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PERCOLATION OF THE EXCURSION SETS OF PLANAR

SYMMETRIC SHOT NOISE FIELDS

RAPHAEL LACHIEZE-REY1 AND STEPHEN MUIRHEAD2

Abstract. We prove the existence of a sharp phase transition in the global connectivity
of the excursion sets of planar symmetric shot noise fields, with the zero level critical.
Our results hold for a wide class of mark distributions, including the Gaussian, Uniform,
and Rademacher cases. Our main assumption on the shot noise kernel is that it is
positive, symmetric, and has sufficient tail decay (depending on the mark distribution);
for example, for Gaussian and Uniform marks we require polynomial decay with exponent
at least three, whereas for Rademacher marks we require super-polynomial decay.
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1. Introduction

Let g(x) ∈ L1(R2) be a continuous function, and let µ be a distribution on R with finite
mean. The planar shot noise field with kernel g and mark distribution µ is defined as

(1.1) f(x) =
∑
i∈P

Y µ
i g(x− i)

where P is a Poisson point process on R2 with unit intensity, and {Y µ
i } are i.i.d. random

variables drawn from the distribution µ; the sum in (1.1) is well-defined almost surely by
the integrability of g and µ. For example, one could take g(x) = (1 + |x|)−α, α > 2, and
the mark µ to be a normal distribution (‘Gaussian shot noise’), a uniform distribution
(‘Uniform shot noise’), or the Rademacher distribution 1/2(δ−1 + δ1) (‘Rademacher shot
noise’). If µ is a symmetric distribution then we say that f is a planar symmetric shot
noise field.

Equation (1.1) is the Euclidean separable form of a general abstract class of infinitely
divisible fields obtained by convoluting a kernel over a Poisson random measure. Shot
noise fields were introduced by Campbell [Cam09] to model thermionic noise, and since
then have been used, under several different names, in diverse fields such as image analysis
[BD16b, BD16a] and telecommunications networks [BB10, BB15]. In the latter case, the
points of the underlying Poisson process can be seen as emitters of an electromagnetic
signal, while the field itself represents the total signal at every location of the space; see
[BB10] for a detailed mathematical study of theory and applications of such models. At
high frequency, i.e. when the density of points is high compared to the scale of the kernel g,
shot noise fields are also a good approximation of Gaussian fields with the same covariance
structure.

In this paper we are interested in the global connectivity of the (upper-)excursion sets

E` = {x ∈ R2 : f(x) ≥ −`} , ` ∈ R,
of planar symmetric shot noise fields. In the analysis of telecommunications networks, the
percolation properties of E` are of high importance in determining the global connectivity
of the network [BB15]. More generally, the geometric properties of E` have been the focus
of many other studies [BD16a, LR19, BST12].

By analogy with other planar percolation models (e.g. Bernoulli edge percolation on
the square lattice [Har60, Kes80], level set percolation of planar stationary Gaussian fields
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[Ale96, BG17, RV19a, MV19]), it is natural to expect that the global connectivity of the
excursion sets of a planar symmetric shot noise field undergoes a sharp phase transition
at the zero level, from a sub-critical phase in which all the excursion set components
are bounded, to a super-critical phase in which the excursion set has a unique unbounded
connected component. Our main result establishes the existence of such a phase transition
at the zero level under general conditions on the kernel g and mark distribution µ.

Let us introduce the necessary assumptions on the model; in fact, we will distinguish two
alternative conditions, which trade off greater generality of the mark distribution for more
restrictions on the kernel. Recall that, for a continuous random variable, the Mills ratio
is defined as the ratio of the survival function to the density. Similarly, for a symmetric
mark distribution µ with an absolutely continuous component µa.c., we define

cMills(µ) = ess sup
x≥0

F̄µ(x)

fµa.c.(x)

where F̄µ(x) =
∫
s≥x dµ(s), fµa.c.(x) is the density function of the absolutely continuous

component of µ, and where we use the conventions 1/0 = ∞ and 0/0 = 0. In particular,
these conventions ensure that cMills(µ) is finite whenever µ has an absolutely continuous
component with density bounded away from zero on its support. Moreover, for a set
D ⊆ R, we define

cMills(µ;D) = ess sup
x≥0,x∈D

F̄µ(x)

fµa.c.(x)
;

clearly cMills(µ;D) ≤ cMills(µ) for all D ⊆ R.

Our two alternative conditions are as follows:

Condition 1.1 (‘Bounded Mills ratio’ case).

• (Mark) The mark distribution µ is symmetric and has bounded Mills ratio, i.e.,
there exists a c > 0 such that cMills(µ) < c.
• (Kernel) The kernel g is C2-smooth and symmetric with respect to reflection in

the x-axis and rotation by π/2. Moreover, there exist α > 3 and c > 0 such that,
for every multi-index k such that |k| ≤ 2,

|∂kg(x)| < c(1 + |x|)−α−|k|.

Condition 1.2 (‘Bounded Mills ratio in the tails’ case).

• (Mark) The mark distribution µ is symmetric and has bounded Mills ratio in the
tails, i.e., there exists a c > 0 and a compact set D ⊂ R such that cMills(µ;Dc) < c.
• (Kernel) The kernel g is C2-smooth and symmetric with respect to reflection in the
x-axis and rotation by π/2. Moreover, for every multi-index k such that |k| ≤ 2,
as |x| → ∞,

log |∂kg(x)|
log |x|

→ −∞.

Remark 1.3. Examples of mark distributions satisfying Condition 1.1 are centred normal
distributions, centred uniform distributions, or more generally, any symmetric distribution
whose density function is C1-smooth and log-concave on its support (see [BB05, Corollary
2]). Examples of mark distributions satisfying Condition 1.2 include all of the above, and
also any symmetric distribution with compact support (in particular, the Radermacher
distribution), and any symmetric distribution whose tail has a C1-smooth density that is
asymptotically equivalent to a log-concave function.

Notice that, although the assumption on the mark distribution in Condition 1.1 is
stronger than that in Condition 1.2, the assumption on the kernel decay is much weaker,
requiring only polynomial decay with exponent three rather than super-polynomial decay.

Conditions 1.1 and 1.2 imply certain regularity properties of the shot noise field f . In
particular, since g is C2-smooth, f can be viewed as an (almost surely) absolutely conver-
gent series in the Sobolev space W 2,1(R2), which ensures that the sample paths of f are
almost surely almost everywhere twice differentiable. Then, since x 7→ supy:|y−x|≤1 |∂kg(y)|
is integrable for |k| ≤ 2, f is actually C2-smooth [BB09, Proposition 2.2.3].
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On the other hand, these conditions do not on their own guarantee that f and its
derivatives have bounded density. We shall impose this as an additional condition:

Condition 1.4 (Bounded density). The random vector (f(0),∇f(0)) has a continuous
bounded density.

While the above condition will be sufficient in the case of bounded Mills ratio (Condi-
tion 1.1), in the case that the Mills ratio is only bounded in the tails (Condition 1.2) we
shall require a slightly stronger version.

For λ > 0, define f (λ) to be the shot noise field obtained by replacing the kernel g in
the definition of f by the kernel g(λ ·) (this is equivalent in distribution, up to a spatial
rescaling by x 7→ x/λ, to modifying the unit intensity Poisson point process P that defines
f to have intensity λ).

Condition 1.5 (Bounded density, strong version). There exists a λ ∈ (0, 1) such that

the random vector (f (λ)(0),∇f (λ)(0)) has a continuous bounded density.

Remark 1.6. We give examples of shot noise fields satisfying Conditions 1.4 and 1.5 in
Section A.2; an obvious necessary condition is that g has unbounded support (see Re-
mark 1.9).

Let us make some comments regarding the relationship between Conditions 1.4 and 1.5.
By the Riemann-Lebesgue lemma, the density of (f (λ)(0),∇f (λ)(0)) being continuous and
bounded is implied by the integrability of its characteristic function

ϕ(λ)(u, v) := E
(

exp(i(uf (λ)(0) + 〈v,∇f (λ)(0)〉))
)
, u ∈ R, v ∈ R2.

In fact, since the mark distribution µ is symmetric and so ϕ(λ) takes values in [0, 1],
these are actually equivalent. Moreover, by the Poisson structure of the shot noise, the
characteristic function can be expressed as

ϕ(λ)(u, v) = exp
(
λ

∫
R×R2

(exp (im [ug(x) + 〈v,∇g(x)〉])− 1)µ(dm)dx
)

= ϕ(1)(u, v)λ,

which implies that if ϕ(λ0) is integrable for some λ0 > 0, then it is integrable for all λ ≥ λ0.
Hence, if Condition 1.5 is satisfied for some λ0 ∈ (0, 1), the density of (f (λ)(0),∇f (λ)(0))
is uniformly bounded for all λ ≥ λ0, and in particular Condition 1.4 is also satisfied.

Note that the above argument actually shows that the maximum of the density of
(f (λ)(0),∇f (λ)(0)), which is proportional to ‖ϕ(λ)‖L1 , is non-increasing in λ. Another way

to see this is by viewing f (λ), λ < 1, as (a spatial rescaling of) the shot noise generated by
a λ-thinning of the unit intensity Poisson point process P (since the maximum density of
a random variable is non-increasing under summation with a second independent random
variable). We shall use this observation later (see the proof of Lemma 2.2).

We are now ready to state our main result, establishing the existence of a phase tran-
sition in the connectivity of the excursion sets at the level ` = 0:

Theorem 1.7. Suppose that a planar symmetric shot noise satisfies either Conditions 1.1
and 1.4 or Conditions 1.2 and 1.5. Then:

(1) If ` ≤ 0, the excursion set E` contains only bounded connected components almost
surely.

(2) If ` > 0, the excursion set E` contains a unique infinite connected component
almost surely.

An immediate consequence is that, for all ` ∈ R, the `-level lines (i.e. the connected
components of {x ∈ R2 : f(x) = `}) are almost surely bounded.

We furthermore have the following quantitative estimates for the connectivity of excur-
sion sets at the zero level (more formal statements are given in Section 3):

(1) For all ρ > 0 there are 0 < c− ≤ c+ <∞ such that, for all R ≥ 1,

c− ≤ P
(
E0 crosses horizontally the rectangle [0, R]× [0, ρR]

)
≤ c+.

(2) There are c, cArm > 0 such that, for all 1 ≤ r ≤ R,

P
(
E0 connects ∂B(0, r) to ∂B(0, R)

)
≤ c

( r
R

)cArm

.
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Remark 1.8. Although we provide a self-contained proof, the fact that E` has only bounded
connected components at levels ` ≤ 0 could, with a bit of work, be deduced from general
results of Alexander [Ale96]. The fact that E` has unbounded connected components at
sufficiently high levels `� 1 can be deduced using the arguments of [MS83, BM17] in the
slightly different setting of non-negative shot noise fields (our results are for symmetric
shot noise fields). The main novelty of Theorem 1.7 is (i) the statement that E` has an
infinite connected component for every ` > 0, and (ii) the quantitative estimates on E0.

