, (35)

C0 =

√
B
ρ

γ, (36)

lk =
C0κ

BCp
, (37)

lv =
λ +2µ

ρC0
. (38)

In order to find the values of kac and θth one should find the
solutions of the algebraic fourth-order (biquadratic) character-
istic equation associated to Eq.(31). Since the exact solutions
are rather cumbersome, it is useful to assume a weak thermal
conduction and a weak viscosity of the adopted medium. Un-
der these hypotheses, the asymptotic solutions of Eq.(31) can
be obtained in the form

kac =±
ω

C0

[
1− 1

2
iω
C0

lv−
1
2

iω
C0

lk(1−
1
γ
)

]
, (39)

θth =±
√

iωγ

C0lk

[
1+

1
2

iω
C0

lk(1−
1
γ
)+

1
2

iω
C0

lv(1− γ)

]
. (40)

While the detailed proof of Eqs.(39) and (40) is given in the
recent literature,20 it is worth noticing that these results repre-
sent the first order expansions (with small κ , λ and µ) of the
solutions of the algebraic equation associated with Eq.(31).
For the air this is a good approximation in the frequency range
of interest for the thermophone applications. If necessary, the
values of θth and kac can be obtained numerically, without any
assumption on the material parameters. On the other hand,
through Eq.(11), the propagation constant in the solid can also
be found as

θsolid =±
√

iωρsCv,s

κs
. (41)

The set of solutions in a layer, concerning the air variables, is
obtained as

p̃ = AF (−ikac)e−ikacx +BF (ikac)eikacx

+CF (−θth)e−θthx +DF (θth)eθthx, (42)

v = AG (−ikac)e−ikacx +BG (ikac)eikacx

+CG (−θth)e−θthx +DG (θth)eθthx, (43)

q = Aκikace−ikacx−Bκikaceikacx

+Cκθthe−θthx−Dκθtheθthx, (44)

T = Ae−ikacx +Beikacx +Ce−θthx +Deθthx, (45)

where the functions

F (η) = αT B−
(

B
iω

+λ +2µ

)
(L1η

2 +L2η
4), (46)

G (η) = L1η +L2η
3, (47)

have been introduced, with L1 and L2 being the coefficients
(see Eq.(30))

L1 =−
1

iωρ

[
αT B+

iωρCv

αT T0B
(λ +2µ− i

B
ω
)

]
, (48)

L2 =(λ +2µ− i
B
ω
)

κ

iωραT T0B
. (49)

By defining the matrices

H(a) =

 F (−ikac) F (ikac) F (−θth) F (θth)
G (−ikac) G (ikac) G (−θth) G (θth)
κikac −κikac κθth −κθth
1 1 1 1

 ,(50)
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and

H(b)(x) =


e−ikacx 0 0 0
0 eikacx 0 0
0 0 e−θthx 0
0 0 0 eθthx

 , (51)

the general solution in a given fluid layer is given by p̃i(x)
vi(x)
qi(x)
Ti(x)

= H(a)H(b)(x)

 Ai
Bi
Ci
Di

 , (52)

for all 0 ≤ i ≤ N + 1. It is important to observe that the re-
lations A0 = C0 = BN+1 = DN+1 = 0 must be imposed since
no progressive wave in the back medium (identified by i = 0)
and no regressive wave in the front medium (identified by
i = N + 1) are considered. Similarly, the general solution for
the solid/foam variables in a given layer is given by[

qs,i(x)
Ts,i(x)

]
= G(x)

[
Ei
Fi

]
+

[
0

Ts,0

]
, (53)

for all 1≤ i≤ N. Here, the matrix

G(x) =
[

κsθsolide−θsolidx −κsθsolideθsolidx

e−θsolidx eθsolidx

]
, (54)

is introduced. The knowledge of the complete solution of the
problem for all the physical variables and all the layers (see
Eqs.(52) and (53)) allows to implement the boundary condi-
tions given in Eqs.(12)-(27). Indeed, it is not difficult to prove
that these conditions are represented by 6N + 4 linear equa-
tions, with exactly 6N +4 unknown coefficients. The system
is well posed and can therefore always be solved by standard
numerical methods.