Remark 1.9. As we mentioned, Conditions 1.4 and 1.5 require that g have unbounded
support. In fact, it is known that Theorem 1.7, and more precisely its statements about
E0, can fail in general if this assumption is removed. Indeed, the theory of Poisson Boolean
percolation (see [BR06, Chapter 8] or [MR96, Chapter 3]) demonstrates that E0 contains
an unbounded connected component almost surely whenever the support of g is contained
within a ball of sufficiently small radius. On the other hand, it is plausible that E0 does
not contain an unbounded connected component as soon as the support of g contains a
sufficiently large compact set.

Remark 1.10. Although Condition 1.2 states that the kernel g decays super-polynomially,
our proof of Theorem 1.7 in the case of Conditions 1.2 and 1.5 actually only requires
polynomial decay with some very large exponent α > 0 (see Remark 5.3). Rather than
attempt to quantify this exponent, we have stated the condition as super-polynomial decay
for simplicity.

Remark 1.11. Let us give some examples of shot noise fields to which Theorem 1.7 applies.
First, we could take µ as either a centred Gaussian or uniform distribution, and

g(x) = (1 + |x|)−α, α > 3,

since Conditions 1.1 and 1.4 apply to such fields. Second, we could take µ as the
Rademacher distribution, and

g(x) = exp(−(1 + |x|2)α/2), α ∈ (0, 1),

since Conditions 1.2 and 1.5 apply to such fields. See Section A.2 for the proof that
Conditions 1.4 and 1.5 are satisfied in these cases.

The conclusion of Theorem 1.7 is a qualitative description of the phase transition, and
in fact our proof gives detailed information on the quantitative sharpness of the transition,
analogous to in Bernoulli percolation [Gri99, BR06]. In particular, in the super-critical
phase ` > 0 we prove that the excursion set E` crosses large domains outside an event
of probability that is exponentially small in the scale of the domain (see Theorem 4.1).
Finally, as well as the ‘box-crossing’ estimates and polynomial ‘one-arm’ decay we prove
at the zero level (see Theorems 3.9 and 3.10), our techniques can also be used to establish
that the ‘near-critical window’ (see, e.g., [MV19, Theorem 1.15]) is polynomially small in
the scale, as it is for Bernoulli percolation, although we have chosen not to state this result
precisely.

Our proof of Theorem 1.7 is largely inspired by [MV19] (which proved an analogous
result for planar Gaussian fields, following [BG17, RV19a]). Nevertheless, shot noise fields
marginals are essentially accessible through their characteristic function, and in general
no expression is available for the density. As a result, a lot of Gaussian techniques fail in
the Poisson shot noise set up, and there are some notable differences in the shot noise case
compared to the Gaussian case. Most significantly, our emphasis on the role played by the
bounded Mills ratio is entirely novel (although, of course, the Gaussian distribution has
bounded Mills ratio), and deducing the phase transition at this level of generality requires
more care (see Section 4). Our extension of the proof to cover marks with bounded Mills
ratio in the tails is also new (see Section 5).

2. Preliminary results

In this section we collect preliminary results on the shot noise field f , and various
perturbations of this field.
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2.1. Exponential decay of the marks. We first note that our assumption on the mark
distribution µ implies that it has exponentially decaying tails. This will be useful for
deriving large deviation bounds.

Lemma 2.1. Suppose there exists c > 0 and a compact D ⊂ R such that cMills(µ;Dc) < c.
Then there exists a c1 > 0 such that

F̄µ(x) < c1e
−cx , x ≥ 0.

Proof. If µ is compactly supported the conclusion of the lemma is immediate. So suppose
that F̄µ(x) > 0 for all x ≥ 0. The assumption of the lemma implies the existence of
x0, c > 0 such that

(2.1)
fµa.c.(x)

F̄µ(x)
≥ c , x ≥ x0.

Since log F̄µ(x) is non-increasing, and since the left-hand side of (2.1) equals −(log F̄µ(x))′

whenever this derivative is defined, for x ≥ x0,

log F̄µ(x) ≤ log F̄µ(x0)−
∫ x

x0

fµa.c.(s)

F̄µ(s)
ds ≤ log F̄µ(x0)− c(x− x0).

Hence, for x ≥ x0,
F̄µ(x) ≤ F̄µ(x0)e−cx0e−cx,

which implies the result. �

2.2. Perturbations of the shot noise field. We next introduce various perturbations
of the shot noise field f based on (i) smoothing of the mark distribution, (ii) truncation
of the kernel, (iii) spatial discretisation, and (iv) adding a constant to the mark.

2.2.1. Smoothing of the mark distribution. In the case of marks with bounded Mills ratio
in the tails (Condition 1.2), a certain ‘smoothing’ operation on the mark distribution will
enable us to approximate f with a version having marks with globally bounded Mills ratio.

Lemma 2.2. Suppose Condition 1.2 holds. Then there exists η0, c > 0 such that, for all
η ∈ (0, η0], there exists a symmetric distribution µη such that

(1) cMills(µη) ≤ 1/η;
(2) dTV(µ, µη) ≤ cη;

(3) F̄µη(x) ≤ ce−x/c , for all x ≥ 0.

Suppose in addition that Condition 1.5 holds. Then η0, c and (µη)η∈(0,η0] can be chosen so
that, in addition,

(4) The random vector (fη(0),∇fη(0)) has density bounded by c, where

(2.2) fη(x) =
∑
y∈P

Y
µη
i g(x− y)

and {Y µη
i } are i.i.d. random variables drawn from µη.

Proof. Since Condition 1.2 holds, we can find c1, c2 > 0 such that cMills(µ; [−c1, c1]c) < c2.
We temporarily set

η0 = min{1/c1, 1/c2},
and, for each η ∈ (0, η0], define the symmetric probability measure

µη(dx) = µ(dx)(1− c1η) + (η/2)1[−c1,c1]dx,

i.e. we first rescale µ by the constant factor (1 − c1η) ∈ [0, 1), and then we reassign the
excess probability mass c1η evenly within [−c1, c1].

The first three points of the lemma are immediate from the construction of µη. More
precisely, we have

cMills(µη; [−c1, c1]c) = cMills(µ; [−c1, c1]c) < c2,

and

cMills(µη; [−c1, c1]) ≤ F̄η(0)

η/2
= 1/η,
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which, since η ≤ η0 ≤ 1/c2, implies that cMills(µη) ≤ max{c2, 1/η} = 1/η. Moreover, since
µη has been constructed from µ by moving c1η amount of probability mass,

dTV(µ, µη) ≤ c1η.

Finally, F̄µη(x) ≤ F̄µ(x) for all x > c1, and so the uniform exponential decay of F̄µη follows

from the exponential decay of F̄µ (established in Lemma 2.1).
To prove the last point of the lemma, we use the fact that if dTV (µ, µη) ≤ c1η ≤ 1, then

fη can be constructed from f by first thinning the Poisson point process used to define f
to have intensity 1− c1η, and then adding an independent shot noise field. Recall that the
thinned version of the shot noise field is a spatial rescaling of f (1−c1η), and moreover adding
an independent field acts as a convolution on the density. Therefore, by Condition 1.5
it follows that (fη(0),∇fη(0)) has a density that is uniformly bounded for all sufficiently
small η. Redefining η0 to be sufficiently small, we have proved the lemma. �

For the remainder of the paper we shall define (fη)η>0 in the following way: in the case
that Condition 1.2 holds, we fix η0 > 0 and (µη)η∈(0,η0] satisfying Lemma 2.2 and define
(fη)η∈(0,η0] as in (2.2), with fη = fη0 for all η > η0; in the case that Condition 1.1 holds,
we simply define fη = f for all η > 0.

By the construction of fη, it is not hard to see that fη converges to f in the C0-topology
on compact sets (we will not formally prove this since we do not require it), so it is natural
to include f in the set (fη)η≥0 by defining f0 = f .

2.2.2. Truncation of the kernel. Fix χ : R2 → [0, 1] to be a smooth approximation of the
indicator function of B(1), where B(r) denotes the closed ball of radius r centred at the
origin. More precisely, we define χ to take the value 1 on B(1/2), the value 0 on B(1)c,
and to be radially non-increasing with uniformly bounded derivatives. For r ∈ R+ ∪{∞},
define the truncated kernel

gr(x) =

{
g(x)χ(r|x|), r > 0,

g(x), r =∞,

and define the r-truncated shot noise field

fr =
∑
i∈P

Y µ
i gr(x− i).

Similarly, for η ≥ 0 let fη,r be defined analogously with Y µ
i replaced by Y

µη
i .

Note that we have formally included fη in the set (fη,r)r>0 by identifying fη with the
limiting case r = ∞. This is natural, since fη,r converges to fη as r → ∞ in the C0-
topology on compact sets (we quantify the speed of convergence in Lemma 2.3 below).

2.2.3. Spatial discretisation. For ε > 0, define the ε-discretised shot noise field

f ε(x) =
∑
i∈εZ2

BiY
µ
i g(x− i)

where {Bi} are i.i.d. Bernoulli random variables with parameter ε2, and {Y µ
i } are, as

before, i.i.d. random variables drawn from µ. For η ≥ 0 and r > 0 define f εη,r analogously

by replacing Y µ
i with Y

µη
i and g with gr.

Again, it is not hard to see that f εη,r converges to fη,r as ε → 0 in the C0-topology on
compact sets (we verify this in Lemma 2.4 below). Hence it is natural to include fη,r in
the set (f εη,r)ε≥0 by identifying fη,r with the limiting case f0

η,r.

2.2.4. Adding a constant to the mark. For ε > 0 and h = (hi)i∈εZ2 , we construct f ε,h from
f ε by adding the constant hi to the mark distribution Y µ

i at each site i ∈ Z2, i.e.

f ε,h =
∑
i∈εZ2

Bi(Y
µ
i + hi)g(x− i),
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with f ε,hη,r defined analogously. When h ∈ R, we understand this as setting hi ≡ h, and in
this case we also define

f0,h
η,r =

∑
i∈P

Bi(Y
µη
i + h)gr(x− i).

2.3. Analysis of the perturbations. We first give bounds on the distance between

the (smoothed) shot noise field fη and its perturbation f ε,hη,r . We begin by analysing the
truncation.

Lemma 2.3. Suppose Condition 1.1 holds, or Condition 1.2 holds and α > 0 is an
arbitrary constant. Then there exist c1, c2 > 0 such that, for all η ≥ 0 and r, s, t ≥ 2,

P(‖fη − fη,r‖B(s),∞ > c1t
2r1−α(log r)2) < c1s

2e−c2t.

Proof. The random field fη − fη,r is a symmetric shot noise field with kernel

h(x) = g(x)− gr(x) = g(x)(1− χ(r|x|)) ≤ g(x)1|x|≥r/2

and mark distribution µη. Define the auxiliary kernel

j(x) = sup
y∈[−1/2,1/2]2

|(1 + | log(|x+ y|)|)2|‖∇h(x+ y)‖.

According to equation (A.5) of Proposition A.1 (since Lemmas 2.1 and 2.2 guarantee
the uniform exponential decay of the mark distribution µη, we may take γ = 1 in this
proposition), for all r, s, t ≥ 2,

P
(
‖fη − fη,r‖B(s) ≥ 2t

(√
2t‖h‖L2 +

t

3
‖h‖∞ + ‖j‖L1 +

√
2t‖j‖L2 +

t

3
‖j‖∞

))
≤ c1s

2e−c2t

for some c1, c2 > 0. By Condition 1.1 (or Condition 1.2 with α > 0 arbitrary), and since
the derivatives of χ(r|x|) are uniformly bounded for r ≥ 1, there is a c3 > 0 such that

h(x) ≤ c3|x|−α1|x|≥r/2
and

j(x) ≤ c3|x|−α−1(log |x|)21|x|≥r/2.

Hence there exists a c4 > 0 such that

‖h‖L2 ≤ c4r
1−α , ‖j‖L1 ≤ c4r

1−α(log r)2 ,

‖j‖L2 ≤ c4r
−α(log r)2 and ‖j‖∞ ≤ c4r

−1−α(log r)2,

and so the bound reduces to

(2.3) P
(
‖fη − fη,r‖B(s) ≥ c5t

2r1−α(log r)2
)
≤ c1s

2e−c2t

for some c5 > 0, which gives the result. �

For the discretisation, we verify that f and fε can be coupled so that they converge in
probability in the C0-topology on compact sets. Note that this coupling naturally induces

a coupling of f0,h
η,r and f ε,hη,r for all η ≥ 0, r > 0 and h ∈ R.

Lemma 2.4. Suppose that either Condition 1.1 or Condition 1.2 holds. Fix a compact
set D ⊂ R2 and a compact interval I ⊂ R. Then there exists a sequence gε → 0 of positive
numbers and a coupling of (f, fε) such that, for every η ≥ 0, r > 0 and h ∈ I,

P(‖f0,h
η,r − f ε,hη,r ‖D,∞ > gε) < gε

eventually as ε→ 0. In particular, for every η ≥ 0, r > 0 and h ∈ R

f ε,hη,r ⇒ f0,h
η,r

in law in the C0-topology on compact sets.
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Proof. Fix c > 0 and define

f̃0,h
η,r =

∑
i∈P∩[−c,c]2

(Y
µη
i + h)gr(x− i) and f̃ ε,hη,r =

∑
i∈εZ2∩[−c,c]2

Bi(Y
µη
i + h)gr(x− i)

to be the contributions to fη,r (resp. f εη,r) from the Poisson points (resp. Bernoulli points)

inside [−c, c]2. Since g(x) decreases at most like an integrable power of ‖x‖ (Conditions 1.1
and 1.2), the discrepancies

‖fη,r − f̃η,r‖D,∞ and ‖f εη,r − f̃ εη,r‖D,∞
can be made arbitrarily small (uniformly in η ≥ 0, r > 0 and h ∈ I) with arbitrarily high
probability by taking c > 0 large enough. Hence it is sufficient to show that

‖f̃0,h
η,r − f̃ ε,hη,r ‖D,∞ → 0

in probability, uniformly over η ≥ 0, r > 0 and h ∈ I. Notice that, due to the continuity of

g, the fields f̃ ε,hη,r |D, f̃ ε,hη,r |D, f̃0,h
η,r |D and f̃ ε,hη,r |D can all be viewed as continuous functionals

(in the C0-topology) of the respective point sets P = {(i, Y µη
i ) : i ∈ P ∩ [−c, c]2} and

P ε = {(i, Y µη
i ) : i ∈ εZ2 ∩ [−c, c]2, Bi = 1}. Note also that, by the standard binomial

approximation of a Poisson point process, the point process P ε converges vaguely to P as
ε→ 0. Since the support of a point process on a compact set is continuous in the topology
induced by vague convergence [Res07, Proposition 3.3], the result follows. �

We next state basic regularity properties for the fields (fη)η≥0:

Lemma 2.5 (Regularity of level lines). Suppose that either Conditions 1.1 and 1.4 or
Conditions 1.2 and 1.5 hold. Then for every η ≥ 0 and ` ∈ R, the level set L` = {x :
fη(x) = `} consists of a collection of simple closed curves. Moreover, for every line-
segment L, the intersections of L` with L are transverse almost surely.

Proof. Since fη is almost surely C2-smooth and the density of (fη(0),∇fη(0)) is bounded,
Bulinskaya’s lemma [AT07, Lemma 11.2.10] states that fη almost surely has no critical
points at level `, and hence the level sets are simple closed curves by the implicit function
theorem. Similarly, fη|L almost surely has no critical points at level `, which ensures that
L` intersects L transversally almost surely. �

Finally we give an estimate on the number of critical points inside a narrow window of
critical values:

Proposition 2.6 (Critical points in a narrow window). Suppose that either Condition 1.1
and 1.4 or Conditions 1.2 and 1.5 hold. Then there exist c, ε0 > 0 such that, for every
η ≥ 0, ` ∈ R, ε < ε0 and s ≥ 1,

P(∃x ∈ B(s) : ∇fη(x) = 0, |fη(x)− `| < ε) < cs2ε|log ε|2,
and moreover, for every direction v ∈ S1,

P(∃x ∈ sLv : ∂vfη(x) = 0, |fη(x)− `| < ε) < csε|log ε|,
where Lv denotes a unit line segment in direction v.

Proof. For each multi-index k such that |k| ≤ 2, the random field ∂kfη is a symmetric

shot noise field with kernel ∂kg and mark distribution µη. Hence, applying equation (A.3)
of Proposition A.1 (since Lemmas 2.1 and 2.2 guarantee the uniform exponential decay
of the mark distribution µη, we may take γ = 1 in this proposition), there exist constants
c1, c2 > 0 such that, for all η ≥ 0, |k| ≤ 2 and t ≥ 1,

(2.4) P(‖∂kfη‖[0,1]2,∞ ≥ c1t
2) ≤ c1e

−c2t.

Now define tε = | log ε|1/2, and let Ωε be the event that

max
|k|=1,2

‖∂kfη‖[0,1]2,∞ ≤ t2ε

which, by (2.4), has probability greater than 1 − c1 exp(−c3tε) for some c3 > 0 and all
sufficiently small ε > 0. Choose an integer n ≥ t2ε/ε, and tile B(s) with dse2n2 squares
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S1, . . . , Sdse2n2 of side-length 1/n. Let xk be the center of the square Ck. Then we have,
for some c4, c5 > 0,

P(∃x ∈ B(s) : ∇fη(x) = 0, |fη(x)− `| ≤ ε)

≤
dse2n2∑
k=1

P(Ωε, ∃x ∈ Sk : ∇fη(x) = 0, |fη(x)− `| ≤ ε) + P(Ωc
ε)

≤
dse2n2∑
k=1

P(|∇fη(xk)| ≤ t2ε/n, |fη(xk)− `| ≤ ε+ t2ε/n) + P(Ωc
ε)

≤ c4s
2n2 × (t2ε/n)2 × (ε+ t2ε/n) + P(Ωc

ε)

≤ 2c4s
2εt4ε + c1 exp(−c3tε) ≤ c5s

2εt4ε,

with the third inequality following from the uniform bound on the density of (fη,∇fη),
and the final inequality holding for all sufficiently small ε > 0. The proof of the first
statement is complete.

The proof of the second statement is analogous, except we choose an n ≥ tε/ε and tile
sLv with dsen line-segments of length 1/n. �

3. Criticality of the zero level

In this section we study the ‘critical’ properties of the excursion set E0 at the zero
level. In particular, we establish (i) positive association for crossing events, (ii) quasi-
independence for crossing events, (iii) the ‘box-crossing’ estimates, and finally (iv) the
absence of percolation (i.e. the first statement of Theorem 1.7). Since many of the argu-
ments are standard in percolation theory, we emphasise only on the aspects that differ in
the shot noise case.

Throughout this section we shall suppose that either Conditions 1.1 and 1.4 or Condi-
tions 1.2 and 1.5 hold; in the latter case we fix α > 0 to be an arbitrary constant. Note
that only the first two perturbations from Section 2.2 will play a role in this section; i.e.
we will only consider the fields fη,r.

3.1. Crossing events. We begin by introducing ‘crossing events’ for rectangles and an-
nuli. Let g be a continuous planar function let ` ∈ R be a level. For ρ1, ρ2 > 0, define
R[ρ1, ρ2] = [0, ρ1]× [0, ρ2], and let {g ∈ Cross`(ρ1, ρ2)} denote the event that there exists a
connected component of {g ≥ −`}∩R[ρ1, ρ2] that intersects both the ‘left’ and ‘right’ sides
of R, i.e. intersects both {0}× [0, ρ2] and {ρ1}× [0, ρ2]. Moreover, let {g ∈ Cross∗` (ρ1, ρ2)}
denote the event that there exists a connected component of {g ≤ −`} ∩ R[ρ1, ρ2] that
intersects both the ‘top’ and ‘bottom’ sides of R[ρ1, ρ2].

Similarly, for 0 < ρ1 < ρ2 define A[ρ1, ρ2] = {[−ρ2, ρ2]2 \ [−ρ1, ρ1]2}, and let {g ∈
Arm`(ρ1, ρ2)} denote the event that there exists a connected component of {g ≥ −`} ∩
A[ρ1, ρ2] that intersects both ∂[−ρ1, ρ1]2 and ∂[−ρ2, ρ2]2.

Collectively we shall refer to the events Cross`, Cross∗` and Arm` as ‘crossing events’. To
each crossing event we will associate its level `, and also its supporting domain, being the
compact domain D ⊂ R2 on which the event is defined (i.e. either the rectangle R[ρ1, ρ2]
or the annulus A[ρ1, ρ2]). Notice that the crossing events Cross` and Arm` are increasing
in both the function g and the level ` (i.e. {g ∈ Cross`} implies that {g′ ∈ Cross`′} for any
g′ ≥ g and `′ ≥ `), whereas the event Cross∗` is decreasing in both the field and the level.

Let us state some basic properties of these events:

Lemma 3.1. For each η ≥ 0, the crossing events for fη are almost surely continuity
events in the C0-topology on their supporting domains. Moreover,

{fη ∈ Cross`(ρ1, ρ2)} and {fη ∈ Cross∗` (ρ1, ρ2)}

form a partition of the probability space up to a null set.
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Proof. The first property is a consequence of the regularity of the level lines in Lemma 2.5.
Indeed, outside a null set (namely, the event that the regularity properties in Lemma 2.5 do
not hold) the crossing events Cross`(ρ1, ρ2) and fη ∈ Cross∗` (ρ1, ρ2) can each be expressed
as a countable disjoint union of sets that are open in the C0-topology. Moreover, these
open sets are contained in exactly one of Cross`(ρ1, ρ2) or Cross∗` (ρ1, ρ2), yielding the
second statement. �

Remark 3.2. Note that Lemma 3.1 fails for the truncated fields fη,r; for such fields there
is a positive probability that the zero-level set {x ∈ R2 : fη,r = 0} covers R[ρ1, ρ2], which
means that the crossing events are discontinuous in the C0-topology, and moreover,

P[fη,r ∈ Cross`(ρ1, ρ2)] + P[fη,r ∈ Cross∗` (ρ1, ρ2)] > 1.