Interestingly enough, the model stated in this Section can be
further improved by adding a term corresponding to the heat
loss at the interfaces, which is described by a new coefficient
βs [W/(m2K)]. To introduce this effect, Eqs.(16),(21) and (26)
must be substituted with

qi(xi) = qi−1(xi)+g(Ts,i(xi)−Ti(xi))−βsTi(xi), (55)
q1(x1) = q0(x1)+g(Ts,1(x1)−T1(x1))−βsT1(x1), (56)

qN+1(xN+1) = qN(xN+1)+g(Ts,N(xN+1)−TN(xN+1))

−βsTN(xN+1), (57)

where the last term in each relation, described by the coef-
ficient βs, models the influence of conduction, convection,
and radiation losses. The total loss is considered propor-
tional to the temperature and this represents a good approx-
imation for losses due to conduction and convection. How-
ever, it is a poor representation of the radiated heat, which
is typically proportional to the fourth power of the tempera-
ture. Nevertheless, the thermal losses by radiation in a ther-
mophone are negligible in most of the cases.28 More general
approaches for considering imperfect interfaces can be found
in the literature.29,30

III. ACOUSTIC DIFFRACTION THEORY

The model here developed describes the thermo-acoustic
sound generation for a thermophone with a infinitely large
surface, radiating in near field. However, real measure-
ments are typically done in far field, with finite size thermo-
phones. Therefore, an acoustic diffraction theory must be im-
plemented to compare the results of our model with experi-
ments. If a planar surface at x = x0, vibrating with the velocity
v(y,z), is studied, each point can be considered as an acous-
tic source. Hence, the actual pressure field can be found by
superposition, using the classical Rayleigh’s second integral

pFF(x,y,z) =
iωρ

4π

∫ Ly

−Ly

∫ Lz

−Lz

v(y′,z′)
e−ikr

r
dz′dy′, (58)

where r =
√
(x− x0)2 +(y− y′)2 +(z− z′)2 is the distance

between generation and observation points, with (x,y,z) the
coordinates of the observation point and (x0,y′,z′) those of the
generation point. The rectangle (−Ly,Ly)× (−Lz,Lz) repre-
sents the vibrating region of the plane. In order to use Eq.(58),
the velocity field in air is calculated through our near field
model for a distance from the thermophone slightly larger than
the thickness of the thermal layer Lth (active region), as de-
fined in Fig.1. Indeed, at this distance, the velocity has at-
tained its maximum value, which can be considered for the
acoustic propagation in Eq.(58). The thickness of the thermal
layer has been evaluated through the approximated expression

Lth = 2
√

C0lk
2ωγ

.20 Hence, the theoretical curves that will be
shown in Section IV represents the results of the Rayleigh’s
second integral applied to the velocity field of our near field
model. In other words, our model is used to describe the ther-
moacoustic generation of waves whereas the diffraction the-
ory is used to properly take into account the resulting acoustic
propagation.

IV. ANALYSIS AND COMPARISON WITH
EXPERIMENTAL RESULTS

In Section II, a two temperature model for the thermo-
acoustic sound generation has been elaborated. This model
was motivated by the fact that most of the currently used ther-
mophones are composed of non continuous materials. For in-
stance, widely adopted structures are based on multi walled
nanotubes (MWNT), arranged as sheets, forests, foams or
sponges.31 Those thermophones devices are therefore made
of both air and nanotubes. Thus, the models based on a
continuous homogeneous medium do not represent the real
microstructure of these systems and neglect the interaction
fluid/solid in the active region. As a matter of fact, in foam
like thermophones a porosity of the active layer as large as
99% can be achieved, making the air component not negligi-
ble.