We observe a simple consequence of the ‘self-duality’ of the zero level:

Proposition 3.3 (Square crossings). Let ρ > 0 and η ≥ 0. Then

P[fη ∈ Cross0(ρ, ρ)] = 1/2.

Proof. By Lemma 3.1,

{fη ∈ Cross0(ρ, ρ)} and {fη ∈ Cross∗0(ρ, ρ)}

form a partition of the probability space. On the other hand, by the symmetry of the
mark µ and the symmetry of the kernel g under reflection in the line {y = x}, the events
Cross0(ρ, ρ) and Cross∗0(ρ, ρ) are of equal probability, and so this probability is 1/2. �

3.2. Positive associations. We next verify the crucial ‘positive-association’ property for
crossing events (which is the only reason we insist that g ≥ 0 in Conditions 1.1 and 1.2):

Proposition 3.4 (Positive associations). Let η ≥ 0, and let E1 and E2 be two crossing
events that are either both increasing or both decreasing. Then

P[{fη ∈ E1} ∩ {fη ∈ E2}] ≥ P[fη ∈ E1]P[fη ∈ E2].

Proof. Without loss of generality suppose that E1 and E2 are both increasing. Recall the
definition of the ε-discretised field f εη , and notice that the crossing events

{f εη ∈ E1} and {f εη ∈ E2}

can be viewed as increasing functions on the (countable) product spaces that generate f εη .
Hence by the classical Harris/FKG inequality for product spaces (see [Gri99, Section 2.2]),

P[{f εη ∈ E1} ∩ {f εη ∈ E2}] ≥ P[f εη ∈ E1]P[f εη ∈ E2].

Since f εη → fη in the C0-topology on compact sets (Lemma 2.4), and since crossing events
are continuity events for the limit fη in this topology (Lemma 3.1), sending ε→ 0 yields
the result. �

Remark 3.5. We do not claim positive associations for the truncated field fη,r because it
does not follow from our proof (see Remark 3.2), and we do not need it.

3.3. Quasi-independence. We next show that crossing events that are supported on
well-separated domains are approximately independent.

As a preliminary, we have a general comparison result that bounds the effect of trunca-
tion on the probability of crossing events. Recall that crossing events are either increasing
or decreasing; we call a collection of crossing events monotonic if they are either all in-
creasing or all decreasing.

Proposition 3.6. There exist c0, c1, c2 > 0 such that, for every η ≥ 0, r,R, t ≥ c0, every
compact set D ⊂ R2 of diameter at most R, and every monotonic collection {Ai}i≤n of
crossing events whose supports are contained in D,

(3.1) |P (fη ∈ A)− P (fη,r ∈ A)| < c1nR
2t2r1−α(log r)2

(
(log r)2 + (log t)2

)
+ c1R

2e−c2t,

where A = ∩i≤nAi.
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Proof. For each crossing event Ai, let `i and Si ⊂ D denote its associated level and
support respectively. Recall that each Si has a piece-wise linear boundary (with one or
two connected components, depending on the crossing event). For a c > 0, define the
event Ω1

c that, for each Si:

• There is no critical point x ∈ Si of fη such that |fη(x)− `i| < c;
• For each boundary line-segment L ⊂ ∂Si, fη|L has no critical point x ∈ L such

that |fη(x)− `i| < c;
• None of the corners of ∂Si have |fη(x)− `i| < c.

By the Morse lemma (see, e.g., [Han02, Theorem 7]), on the event Ω1
c the level set {fη = `}

inside Si (considered as a set stratified by its boundary line-segments and corners) has the
same topology for all levels ` ∈ [`i − c, `i + c]. In particular, the events

{fη ∈ A} ∩ Ω1
c , {fη + c ∈ A} ∩ Ω1

c and {fη − c ∈ A} ∩ Ω1
c

all agree up to a null set. Define now the event Ω2
c that

‖fη − fη,r‖∞,D ≤ c.

By the monotonicity of the collection of crossing events,

{fη ∈ A} ∩ Ω1
c ∩ Ω2

c and {fη,r ∈ A} ∩ Ω1
c ∩ Ω2

c

also agree up to a null set. To finish the proof, recall that by Lemma 2.3, there exist
c1, c2 > 0 such that P(Ω2

c) > 1− c1R
2e−c2t for the choice

(3.2) c = c1t
2 r1−α(log r)2.

Moreover, by Proposition 2.6 and the union bound, there is a c3 > 0 such that, for all
small enough c > 0,

P(Ω1
c) > 1− c3nR

2c| log c|2.

Hence, setting c as (3.2), there is a c4 > 0 such that

P(Ω1
c ∩ Ω2

c) > 1− c4nR
2t2r1−α(log r)2((log r)2 + (log t)2)− c1R

2e−c2t

which gives the result. �

Our main quasi-independence result is a corollary of the previous proposition.

Theorem 3.7 (Quasi-independence). There exist c0, c1, c2 > 0 such that, for every η ≥ 0
and r,R, t ≥ c0, every pair of compact sets D1 ⊂ R2 (resp. D2) of diameter at most R
and such that r = dist(D1, D2), and every pair of monotonic collections of n1 (resp. n2)
crossing events (E1

i )i≤n1 (resp. (E2
i )i≤n2) that are supported on D1 (resp. D2),

(3.3)
∣∣P (fη ∈ E1 ∩ E2

)
− P

(
fη ∈ E1

)
P
(
fη ∈ E2

)∣∣
< c1 max{n1, n2}R2t2r1−α(log r)2((log r)2 + (log t)2) + c1R

2e−c2t

where Ej = ∩i≤njE
j
i for j ∈ {1, 2}.

Proof. This follows immediately from Proposition 3.6 by replacing fη with its truncated
version fη,r, and noticing that the events {fη,r ∈ E1} and {fη,r ∈ E2} are independent
(see the proof of [MV19, Theorem 4.2] for details). �

Remark 3.8. Equation (3.3) (with the setting t = (logR)2) implies that two crossing events
that are supported on domains of diameter at most R and separated by a distance greater
than r > c1R are approximately independent in the sense that, as R→∞,

(3.4) |P (fη ∈ E1 ∩ E2)− P (fη ∈ E1)P (fη ∈ E2)| < c2R
3−α(logR)6 → 0.

In fact, this is precisely the origin of the assumption α > 3 in Condition 1.1.
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3.3.1. Box-crossing estimates. We next establish the ‘box-crossing’ estimates (also known
as the Russo-Seymour-Welsh estimates), which state that the probability of crossing events
for rectangles are bound away from zero and one uniformly in the scale.

Theorem 3.9 (Box-crossing estimates). For each η ≥ 0 and ρ1, ρ2 > 0,

inf
R≥1

P(fη ∈ Cross0(Rρ1, Rρ2)) > 0 and sup
R≥1

P(fη ∈ Cross0(Rρ1, Rρ2)) < 1.

Proof. In [Tas16], Tassion gave general conditions for a translation invariant colouring of
the plane to satisfy the box-crossing estimates. In our setting, Tassion’s argument is valid
since the following four conditions are satisfied for the fields fη (see [RV19b, Section 4]
and [BG17, Section 4.2] for details):

(1) The square-crossing property in Proposition 3.3;
(2) The positive association in Proposition 3.4;
(3) The symmetry guaranteed by Conditions 1.1 and 1.2; and
(4) The quasi-independence guaranteed by Theorem 3.7. �

3.3.2. Absence of percolation at the zero level. Finally, we deduce that the connected
components of E` are finite for all ` ≤ 0, completing the proof of the first statement of
Theorem 1.7.

Theorem 3.10 (One-arm decay). There exist c, cArm > 0 such that, for every η ≥ 0 and
1 ≤ r ≤ R,

P (fη ∈ Arm0(r,R)) < c
( r
R

)cArm

.

Hence almost surely E0 has bounded connected components.

Proof. This follows from the positive association in Proposition 3.4, the quasi-independence
in Theorem 3.7, and the box-crossing estimates in Theorem 3.9 (see the proof of [RV19b,
Proposition 4.5] for details). Note that the constant cArm depends on the mark µ and
the kernel g, but can be chosen uniformly over a collection of kernels gi whose derivatives
|∂kgi|, |k| ≤ 2, decay more and more rapidly. �

Remark 3.11. As shown in [BG17, Section 4.2], given the quasi-independence in Theo-
rem 3.7, the properties established for the excursion set E0 in Theorems 3.9 and 3.10 hold
equally for the zero level set {x ∈ R2 : fη(x) = 0}.

4. The phase transition in the case of bounded Mills ratio

We now study the phase transition that occurs when the level passes through zero. The
main result will be the following description of the phase transition for crossings of 2R×R
rectangles:

Theorem 4.1. For every ` > 0 there exists a c > 0 such that, for every R ≥ 1,

P (f ∈ Cross`(2R,R)) ≥ 1− e−cR.

Theorem 1.7 can be deduced from Theorem 4.1 (along with the previously stated The-
orems 3.9 and 3.10) in a straightforward way:

Proof of Theorem 1.7. The boundedness of excursion sets components at levels ` ≤ 0
follows from the fact that, by Theorem 3.10, P (f ∈ Arm0(1, R)) → 0 as R → ∞. More
precisely, suppose that E0 had an unbounded component with positive probability. Then
trivial regularity considerations imply that it would have a positive Lebesgue measure,
and hence by stationarity 0 would be in this component with positive probability, which
we just proved was impossible.

The existence of a unique unbounded excursion sets component in the case ` > 0 is a
consequence of Theorem 4.1 by standard gluing arguments. Indeed, by Theorem 4.1 we
have ∑

k≥1

(
1− P

(
Cross`(2

k+1, 2k)
))
<∞,
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and so, by the Borel-Cantelli lemma, there exists a k0 ≥ 1 such that

{f ∈ Cross`(2
k+1, 2k)}

occurs for each k ≥ k0. Arranging the 2k+1 × 2k rectangles (and rotated versions) so that
the resulting crossings overlap, this implies the existence of a unique unbounded connected
component in {f ≥ −`}.

The fact that `-level sets are almost surely bounded is an immediately consequence of
the above, since an unbounded `-level line would lie at the interface between unbounded

components of E` and Ec` , and by the above (and the symmetric f
d
= −f) at least one of

these sets has only bounded components almost surely.
The remainder of the claims in Theorem 1.7 are proven in Theorems 3.9 and 3.10. �

In this section we will prove Theorem 4.1 in the case of bounded Mills ratio (Condi-
tions 1.1 and 1.4); the case of bounded Mills ratio in the tails (Condition 1.2) will be the
focus of the next section. In particular, in this section we set the smoothing parameter η
to zero.