In the following (see Section IV A), the thermo-acoustically
generated temperatures, particle velocity and heat fluxes are
analyzed as a function of the position x (one-dimensional
modeling) at a frequency of 3kHz. This allows for a deeper
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ρ

[kg· m−3]
Cp

[J ·kg−1·K−1]
CV

[J ·kg−1·K−1]
B
[Pa]

αT
[K−1]

κ

[W·K−1·m−1]
λ

[N·s·m−2]
µ

[N·s·m−2]

Gas, air 1.20 9.96×102 7.17×102 1.01×105 3.33×10−3 26.2×10−3 16.82×10−6 5.61×10−6

TABLE I. Parameters of the propagating medium (air).

ρs
[kg·m−3]

CV,s
[J ·kg−1·K−1]

Bs
[Pa]

κs
[W·K−1·m−1]

Ll
[m]

Ls
[m]

A
[cm×cm]

CNT sheet 1 716 1.11×1011 50 18×10−6 10×10−9 Square 1.5×1.5
ITO PAN 220 606 1.65×1011 310 5×10−6 450×10−9 Square 1.2×1.5
MWNT sponge 30 716 1.11×1011 100 100×10−6 10×10−9 Square 1×1
Graphene sponge 2.75 660 1.44×108 6.3 800×10−6 5×10−9 Circle d = 1.8

TABLE II. Parameters of the thermophone materials used in the experiments and theoretical models.31

understanding of the model and a better interpretation of the
thermoacoustic generation phenomena in porous devices.

Additionally, measurements published in the literature will
be compared to the theoretical response of our two temper-
ature model (referred to as 2T model from now on) and of
the classical model based on a homogeneous and solid active
layer (referred to as 1T model from now on).20 The compar-
ison will be discussed in two distinct sections, dealing with
different thickness of the thermophone. Section IV B will in-
vestigate thin film thermophones with thickness of a few mi-
crons, and Section IV C foam like thermophones with thick-
ness of hundreds of microns. The experimental data are taken
from a recent investigation.31 This work provides frequency
and power spectra of a wide variety of samples with a full de-
scription of the experimental setup. Thermal parameters of the
samples were also measured and discussed. These data have
been used in the theoretical models, making the comparison
theory/experiment legitimate.

All of the presented theoretical results have been obtained
using the parameters in Table I and Table II. A specific dis-
cussion concerns the parameter g, which is the only new pa-
rameter introduced in this model. The real total contact area
between solid foam and air is given by aρsV , where a is
the specific area of the foam [m2/kg], ρs is the foam density
[kg/m3] and V is the total foam volume [m3] (of course, aρs
is the interfacial area per unit volume). On the other hand,
the effective contact area introduced in our model is given
by NS, where N is the number of layers in Fig.2, and S is
their area. On the basis of these premises, g can be defined
as NSg = aρsV h, where h is the real heat film transfer co-
efficient [W/(m2·K)] (convective and radiative). One simply
gets g = aρsV h

NS = aρshLl
N , where Ll = V/S. With the reason-

able values a = 1000− 2000m2/g,32,33 h = 200W/(m2·K),34

ρs = 30kg/m3, Ll = 0.1− 1mm, and N = 10, one obtains
g∼= 105W/(m2·K), which is used throughout all the paper.

The 2T model and the classical 1T model,20 based on a sin-
gle homogeneous active layer, have been implemented (see
Fig.2). Both models have been adapted for acoustic diffrac-
tion as discussed in Section III, by considering the size and
the shape of the samples used in the experimental activity.31

All results show the sound pressure level (SPL), defined in

decibels (dB), and calculated as

SPL = 20log10

(
prms

pref

)
, (59)

where prms is the root mean square pressure (i.e. |pFF|/
√

2,
where pFF is the complex pressure introduced in previous sec-
tions) and pref is the reference sound pressure being, by def-
inition, 20µPa in air. The results are shown at a distance of
3cm from the thermophone. The frequency spectrum results
are normalized with power and the power spectrum results are
shown at 3kHz.

A. Behavior of the physical variables with the two
temperature model

Here, the behavior of the main physical variables is shown
by comparing a thick and a thin thermophone. For the thick
thermophone the parameters of the graphene sponge (Ll =
800× 10−6m) are adopted, while for the thin one the param-
eters of the CNT sheet (Ll = 18×10−6m) are used. In Fig.4,
one can find the temperatures, the particle velocity and heat
fluxes versus x, calculated with the 1T and the 2T models
for both the thick and thin thermophones at f = 3kHz. In
this figure, the curves corresponding to the absolute value of
the different complex quantities have been plotted. To bet-
ter explain the behavior of the heat flux within the system, in
Fig.5, the real and imaginary parts of the heat fluxes in air
and foam are shown as well. The input power is the same
for all curves (1W) in Figs.4 and 5. The geometry considered
is shown in Fig.3, where N = 5 is imposed to easily iden-
tify the pores/branches structure in the plots. Moreover, the
diffraction procedure is not implemented to obtain the results
of this Section since only the near field generation is investi-
gated. Please note that the 1T model gives the behavior of the
physical quantities only outside the thermophone layer. On
the contrary, the 2T model allows for the complete analysis,
also in the generating porous structure.

Fig.4 (panels a and b) shows that despite a slightly higher
value of the temperature on the edges of the thermophone for
the 1T model, both thick and thin systems display the same
behavior in air. The thermal active layer Lth can be seen in
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Near field temperature variations (a,b), heat flux (c,d) and particle velocity (e,f) for a thin (a,c,e) and thick (b,d,f) thermophone. All
parameters are plotted only in air with the 1T model and in both air and solid with the 2T model. All curves show the absolute value of the
corresponding complex quantities. The central region (green) represents the thermophone layer with both air and solid foam and the regions
on the left and on the right (yellow) represent the air layers. The insets in (a) and (c) show a zoom within the generating layer.
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(a) (b)

(c) (d)

FIG. 5. Real part (a,b) and imaginary part (c,d) of the heat flux for a thin (a,c) and a thick (b,d) thermophone. The quantities are plotted only
in air with the 1T model and in both air and solid with the 2T model. The central region (green) represents the thermophone layer with both
air and solid foam and the regions on the left and on the right (yellow) represent the air layers. The insets in (a) and (c) show a zoom within
the generating layer.

the vicinity of the thermophone and has the same length in all
cases since it only depends on the frequency and the propa-
gating medium (the higher the frequency the smaller the size
of the generating layer). In the inset of Fig.4a, one can see
that the temperatures inside the thin thermophone are almost
constant and the branches providing the energy from the solid
to the air in the 2T model are not distinguishable. On the
other hand, for a thick thermophone one can find in Fig.4b the
energy transmission near the branches, represented by the in-
terfaces. Finally it is seen that, in the thick thermophone, the
temperature of the solid is higher at the center of the thermo-
phone and local maxima also exist in between two branches.
Importantly, these evaluations of the temperatures within the
thermophone layer (pores and branches) can be performed
only with the proposed 2T model. These results are relevant

for both analyzing the system and designing porous thermo-
phones with specific features.

Fig.4 (panels c and d) show the heat fluxes in the considered
structures. As before, the 1T model presents higher values of
q at the edge of the thermophone than the 2T model, but the
same order of magnitude and behavior are observed in both
models. The thin thermophone displays an almost continuous
increase of q inside the thermophone, from the centre to the
external edges (2T model). However, for the thick thermo-
phone, the heat flux transmission is seen in the air/foam struc-
ture and is characterized by a series of peaks. The sawtooth
shape of the curves in Fig.4d is due to the fact that the absolute
value of complex quantities is shown. To better understand the
behavior of the heat fluxes in the structure, the real and imagi-
nary parts of these quantities are represented in Fig.5, for both
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FIG. 6. Comparison of experimental31 and theoretical responses of a CNT sheet and an ITO PAN thermophone working in free field at
3cm distance emission/reception. (a) Power normalized frequency response of the thinfilm thermophones. (b) SPL response of the thinfilm
thermophones at 3kHz as a function of the input power. For the 2T model N = 10 has been adopted.