4.1. A differential inequality. The first step is to establish a differential inequality,
with respect to the level `, for the probability of {f εr ∈ Cross`(2R,R)}. Our method
makes use of the OSSS inequality (described below).

In fact, instead of differentiating with respect to the level `, it will initially be more
natural to differentiate with respect to a change in the mean of the mark distribution, i.e.

the variables h = (hi) in the definition of the field f ε,hr (see Section 2.2). The differential
inequality is the following:

Proposition 4.2. There exists a h0 > 0 such that, for all r ≥ 1, R > 4r, ` ∈ R, ε > 0
and h ∈ [0, h0],

− ∂

∂h
log
(
1− P(f ε,hr ∈ Cross`(2R,R))

)
≥ (c−1

Mills/4)× P(f ε,hr ∈ Cross`(2R,R))

inf r̄∈(2r,R/2) (2r̄/R+ P(f εr ∈ Arm−`(2r, r̄)))
.

Before proving Proposition 4.2, let us recall the OSSS inequality. Let Λ be a finite
set, and let (EΛ, E⊗Λ, µ⊗Λ) be a product probability space. Given an event A ∈ E⊗Λ

and coordinate i ∈ Λ, the influence Iµi (A) of the ith coordinate on A is defined as the

probability that resampling the ith coordinate modifies 1A, i.e.,

Iµi (A) = P(1A(ω) 6= 1A(ω̃)),

where ω
d
= µ⊗Λ and where ω̃ = ω except that ωi is resampled independently.

Now, let A be a random algorithm that determines A, i.e. a procedure that reveals step-
by-step the coordinates of ω and stops once the value of 1A(ω) is known (the algorithm
should also be adapted, i.e. the next coordinate to be revealed should be measurable with
respect to the coordinates already revealed and auxiliary randomness). The revealment
δµi (A) of the ith coordinate for the algorithm A is the probability that ωi is revealed by
the algorithm.

The OSSS inequality gives an upper bound on the variance of an event A (in a product
space) in terms of the influences and revealments of a random algorithm determining A:

Theorem 4.3 (OSSS inequality (see [OSSS05] or [MV19, Theorem 2.1])). For every
A ∈ E⊗Λ and random algorithm A determining A,

Varµ(1A(ω)) ≤
∑
i∈Λ

δµi (A)Iµi (A).

Let us now describe how we apply the OSSS inequality. Recall the field f ε,hr , and

notice that the event {f ε,hr ∈ Cross`(2R,R)} is measurable with respect to the (finite-
dimensional) product space indexed by Λ = εZ2∩[−2R−r, 2R+r]2, where each coordinate
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consists of the pair (Bi, Y
µ
i ), and where Bi is a Bernoulli random variable with parameter

ε2 and Y µ
i is an independent random variable drawn from the mark distribution µ.

The algorithm A that we use to determine the crossing event {f ε,hr ∈ Cross`(2R,R)} is
the same as that used in [MV19] (and inspired by [AB18, BKS99, SS10]). More precisely,
we first fix a random horizontal line L = {y = U} where U is uniform in [0, R]. Then
we reveal all the coordinates i ∈ Λ that are within a distance 2r from the line L, which
determines the values of the field up to a distance at least r from L. Finally, we iteratively

reveal all coordinates that are within a distance 2r from a component of {f ε,hr ≤ −`} that
intersects L, terminating with value 0 if a connected component is found to intersect both
the top and bottom sides of the 2R×R rectangle, and terminating with value 1 if no such
component is found.

The key properties of this algorithm are that it:

• almost surely terminates with value 1{fε,hr ∈Cross`(2R,R)}; and

• reveals a coordinate i ∈ Λ if and only if there exists a connected component of

{f ε,hr ≤ −`} that connects the ball Bi(2r) to the line L.

Let us give a simple upper bound for the revealments δi(A) of this algorithm. Suppose
that h ≥ 0. By symmetry, and since arm events are increasing, δi(A) is bound above by
the probability that a connected component of {f εr ≥ `} connects Bi(2r) to L. Since for
any r̄ < R/2 the distance between i and L is larger than r̄ with probability greater than
1− 2r̄/R, by averaging over L we have

δi(A) ≤ 2r̄/R+ P(f ε,hr ∈ Arm−`(2r, r̄)),

valid for any r̄ ∈ (2r,R/2).
Now suppose that R > 4r and let Ii be the influence of coordinate i ∈ Λ on the event

{f ε,hr ∈ Cross`(2R,R)}, that is, the probability that resampling the pair (Bi, Y
µ
i ) modifies

(the indicator function of) the event. Then applying the OSSS equality to the algorithm
described above and rearranging,∑

i∈Λ Ii

1− P(f ε,hr ∈ Cross`(2R,R))
≥ P(f ε,hr ∈ Cross`(2R,R))

inf r̄∈(2r,R/2) (2r̄/R+ P(f εr ∈ Arm−`(2r, r̄)))
.(4.1)

We can now complete the proof of the differential inequality:

Proof of Proposition 4.2. First, we fix h0 > 0 sufficiently small so that

P[Y µ
i ≥ h0]

P[Y µ
i ≤ h0]

> 1/2;

such an h0 exists since µ is symmetric and not supported on {0}. It is sufficient to prove
that, for each i ∈ Λ and h ∈ [0, h0],

∂

∂hi
P(f ε,hr ∈ Cross`(2R,R)) ≥ (c−1

Mills/4)Ii,(4.2)

where Ii is defined above (4.1), since then we have

− ∂

∂h
log(1− P(f ε,hr ∈ Cross`(2R,R))) ≥

∑
i
∂
∂hi

P(f ε,hr ∈ Cross`(2R,R))

1− P(f ε,hr ∈ Cross`(2R,R))

≥ (c−1
Mills/4)

∑
i Ii

1− P(f ε,hr ∈ Cross`(2R,R))

and so (4.1) gives the result.
We shall establish (4.2) conditional on (Bi)j∈Λ\{i} and (Y µ

j )j∈Λ\{i} (note that if µ has
an atom the derivative may be infinite for some values of the conditioning, but that only
helps us).

First, let us bound the influence Ii from above. Since the event Cross`(2R,R) is increas-
ing, there exists a threshold ω ∈ [−∞,∞], measurable with respect to the conditioning

on (Bi)j∈Λ\{i} and (Y µ
j )j∈Λ\{i}, such that f ε,hr ∈ Cross`(2R,R) if Bi(Y

µ
i + hi) > ω and
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f ε,hr /∈ Cross`(2R,R) if Bi(Y
µ
i + hi) < ω. Hence the influence Ii is at most the probability

that Bi(Y
µ
i + hi) ≥ ω but Bi(Y

µ
i + hi) ≤ ω after resampling (Bi, Y

µ
i ), or vice versa.

If ω > 0, this event implies that Bi = 1, Y µ
i + hi ≥ ω, and after resampling either

Bi = 1, Y µ
i − hi ≤ ω or Bi = 0 (or vice versa), and hence the probability of this event is

at most

2ε2P(Y µ
i ≥ ω − hi)

(
ε2P(Yi ≤ ω − hi) + (1− ε2)

)
≤ 2ε2P(Y µ

i ≥ ω − hi).

If ω ≤ 0, this event implies that either Bi = 1, Y µ
i − hi ≥ ω or Bi = 0, and after

resampling Bi = 1, Y µ
i − hi ≤ ω (or vice versa), and hence the probability of this event is

at most

2ε2P(Y µ
i < ω − hi)

(
ε2P(Yi ≥ ω − hi) + (1− ε2)

)
≤ 2ε2P(Y µ

i ≤ ω − hi).
Putting this together, we have shown that

(4.3) Ii ≤ 2ε2

{
P(Y µ

i ≥ ω − hi) if ω > 0

P(Y µ
i ≤ ω − hi) if ω ≤ 0

Turning to the derivative, we see that

∂

∂hi
P(f ε,hr ∈ Cross`(2R,R)) ≥ ε2fµa.c.(ω − hi).

If ω − hi ≥ 0, then by the definition of the Mill’s ratio

fµa.c.(ω − hi) ≥ c−1
MillsP(Y µ

i ≥ ω − hi).
Similarly, if ω − hi ≤ 0 then by symmetry

fµa.c.(ω − hi) ≥ c−1
MillsP(Y µ

i ≤ ω − hi).
Altogether we have shown that

(4.4)
∂

∂hi
P(f ε,hr ∈ Cross`(2R,R)) ≥ c−1

Millsε
2

{
P(Y µ

i ≥ ω − hi) if ω ≥ hi
P(Y µ

i ≤ ω − hi) if ω ≤ hi
.

Combining (4.3) and (4.4), we see that

∂

∂hi
P(f ε,hr ∈ Cross`(2R,R)) ≥ (c−1

Mills/2)ε2Ii

whenever ω ≤ 0 or ω ≥ hi. On the other hand, if ω ∈ [0, hi] then we still have

∂

∂hi
P(f ε,hr ∈ Cross`(2R,R)) ≥ (c−1

Mills/2)Ii ×
P(Y µ

i ≤ ω − hi)
P(Y µ

i ≥ ω − hi)
.

Moreover, since this implies hi − ω ≤ hi ≤ h0, we have

P(Y µ
i ≤ ω − hi)

P(Y µ
i ≥ ω − hi)

=
P(Y µ

i ≥ hi − ω)

P(Y µ
i ≤ hi − ω)

≥
P(Y µ

i ≥ h0)

P(Y µ
i ≤ h0)

> 1/2

by the symmetry of µ and our definition of h0. Hence we have established (4.2) in all
cases, which completes the proof. �

4.2. A first description of the phase transition. We next use the differential inequal-
ity in Proposition 4.2 to establish a ‘qualitative’ description of the phase transition. The
main result of this section is the following:

Theorem 4.4. For every ` > 0, as R→∞,

P (f ∈ Cross`(2R,R))→ 1.

Let us fix ` > 0. We also define positive exponents

(4.5) γ ∈ (0, 1) , ζ =
γcArm + 1

cArm + 1
∈ (γ, 1) and ξ ∈ (0, 1− ζ)

where cArm > 0 is the constant appearing in Theorem 3.10. For the remainder of the
section we fix the scales

r = rR = Rγ →∞ and h = hR = R−ξ → 0.
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We first state an auxiliary result that shows that, if ε = εR → 0 decays sufficiently

quickly, the fields f , f εR and f ε,hr are all close with overwhelming probability.

Lemma 4.5. There exists a scale ε = εR → 0, constants c1, c2 > 0, and a coupling of
(f, fε) such that, for all R ≥ 1,

(4.6) P(‖f − f εr ‖B(2R),∞ ≥ `/2) < c1e
−c2(logR)2

and

(4.7) P(‖f − f ε,hr ‖B(2R),∞ ≥ `/2) < c1e
−c2(logR)2 .