thin and thick thermophones. In the generating layer of the
thin thermophone (panels a and c of Fig.5), the exchange of
energy at the contact zones between air and foam can be only
slightly appreciated. However, concerning the thick thermo-
phone (panels b and d of Fig.5), one can clearly observe the
jumps of the heat fluxes within the generating layer in both
air and foam. These jumps represent the exchange of energy
between air and foam and are described by Eqs.(16) and (17).
It can be remarked that T in the air is not very different from
Ts in the foam in the contact zones (see Fig.4b). Nevertheless,
since the parameter g assume a quite large value, the product
g(Ts−T ), characteristic of the two temperature model, is al-
ways finite and positive and it can be seen (in panels b and d
of Fig.5) as the measure of the jumps in both q and qs curves.
Moreover, it is interesting to note that the jumps in q and qs
(both real and imaginary parts) are always of the same extent
but in opposite directions. It is perfectly coherent with the
idea of energy exchanges, as introduced in Eqs.(16) and (17).

Fig.4 (panel e) shows that, for a thin thermophone, the par-
ticle velocity within the 1T and the 2T models is of the same
magnitude leading to a similar radiated SPL of about 110dB in
the vicinity of the thermophone. This is attributed to the fact
that the density of branches is high enough for the tempera-
ture and the flux to be continuous in the thermophone leading
the 2T model to perform similarly to the 1T one. On the other
hand, in Fig.4 (panel f) it is seen that the particle velocity as-
sumes different values for the 1T and the 2T models, leading
to different radiated SPL of about 83 and 97dB, respectively.
This difference is attributed to the non continuity of the ther-
mophone layer in the 2T model, in opposition to the bulk solid
layer in the 1T model. The improvement of the performances
is clearly proportional to N. From the physical point of view,
it means that the crucial factor to improve the performances
is the total surface contact between air and foam branches
within the porous generating layer. Clearly, this total surface

increases with porosity but also depends on the real geometry
of the microstructure (shape and connectivity of pores). The
thick porous structure allows indeed to reduce the influence
of the heat stored in the generating layer, thus improving the
conversion of thermal energy in acoustic energy, e.g. the over-
all efficiency. This mechanism, properly implemented in the
2T model, corresponds to the actual behavior of real porous
thermophones, as proved by the following comparisons with
recent experiments.

In this section it was seen that for thin thermophones the 2T
model performs similarly to the 1T model, but this is not the
case with thicker and porous thermophones, where a sound
generation difference of more than 10dB is observed. This
proves that the modeling of the generating layer is of primary
importance and that the thermoacoustic generation is intri-
cately linked to its geometry (size, microstructure and so on).
The theoretical model has therefore to be tuned to each ther-
mophone geometry.

B. Thin �lm thermophones

Fig.6 (panels a and b) shows the frequency and the power
response of a Carbon Nanotube Sheet (CNT sheet) and
an Indium-Tin Oxyde coated Poly(acrylonitrile) Nanofibers
sheet (ITO PAN). In both cases the diffraction procedure of
Section III has been applied to the theoretical models. CNT
sheets are considered as the most efficient thermophones cur-
rently available because of the very low heat capacity per unit
area (HCPUA) induced by their low density and low specific
heat.31 For this reason, CNT sheets are considered as the ref-
erence nanostructures for thermoacoustic heaters.31 On the
contrary, ITO PAN devices have a much higher density and
therefore a higher HCPUA leading to a lower efficiency. This
explains the different slopes seen in Fig.6 (panel a), where
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FIG. 7. Comparison of experimental31 and theoretical responses of a MWNT sponge and a graphene sponge thermophones working in free
field at 3cm distance emission/reception. (a) Power normalized frequency response of the foam thermophones. (b) SPL response of the foam
thermophones at 3kHz as a function of the input power. For the graphene sponge, the theoretical curve is the same for N=10 and N=20. For
the MWNT sponge N=5 is adopted.