Proof. By Lemma 2.4, one can find a scale εR → 0 and a coupling of (f, fε) such that

‖f0,h
r − f ε,hr ‖B(2R),∞ ≥ `/2

has probability converging to zero as rapidly as desired. Moreover, by Lemma 2.3 (t = Rγ
′

for some γ′ ∈ (0, (α− 1)γ/2)), there are c1, c2 > 0 such that

P(‖f − fr‖B(2R),∞ ≥ c1R
2γ′r1−α(log r)2) < c1R

2e−c2R
γ′
.

Since
R2γ′r1−α(log r)2 = R2γ′−γ(α−1)(logRγ)2 → 0

by the definition of γ′, we deduce that ‖f−fr‖B(2R),∞ is also larger than `/2 with probabil-
ity decaying faster than any polynomial. Finally, applying equation (A.3) of Proposition
A.1 (and taking γ =∞) there are c1, c2 > 0 such that

P(‖fr − f0,h
r ‖B(2R),∞ > h(logR)2) ≤ c1R

2e−c2 log(R)2 .

Since hr = R−ξ for ξ > 0, this shows that ‖fr − f0,h
r ‖B(2R),∞ is also larger than `/2

with probability decaying faster than any polynomial. Putting this together gives the
result. �

We can now prove Theorem 4.4:

Proof. Define εR → 0 as in Lemma 4.5. We first make use of the simple fact that if f and
g are fields such that P[‖f − g‖ ≥ t] < s, and A is an increasing event, then

(4.8) P(f + t ∈ A) ≥ P(g ∈ A)− s.
In particular, by (4.6) and (4.7) this implies the existence of c1, c2 > 0 such that, for
sufficiently large R,

P(f εr ∈ Arm−`/2(2r, r̄)) ≤ P(f ∈ Arm0(2r, r̄)) + c1e
−c2(logR)2

and
P(f ε,hr ∈ Cross`/2(2R,R)) ≥ P(f ∈ Cross0(2R,R))− c1e

−c2(logR)2 .

Setting r̄ = Rζ ∈ (2r,R/2) (where ζ > 0 is defined in (4.5)), by Theorems 3.9 and 3.10 we
deduce the existence of a c > 0 such that

P(f εr ∈ Arm−`/2(2r, r̄)) ≤ P(f ∈ Arm0(2r, r̄)) + c1e
−c2(logR)2 ≤ c3R

−(ζ−γ)cArm ,

and

(4.9) P(f ε,hr ∈ Cross`/2(2R,R)) ≥ P(f ∈ Cross0(2R,R))− c1e
−c2(logR)2 ≥ c4,

eventually as R → ∞, for some c3, c4 > 0. Applying Proposition 4.2 we have, for some
c5, c6 > 0,

− ∂

∂h
log
(
1− P(f ε,hr ∈ Cross`/2(2R,R))

)
≥ c5c

−1
Mills ×

P(f ε,hr ∈ Cross`(2R,R))

2r̄/R+ P(f εr ∈ Arm−`(2r, r̄))

≥ c6 c
−1
MillsR

1−ζ ,

where we used the fact 1 − ζ = (ζ − γ)cArm by definition. Integrating both sides of this
inequality from 0 to h, and using (4.9) to bound the evaluation at h = 0, we have

P
(
f ε,hr ∈ Cross`/2(2R,R)

)
≥ 1− (1− c4)e−c6c

−1
MillsR

1−ζh.
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By our choice of h = hR, the latter quantity converges to 1, and so applying (4.7) and (4.8)
one more time gives the result. �

4.3. Sharpness of the phase transition. The proof of Theorem 4.1 follows from The-
orem 4.4 from a classical bootstrapping argument that is borrowed from [MV19].

We shall need two auxiliary results. The first result is a kind of ‘sprinkled’ version of
the quasi-independence statement in Theorem 3.7 that we deduce from Lemma 2.3.

Proposition 4.6. Let γ′ > 0. There exist c1, c2 > 0 such that, for every R ≥ 1, every pair
of compact sets D1 ⊂ R2 (resp. D2) of diameter at most 5R and such that dist(D1, D2) ≥
Rγ
′
, and every pair of every decreasing collections of n1 (resp. n2) crossing events (E1

i )i≤n1

(resp. (E2
i )i≤n2) that are supported on D1 (resp. D2),

P
(
f + c1R

2+γ′(1−α)(logR)2 ∈ E1 ∩ E2
)
≤ P(f ∈ E1)P(f ∈ E2) + c1e

−c2R,

where Ej = ∩i≤njE
j
i for j ∈ {1, 2}.

Proof. This follows by applying Lemma 2.3 with the settings r = Rγ
′

and t = R (see
[MV19, Proposition 6.2] for details, although note that in [MV19, Proposition 6.2] it was

possible to get an improved bound by taking t =
√
R since the relevant error probabilities

decayed square-exponentially). �

The second is a functional inequality which we take from [MV19, Lemma 6.3]:

Lemma 4.7. Let γ′ ∈ (0, 1) and let (aR)R≥0 be a positive function such that aR → 0 and
for which there exist c1, c2, R0 > 0 such that, for all R ≥ R0,

a2R+Rγ
′ ≤ c1a

2
R + e−c2R.

Then there exist c3, c4 > 0 and a positive sequence (mn)n≥1 such that, for all n ≥ 1,

2n ≤ mn ≤ c32n and amn ≤ e−c4mn .

Proof. The proof is identical to the proof of Lemma [MV19, Lemma 6.3] after replacing

a2R+
√
R with a2R+Rγ′ . Indeed the only properties of the function f(x) =

√
R used in that

proof are that (i) f(x)/x decreases monotonically to 0 as x → ∞, and (ii) f(2n)/2n is

summable over n. Since these are satisfied also for f(x) = xγ
′
, the proof goes through. �

We can now complete the proof of Theorem 4.1 (in the bounded Mills ratio case):

Proof of Theorem 4.1 (under Conditions 1.1 and 1.4). Define the exponents

γ′ ∈
( 2

α− 1
, 1
)

and γ′′ ∈
(
0, (α− 1)γ′ − 2

)
,

which is possible since α > 3. Fix ` = 0, and define the increasing sequence of levels
`R = `−R−γ′′ . Note that

(4.10) `2R+Rγ′ − `R ≥ `2R − `R = (1− 2−γ
′′
)R−γ

′′ ≥ c1R
2+γ′(1−α)(logR)2

eventually for sufficiently large R. Since Cross`(2R,R) is increasing in ` and since `R < `,
defining

aR = P (f /∈ Cross`R(2R,R)) ,

it is sufficient to prove the existence of a c1 > 0 such that, for sufficiently large R,

(4.11) aR ≤ e−c1R.
We deduce (4.11) from the following functional inequality for aR, whose proof is as in
[MV19, Lemma 6.3] (with Proposition 4.6 and (4.10) the crucial inputs): There exists a
c2 > 0 such that, for sufficiently large R ≥ 1,

(4.12) a2R+Rα′ ≤ 49a2
R + e−c2R.

Recalling that Theorem 4.4 implies that aR → 0, an application of Lemma 4.7 then yields
the existence of constants c3, c4 > 0 and a positive subsequence (mn)n≥1 such that, for all
n ≥ 1,

2n ≤ mn ≤ c32n and amn ≤ e−c4mn .
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This implies (4.11) for R ∈ {mn}n≥1, which can be extended to all R ≥ 0 by standard
gluing arguments. �

5. The phase transition in the general case

We now turn to the proof of Theorem 4.1 in the general case of bounded Mills ratio in
the tails (Conditions 1.2 and 1.5).

Recall the family of smoothed fields fη introduced in Section 2.2. The first step is to
adapt the argument we used to establish Theorem 4.1 in the bounded Mills ratio case to
the field fη for a carefully chosen sequence η = ηR → 0.

Recall the exponents γ, ζ, ξ > 0 defined in (4.5). For this section we shall redefine these
exponents, and introduce a new exponent κ > 0, as follows:

(5.1) γ ∈
(

0,
cArm

2 + 3cArm

)
, ζ =

γcArm + 1

cArm + 1
∈ (γ, 1) , κ ∈ (2γ, 1−ζ) , η ∈ (0, 1−ζ−κ).

It is easy to check that such a choice is possible; indeed the condition

(5.2) γ <
cArm

2 + 3cArm

has been defined so as to be equivalent to

2γ < 1− γcArm + 1

cArm + 1
= 1− ζ,

which ensures that κ is well-defined. Define also the scales r = rR = Rγ → ∞ and
h = hR = R−ξ → 0 as before, and introduce the scale η = η(R) = R−κ → 0.

Theorem 5.1. For every ` > 0 there exists a c > 0 such that, for every R ≥ 1,

P(fη ∈ Cross`(2R,R)) ≥ 1− e−cR.
Proof. It is straightforward to check that the proof of Theorem 4.1 in the case of bounded
Mills ratio (in Section 4) goes through replacing f with fη. Indeed, all of the estimates
used are uniform in η ≥ 0, with the single exception of the final step of the proof of
Theorem 4.4, in which we need to verify that

(5.3) P(f ε,hη,r ∈ Cross`/2(2R,R)) ≥ 1− (1− c4)e−c6c
−1
Mills(µη)R1−ζh

tends to 1 as R→∞. Since cMills(µη) ≤ 1/η by construction (Lemma 2.2), we have

c−1
Mills(µη)R

1−ζh ≥ R−κR1−ζR−ξ →∞,
where the convergence holds by the choice of the parameters in (5.1). Hence we verify
that the probability in (5.3) converges to 1, as required. �

The result will now follow by exploiting a natural coupling of fη and f (or rather their
truncations) such that they agree outside a small set.

Lemma 5.2. Let c1 > 0 be as in Lemma 2.2, and for every t > 0 let Pt be a Poisson
point process on R2 with intensity t. Then there exists a coupling of fη,r, fr and Pc1η such
that fη,r and fr are equal outside the set⋃

i∈Pc1η

({i}+B(r)).

Proof. Recall that dTV(µ, µη) ≤ c1η by construction (Lemma 2.2). By the definition of
total variation distance, there exists a probability distribution µ′ such that that fr,η can
be constructed from fr by thinning the Poisson point process P used to define fr to have
intensity 1− c1η, and adding the field∑

i∈Pthin

Y µ′

i gr(x− i)

where Pthin denotes the set of thinned points, and Y µ
i are independent draws from µ′.

Since Pthin
d
= Pc1η by the thinning property of the Poisson point process, and the support

of gr lies in B(r), we have the result. �



PERCOLATION OF THE EXCURSION SETS OF PLANAR SYMMETRIC SHOT NOISE FIELDS 19

Let us now finish the proof of Theorem 4.1 in the general case:

Proof of Theorem 4.1 (under Conditions 1.2 and 1.5). We first claim that, as a conse-
quence of Theorem 5.1

(5.4) P(fη,r ∈ Cross`(2r, r)) ≥ 1− r2/R2(log r)−1.