the CNT sheet response has a slope proportional to f 1 (20
dB/dec), whereas the ITO PAN sheet has a slope closer to
f 0.5 (10 dB/dec) due to its higher HCPUA.20,31 This poorer
efficiency is also seen in Fig.6 (panel b), where for a similar
input power the ouput SPL is about 20dB higher for the CNT
sheet. It is also seen that the power response slope is in both
cases 20dB/dec, meaning that the SPL output is directly pro-
portional to the input Pin as previously recorded in theoretical
and experimental literature.35 In spite of the lower thermoa-
coustic performances, ITO PAN sheets are interesting materi-
als for technological reasons. In fact, PAN polymers can be
easily electrospun and coated with metals.31 The ITO coating,
in particular, is deposited by radio frequency sputtering and
the final film is resistant to relatively high temperatures and
quite transparent.31

A good agreement of both 1T and 2T models is observed
with the experimental data, for frequency and power spectra.
This is attributed to the fact that the thickness of the thermo-
phone is small enough so that the 2T approach does not add
any significant value to the model. The thickness of the sam-
ple is still sufficiently small for the HCPUA to be accurately
evaluated by a continuous sheet through a 1T model. This
however would stop to be true for thicker thermophones.

Finally, it can be noted that the output acoustic power for
a spherical radiation on the CNT sheet can be estimated as
4πr2 p2

rms/ρC0 = 42×10−9W. Here, the pressure at 1kHz is
prms = 1065/20×20×10−6Pa and r = 0.03m as the measure-
ment was done at 3cm and not at the standard 1m distance.
The pressure being normalized at 1W input power, this leads
to an efficiency of about 4.2× 10−6%, which is in the same
range as reported in the literature.31

C. Thick foam thermophones

Fig.7 shows the measured responses of a MWNT sponge
(0.1mm thick) and of a graphene sponge (0.8mm thick), to-
gether with the corresponding theoretical results. In both
cases the diffraction procedure of Section III has been ap-
plied. These samples have a thickness one/two orders of mag-
nitude larger than the previous ones and have a porosity within
the range 95%-99%. The experimental frequency spectrum
of the graphene sponge displays a slope proportional to f 1

(20 dB/dec), meaning that the efficiency is preserved with
respect to the thin film case. Indeed, even if the sample is
rather thick, the HCPUA did not increase significantly to re-
duce the thermophone performances. The high frequency de-
crease observed is simply due to the diffraction caused by
the geometry of the sample. Now, concerning the MWNT
sponge experimental frequency response, one observes that
for low frequencies (below 1kHz) the slope is proportional to
f 1 (20 dB/dec), and for higher frequencies (between 1kHz and
100 kHz) the slope becomes proportional to about f 0.75 (15
dB/dec). Indeed, at high frequency the effect of the HCPUA
increases and, therefore, the thermoacoustic generation is co-
herently reduced.20 Interestingly, the same effect exists also
in the graphene sponge, but it is not observed here since it ap-
pears at higher frequencies because of the different physical
parameters.