Indeed, by Proposition 3.6,

|P(fη ∈ Cross`(2r, r))− P(fη,r ∈ Cross`(2r, r))|
is at most

c1t
2r3−α(log r)2((log r)2 + (log t)2) + c1r

2e−c2t

for all large enough t > 0, where α > 0 is a constant we can set arbitrarily large. Setting
t = (log r)2 and α > 1 + 2/γ, the above tends to zero, and so the claim follows from
Theorem 5.1.

The next step is to show that

(5.5) P (fr ∈ Cross`(2R,R))→ 1

as R → ∞. For this we will introduce a discrete percolation model on the edges of (a
translated copy of) the lattice rZ2, as follows.

Define the index sets

Ih = {1, . . . , d2R/re} and Iv = {1, . . . , bR/rc},
and let Lh and Lv be respectively a unit line-segment in the horizontal and vertical direc-
tions from the origin. Then define a set of horizontal edges T h = {ehi,j}i∈Ih,j∈Iv where

ehi,j = r(i− 1/2, j − 1/2) + Lh,

and similarly a set of vertical edges T v = {evi,j}i∈Ih,j∈Iv where

evi,j = r(i− 1/2, j − 1/2) + Lv.

Notice that T = Th ∪ Tv is then a translation of the grid

rZ2 ∩ [rd2R/re, rbR/rc].
We then define a percolation model on T by declaring a horizontal edge eh(i,j) ∈ Th to be

open for the field g ∈ {fr, fη,r} if and only if

{g(· − r(i, j)) ∈ Cross`(2r, r)}.
and, similarly, a vertical edge eh(i,j) ∈ Th to be open for the field g ∈ {fr, fη,r} if and only

if
{g(· − r(i, j)) ∈ Cross`(r, 2r)}.

Let C be the event that the percolation model on T has a left-right crossing. The key
property that the construction offers is that

(5.6) {g ∈ C} ⊂ {g ∈ Cross`(2R,R)}.
Now, by (5.4) and the symmetry of the shot noise field, each edge in T is open for fη,r

with probability exceeding 1−R−(2−2γ)(logR)−1. Since there are O((R/r)2) = O(R2−2γ)
edges in T , by the union bound the probability that all edges are open for fη,r tends to
one. Moreover, by Lemma 5.2, there is a coupling of fr, fη,r, and a Poisson point process
Pc1η of intensity c1η, such that each edge in T is open for fη,r if and only if it is open for
fr except for the edges intersecting the set

(5.7)
⋃

i∈Pc1η

({i}+B(r)).

Since
ηr2 = R−κR2γ → 0,

an edge e ∈ T intersects (5.7) with probability tending to zero. Hence by standard
properties of sub-critical percolation, if edges of T are closed if and only if they intersect
(5.7) then the event C occurs with probability tending to one. Thus C occurs for fr with
probability tending to one, and hence we deduce (5.5) from (5.6).
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Finally we show that

(5.8) P(f ∈ Cross`(2R,R))→ 1.

Again, by Proposition 3.6,

|P(f ∈ Cross`(2R,R))− P(fr ∈ Cross`(2R,R))|
is at most

c1t
2R2r1−α(log r)2((log r)2 + (log t)2) + c1R

2e−c2t.

Setting t = (log r)2 and α > 1 + 2/γ, the above tends to zero, and so the claim follows
from (5.5).

Since (5.8) is the analogue of Theorem 4.4, the conclusion of Theorem 4.1 then follows
by the same bootstrap argument as we used in the bounded Mills ratio case. �

Remark 5.3. A careful analysis of this proof shows that, rather than requiring the super-
polynomial decay of g (and its first two derivatives), it is sufficient that the kernel decays
polynomially with exponent α > 1 + 2

γ . On the other hand, the constraint on γ in (5.2) is

also fixed by the proof (in particular, by the need to fix κ ∈ (2γ, 1 − ζ)), and combining
these we have

α > 7 +
4

cArm
,

i.e. the required exponent α depends on the arm decay exponent at the zero level.
Since the value of cArm that comes out of the proof of Theorem 3.10 is difficult to

quantify (although in principle it could be made explicit), it is difficult to extract an
explicit polynomial decay condition that we could substitute in Condition 1.2 in place of
super-polynomial decay. Nevertheless, even under the most optimistic assumption that
cArm takes its predicted value from critical percolation theory (cArm = 5/48), the required
decay exponent would need to be large (α > 227/5 ≈ 45).

Appendix A.

A.1. Concentration inequalities. In this section we prove concentration inequalities
for shot noise fields with unbounded marks, based on the work of Reynaud-Bouret [RB03]
on Poisson stochastic integrals.

Our result concerns shot noise fields in arbitrary dimension, i.e. we consider the field

f(x) =
∑
i∈P

Y µ
i g(x− i)

where g(x) ∈ L1(Rd) is a kernel, P is a Poisson point process on Rd with unit intensity,
and {Y µ

i } are i.i.d. random variables drawn from a mark distribution µ with finite mean.
We assume that the kernel g decays polynomially with exponent α > d, i.e., there exists
a c1 > 0 such that

(A.1) g(x) ≤ c1(1 + |x|)−α.
We also assume that the mark distribution decays stretched-exponentially with exponent
γ, i.e., there are constants γ > 0 and c2, u0 ≥ 0 such that

(A.2) µ((u,∞)) ≤ c2 exp(−uγ), u ≥ u0.

To state our result we define the auxiliary function

[x] =

{
(1 + log |x|)

2
γ , |x| ≥ 1,

1, |x| < 1.

Moreover, for a function h : Rd → R, we introduce the auxiliary functions

h̃(x) = [x]h(x) and ĥ(x) = sup
y∈B
|h̃(x+ y)|,

where B = [−1/2, 1/2]d. Finally we define the positive constant

κ = 2 + c2

∫
Rd

exp(−(1 + log |x|)2)/2) dx.
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Proposition A.1 (Concentration with unbounded marks). Suppose that g and µ satisfy
(A.1) and (A.2). Then the following hold:

(1) For all t, s ≥ 1,

P
(
‖f‖∞,sB ≥ t

1
γ

(
‖ĝ‖L1 +

√
2t‖ĝ‖L2 +

t

3
‖ĝ‖∞

))
≤ s2κe−t/2.(A.3)

(2) Assume that µ is symmetric. Then, for all t ≥ 1,

P
(
|f(0)| ≥ t

1
γ

(√
2t‖g̃‖L2 +

t

3
‖g̃‖∞

))
≤ κe−t/2.(A.4)

Suppose furthermore that g is C1-smooth, and there exists a c3 > 0 such that, for
all i = 1, . . . , d,

∂ig(x) ≤ c3(1 + |x|)−α−1.

Then for all t, s ≥ 1,

P
(
‖f‖∞,sB ≥ dt

1
γ

(√
2t‖g̃‖L2 +

t

3
‖g̃‖∞ + ‖∇̂g‖L1 +

√
2t‖∇̂g‖L2 +

t

3
‖∇̂g‖∞

))
(A.5)

≤ s2(d+ 1)κe−t/2.

To illustrate these bounds, we present the following family of examples:

Example A.2. Fix α > 0 and consider the family of kernels

g(x) = gR(x) = |x|−α1{|x|>R} , R > 1.

Note that, as R→∞,

‖g‖∞ ∼ R−α , ‖g‖L1 ∼ Rd−α , ‖g‖L2 ∼ Rd/2−α,

‖∇g‖∞ ∼ R−α−1 , ‖∇g‖L1 ∼ Rd−α−1 and ‖∇g‖L2 ∼ Rd/2−α−1,

and the corresponding norms of g̃, ĝ and ∇̂g also decay with the same respective powers
(up to logarithmic factors). In particular, the dominating terms among the norms in (A.5)

are of order Rd−α−1 and Rd/2−α (up to logarithmic factors).
Now suppose that (A.2) holds, and set t = (logR)2 and s = Rβ for some β > 0. Then

there exist constants c1, c2, c3 > 0 such that, for all R ≥ 1,

P
(
‖f‖∞,sB ≥c1(Rd−α−1 +R

d
2
−α)(logR)c2

)
≤ c3R

2β exp(−(logR)2/2).

In particular, this probability decays faster than any polynomial as R→∞.

Remark A.3. If the mark distribution µ is bounded rather than decaying stretched-
exponentially, then (A.3)–(A.5) hold with g replacing g̃ (with ĥ defined in terms of h

instead of h̃), and 1 replacing t1/γ .

Proof of Proposition A.1. Let t ≥ 1. We begin by defining a suitable event that allows
to truncate the mark distribution. Denote by (xi)i≥1 some enumeration of the points of
P, and remark that (xi, Yi)i≥1 has the law of a Poisson point process P ′ with intensity

measure dxµ(dm) on Rd, called the marked point process. Define Ỹi = Yi/([xi]t
1/γ) and

Z = {(x,m) : |m| ≤ [x]t1/γ}, and define the truncation event

Ω = {|Ỹi| ≤ 1 for all i ≥ 1} = {P ′ ∩ Zc = ∅}.
The Campbell-Mecke formula bounds the probability of the complement as

P(Ωc) ≤
∑
i

P(|Ỹi| > 1) =

∫
Rd

P(Y1 > [x]t1/γ)dx ≤ c2

∫
Rd

exp(−[x]γt)dx(A.6)

≤ c2

∫
Rd

exp
(
− t

2
(1 + [x]γ)

)
dx ≤ c2e

−t/2
∫
Rd

exp(−[x]γ/2)dx ≤ c2c̄e
−t/2.(A.7)

We next recall the results of Reynaud-Bouret [RB03] on Poisson stochastic integrals.
Let P ′′ be a Poisson point process with intensity dxµ(dm)1{(x,m)∈Z} on Rd × R. For

h : Rd → R measurable bounded, introduce the auxiliary function

h̄(x,m) = mh(x)([x]t1/γ)−1 , (x,m) ∈ Rd × R,
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and define

Ih =
∑

(x,m)∈P ′′
h̄(x,m).

Using the abbreviations ‖h‖p = ‖h‖Lp(Rd) and ‖h̄‖p = ‖h̄‖Lp(Rd×R) for p ∈ [1,∞], [RB03,

Proposition 7] states that

P
(
Ih ≥ E(Ih) +

√
2t‖h̄‖2 +

t

3
‖h̄‖∞

)
≤ e−t.(A.8)

Since ‖h̄‖2 ≤ ‖h‖2 and ‖h̄‖∞ ≤ ‖h‖∞, it yields

P
(
Ih ≥ E(Ih) +

√
2t‖h‖2 +

t

3
‖h‖∞

)
≤ e−t.(A.9)

We are now ready to prove the claims (A.3)–(A.5), beginning with (A.4). First note
that, for all u ≥ 0,

P
(
f(0) ≥ t1/γu

)
= P

( ∑
(xi,Yi)∈P ′

Yit
−1/γg(xi) ≥ u

)
= P

( ∑
(xi,Yi)∈P ′

Ỹig̃(xi) ≥ u
)

≤ P
({ ∑

(xi,Yi)∈P ′
Ỹig̃(xi) ≥ u

}
∩ Ω

)
+ P(Ωc)

≤ P
( ∑

(xi,Yi)∈P ′′
Ỹig̃(xi) ≥ u

)
+ P(Ωc)

= P(Ig̃ ≥ u) + P(Ωc),

the last inequality can be proved by discretising P. Note also that E(Ig̃) = 0 if the mark

distribution µ is symmetric. Abbreviating u1 =
√

2t‖g̃‖2 + t
3‖g̃‖∞ and applying (A.9)

gives that

P(Ig̃ ≥ u1) ≤ e−t.

Hence, doing the same with h = −g̃,

P(|f(0)| ≥ t
1
γ u1) ≤ P(f(0) ≥ t

1
γ u1) + P(−f(0) ≥ t

1
γ u1) ≤ 2e−t + P(Ωc).

Combining with (A.6) yields (A.4).
We turn to (A.3). Similarly to above, for all u ≥ 0,

P
(

sup
x∈B
|f(x)| ≥ t1/γu

)
= P

(
sup
x∈B

∣∣∣ ∑
(xi,Yi)∈P ′

Ỹig̃(x+ xi)
∣∣∣ ≥ u)

≤ P
( ∑

(xi,Yi)∈P ′
|Ỹi| sup

x∈B
|g̃(x+B)| ≥ u

)
= P

( ∑
(xi,Yi)∈P ′

|Ỹi|ĝ(x) ≥ u
)

≤ P(Iĝ ≥ u) + P(Ωc)

Abbreviating u2 = ‖ĝ‖1 +
√

2t‖ĝ‖2 + t
3‖ĝ‖∞ and applying (A.8) gives that

P(Iĝ ≥ u2) ≤ e−t.

Combining with (A.6) yields (A.3) for s = 1. For larger s, cut sB in [s2] cubes Bk
homothetic to a subset of B. We have, for u ≥ 0,

P(‖f‖∞,sB ≥ u) ≤
[s2]∑
k=1

P(‖f‖∞,Bk ≥ u) ≤ s2P(‖f‖∞,B ≥ u)

by translational invariance. This yields (A.3) for general s ≥ 1.
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Finally, let us prove (A.5). For x ∈ sB, |f(x)| ≤ |f(0)|+
√
d

2 supx∈sB |∇f(x)|. Hence we
have, for u ≥ 0,

P(‖f‖∞,sB ≥ u) ≤ P
(
|f(0)| ≥ u

2
or ∃1 ≤ i ≤ d : sup

sB
|∂if | ≥

u

d

)
≤ P

(
|f(0)| > u

2

)
+

d∑
i=1

P
(
‖∂if‖∞,sB ≥

u

d

)
.

Setting

u = dt
1
γ

(√
2t‖g̃‖L2 +

t

3
‖g̃‖∞ + ‖∇̂g‖L1 +

√
2t‖∇̂g‖L2 +

t

3
‖∇̂g‖∞

)
and applying (A.4) to the field f and (A.3) to the field ∂if (which is a shot noise field
with kernel ∂ig) we get the result. �

A.2. Bounded density of shot noise fields. In this section we give examples of shot
noise fields (1.1) which satisfy the bounded density assumption in Condition 1.5 (which
implies the weaker Condition 1.4).

Proposition A.4. Consider the shot noise field (1.1) with arbitrary mark distribution µ
and kernel either

(A.10) g(x) = (1 + |x|)−α

for some α > 2, or

g(x) = exp(−|x|α) or g(x) = exp(−(1 + |x|2)α/2)(A.11)

for some α ∈ (0, 1). Then Condition 1.5 is satisfied.

Remark A.5. In the case of the kernel (A.10), the hypothesis α > 2 is only used to ensure
that g is integrable (and hence f(0) is well defined), but is not used elsewhere in the proof.

Proof. Recall from Remark 1.6 that the characteristic function of (f(0),∇f(0)) is

ϕ(u, v) = exp
(∫

(exp(im[ug(x) + 〈v,∇g(x)〉])− 1) dxµ(dm)
)
.

By the discussion in Remark 1.6, it is sufficient to prove that |ϕ(u, v)|λ is integrable on
R× R2 for some λ ∈ (0, 1).

We first find suitable bounds on |ϕ(u, v)| for |u| ∨ |v| > 1. Introduce a positive constant
ρ = ρu,v (to be defined later) and uθ = (cos(θ), sin(θ)). Assume that there is m0 > 0
such that µ([m0,m0 + 1)) > 0 (the reasoning is the same if µ is concentrated on (−∞, 0)).
Then we have

|ϕ(u, v)| = exp

(∫
R

∫
R2

(cos (umg(x) + 〈v,m∇g(x)〉)− 1) dxµ(dm)

)
≤ exp

(∫ m0+1

m0

∫ ∞
ρ

∫ 2π

0

(
cos
(
umh(r) + 〈v,muθh′(r)〉

)
− 1
)
rdrdθµ(dm)

)
,(A.12)

where h(|x|) = g(x) (well-defined since g is isotropic in all the cases we consider). Recall
the zeroth Bessel function, defined for s ≥ 0 by

J0(s) =

∫ 2π

0
cos(s cos(θ))dθ =

∫ 2π

0
exp(i〈v, uθ〉)dθ for any v ∈ R2 with |v| = s.
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Then (A.12) equals

exp
(∫ m0+1

m0

∫ ∞
ρ

(cos(umh(r))J0(m|v||h′(r)|)− 2π)rdrµ(dm)
)

= exp

(
2π

∫ m0+1

m0

∫ ∞
ρ

(cos(umh(r))− 1)rdr︸ ︷︷ ︸
I1

+

∫ m0+1

m0

∫ ∞
ρ

cos (umh(r))(J0(m|v||h′(r)|)− J0(0))rdrµ(dm)︸ ︷︷ ︸
I2

)
.

Let us bound I1 and I2 separately. In the rest of the proof, c denotes a positive constant
(depending only on α,m0, λ) whose value might change from line to line.

For I1, recall that cos(s)−1 ≤ −s2/3 and cos(s) > 1/2 for 0 < s ≤ s0, where s0 is some
positive constant. Defining

ρu := inf{ρ : |u|(m0 + 1)h(r) ≤ s0, r ≥ ρ},
we deduce that, for ρ ≥ ρu,

I1 ≤ −c|u|2
∫ ∞
ρ

h(r)2rdr.

For I2, we first recall that J0(t) − J0(0) ≤ −ct2 for 0 ≤ t ≤ t0, where t0 is some positive
constant. Consider now

ρv := inf{ρ : |v|(m0 + 1)h′(r) ≤ t0; r ≥ ρ}.

Then we have for ρ = ρu,v := max{ρu, ρv} ≥ cmax
{
|u|1/α, |v|

1
α+1
}

I2 ≤ −c|v|2
∫ ∞
ρ

h′(r)2rdr.

Recall that it is sufficient to prove that |ϕ(u, v)|λ is integrable on R × R2 for some
λ ∈ (0, 1). We will actually prove that Bi :=

∫
Di
|ϕ(u, v)|λ <∞ for i = 1, 2, where

D1 :={u ∈ R, v ∈ R2 : 1 < |v|, 0 < |u| : ρu ≤ ρv}
D2 :={u ∈ R, v ∈ R2 : 1 < |u|, 0 < |v| : ρv ≤ ρu},

which is also sufficient since |ϕ(u, v)| ≤ 1.
Let us now specialise to the kernels (A.10) and (A.11). In the case (A.10) we have

h(r) = (1 + r)−α, which yields

I1 ≤ −cu2ρ2−2α and I2 ≤ −c|v|2ρ−2α.

Hence
|ϕ(u, v)| ≤ exp(−cu2ρ2−2α − c|v|2ρ−2α)

for any |u| ∨ |v| > 1 and ρ satisfying

ρ ≥ cmax
{
|u|1/α, |v|

1
α+1
}
.

Therefore we have

B1 ≤
∫
D1

exp(−cλ|u|2ρ2−2α − cλ|v|2ρ−2α)1
{ρ≥c|v|

1
1+α }

dudv

≤
∫
D1

exp(−cλ|u|2|v|
2−2α
1+α − cλ|v|2−2 α

1+α )dudv

B2 ≤
∫
D2

exp(−cλ|u|2ρ2−2α − cλ|v|2ρ−2α)1
{ρ≥c|u|

1
α }
dudv

≤
∫
D2

exp(−cλ|u|2/α − cλ|v|2|u|−2)dudv.

Since it is easy to check that these integrals are finite for every λ > 0, the proof is complete
in the case (A.10).
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In the case (A.11) we will only give the full argument for h(r) = e−r
α
, since the decay

of h(r) and h′(r) as r →∞ are similar for both kernels. In this case we have

I1 ≤− cu2

∫ ∞
ρ

re−2rαdr ≤ −cu2ρ2−αe−2ρα

I2 ≤− c|v|2
∫ ∞
ρ

r2α−1e−2rαdr ≤ −c|v|2ραe−2ρα

for any |u| ∨ |v| > 1 and ρ satisfying

e−ρ
α ≤ c/|u| and ρα−1e−ρ

α ≤ c/|v|.
On D2, e

−ρα ≥ c/|u|, and so

B2 ≤
∫
D1

exp(−cu2ρ2−αu−2 − c|v|2ραu−2)dudv

≤
∫ ∞

1
exp(−cρ2−α)

(∫ ∞
0

exp

(
− c
(
|v|

uρ−α/2

)2)
dv

)
du

≤ c
∫ ∞

1
exp(−cρ2−α)u2ρ−αdu.

For 2− α > α (i.e. α < 1),

exp(−cρ2−α)u2 = exp(−cρ2−α + cρα) ≤ c exp(−2ρα) = cu−2,

hence B2 <∞. On D1, e
−ρα = cρ1−α/|v|, and so

B1 ≤
∫
D2

exp(−cu2ρ4−3α|v|−2 − cρ2−α)dudv ≤
∫ ∞

1
exp(−cρ2−α)|v|ρ−2+ 3α

2 dv.

As before, exp(−cρ2−α) is dominated by exp(cρα), and hence by any power of |v|, and the
integral is finite, hence (f(0);∇f(0)) has a bounded joint density.

�
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[OSSS05] R. O’Donnell, M. Saks, O. Schramm, and R.A. Servedio. Every decision tree has an influential

variable. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05),
pages 31–39, 2005.

[RB03] P. Reynaud-Bouret. Adaptative estimation of the intensity of inhomogeneous poisson processes
via concentration inequalities. Probab. Theory Related Fields, 126:103–153, 2003.

[Res07] S.I. Resnick. Extreme Values, Regular Variation and Point Processes. Springer, 2007.
[RV19a] A. Rivera and H. Vanneuville. The critical threshold for Bargmann-Fock percolation. Ann. Henri

Lebesgue (to appear), 2019.
[RV19b] A. Rivera and H. Vanneuville. Quasi-independence for nodal lines. Ann. Henri Poincaré (to
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