The important reason for introducing MWNT sponges is
that MNWT networks generate an elastically compressible
and flexible device.31 Moreover, the MWNT sponges fabri-
cation is simple and low-cost. On the other hand, the use of
graphene sponges allows exploiting the exceptional properties
of graphene, with a very large exchange surface due to the
peculiar sponge geometry. The result is a three-dimensional
cross-linked sponge with isotropic physical properties.31
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In Fig.7 (panel a), using the homogenized parameters of the
thermophone shown in Table II,31 good agreement is found
between the experiments and the 2T theoretical model for the
MWNT sponge. A good agreement is also found for low
frequencies between the graphene sponge and the 2T model.
However, it is seen that for higher frequencies a larger number
of interfaces has to be used to reproduce more accurately the
experimental behavior. This is explained by the high surface
density of the foam within the thermophone layer. Many in-
terfaces need to be used to better represent the large amount
of energy provided to the air for high frequencies. On the
other hand, the 1T model displays a strongly different spec-
trum slope with respect to the experiments. This is due to the
thickness of the sample. Indeed, the thermal interactions be-
tween the air and the thermophone microstructure are not in-
tegrated in the 1T model, since it assumes a thick continuous
medium, thus artificially increasing the HCPUA. The sound
generation inside the pores of the foam is not taken into ac-
count since the model is continuous and, therefore, more heat
is assumed to be stored while it is actually dissipated in the
pores air.

The power spectra of the thick samples are shown in Fig.7
(panel b), and display a different behavior with respect to the
thin samples. At low input power, the SPL of the samples is
proportional to Pin (20 dB/dec) but for higher input power the
spectrum is approximately proportional to P0.75

in (15 dB/dec).
This non linear behavior can be interpreted with an increase
of the average static temperature inside the pores of the foam,
and with a consequent efficiency reduction.31 It is seen that
our model is not able to reproduce this behavior since the av-
erage temperature within the pores is fixed a priori.

V. CONCLUSIONS

A two temperature model for describing the thermo-
acoustic generation of sound by thick foam thermophones has
been elaborated. To do this, the balance equations for a fluid
embedded in the foam microstructure of the thermophone
were used and combined with the energy balance within the
solid foam material. The energetic coupling between solid
foam and fluid (typically air) is controlled by a new coeffi-
cient, which describes the heat transfer between foam and air
in the porous structure. For the sake of simplicity, this model
is developed under the hypotheses of one-dimensional geom-
etry and time-harmonic regime. It means that the propaga-
tion of fully coupled thermo-acoustic plane waves is inves-
tigated in the thermophone system. To model the complex
microstructure, a series of interfaces are used to represent the
contact zone between air and foam, where the energy trans-
fer between the phases occurs. The resulting equations were
solved by imposing the continuity of normal stress, particle
velocity, temperatures and the balance of the heat flux at each
interface. The calculated velocity was then used to simulate
acoustic diffraction from a finite size thermophone using the
classical Rayleigh’s integral.

Then, the spatial distribution of the main physical variables
were studied for both thick and thin thermophones. The re-

sults obtained through our two temperature model were com-
pared with the classical model composed of a solid bulk gen-
erating layer. It was proven that the output SPL may be dif-
ferent between these models, depending on the thickness of
the thermophone. For thin thermophone, 1T and 2T model
give similar results but thicker thermophones lead to signif-
icant differences in the output SPL. These differences have
been explained in terms of the specific features implemented
in the two models. Afterward, the frequency and power spec-
tra were compared with experimental results published in the
recent literature.31 The similar behaviors of the 1T and 2T
models for thin thermophones were confirmed and both mod-
els were in quite good agreement with the experimental re-
sults. Thick thermophones were then investigated. While the
1T model was unable to accurately reproduce the experimen-
tal results, the 2T model displayed good agreement from the
point of view of both frequency and power spectra. However,
it could be further improved since it is unable to represent the
losses due to the static temperature raise within the porous
structure. It was pointed out that for complex foam like struc-
tures it is important to consider the so called homogenized
parameters of the whole sample (solid plus air), which are
different from the local parameters of a single foam branch.

In conclusion, the two temperatures model presented in this
paper appears to be a first step in modeling thick and nano- or
micro-structured thermophone systems. The most important
point introduced concerns the exchange of energy at any con-
tact surface between air and solid foam. This feature better
represents the reality of such systems and is able to reproduce
experimental results, which were not understood on the basis
of previous models.
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