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Achieving an L2 string stable one vehicle look-ahead platoon with
heterogeneity in time-delays

Deesh Dileep1, Mauro Fusco2, Jan Verhaegh2, Laurentiu Hetel3, Jean-Pierre Richard4, and Wim Michiels1

Abstract— A methodology is proposed to design stabilising
and robust fixed-order decentralised controllers for heteroge-
neous vehicular platoons with Cooperative Adaptive Cruise
Control (CACC). We consider Linear Time Invariant (LTI)
models with constant time-delays at state, input and output.
The closed-loop systems of (identical) local controllers and
heterogeneous parameter vehicles are modelled by a system of
delay differential algebraic equations. The proposed frequency
domain approach uses the non-conservative direct optimisation
approach towards stabilisation and robustness optimisation of
delay systems. In this paper, the design problem of stabilising
(identical) controllers achieving L2 string stability for one vehi-
cle look-ahead platoon is reduced to a simultaneous controller
design problem for a parameterised (sub)system, where the
allowable values of the parameters correspond to heterogeneity
(including time-delays) of the vehicles. By treating the hetero-
geneity in parameters as perturbations contained in specific
intervals or regions, we determine the values for pseudo-spectral
abscissa and robust induced-L2 norm. Hence, we ensure that
the achieved exponential stability and string stability properties
along with the overall computational complexity (of designing
the controller) are independent of the number of vehicles. The
application of CACC is simulated in MATLAB software.

Index Terms— Decentralised control, Time-delay systems,
H2/H-infinity methods, Linear systems, Large-scale systems.

I. INTRODUCTION

Problems related to traffic jams, growing constraints
in highway capacities and improving efficiency in road
transport systems have caught the attention of researchers
worldwide. Cooperative Adaptive Cruise Control (CACC)
techniques are attractive as an automated vehicle following
system based on inter-vehicular exchange of data through
wireless communication, in addition to radar or lidar [1]. As
a matter of fact, CACC is known to reduce the time gaps
between vehicles significantly [1]. In this work, a scalable
design method using frequency domain based technique for
stabilising and robust (string stable) fixed-order (identical)
local controllers for heterogeneous vehicular platoons with
time-delays is presented. The heterogeneous time-delays
could be present in these systems due to actuation, sensors
or communication (see [2]).

For the case of CACC, it is impractical to employ cen-
tralised controllers (see [1], [3], [4]). One of the main
objectives to be considered when designing controllers for
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CACC is the prevention of amplification of disturbances in
the upstream direction of vehicles. This problem is generally
represented using the notion of string stability. There are sev-
eral definitions available for string stability in the literature,
focusing on various aspects of cascaded systems (see [1], [3],
[5], [6]). We consider sufficient conditions for (strict) string
stability, based on the L2 gain, as in [1], [3]). The method
proposed in [1] has been modified to incorporate the problem
of heterogeneity and time-delays. Homogeneity in platoon is
assumed at higher layer in [1] by considering the possibility
of cancelling out heterogeneity using lower layer controllers.
This might not be suitable for some scenarios which include
multi-brand vehicular platoons with heterogeneity in time-
delays. The one vehicle look-ahead topology is considered
to design identical controllers for heterogeneous (parame-
ter) vehicles, by optimising them for sufficient conditions
of string stability in terms of (maximum) L2 gain. It is
important to note that by considering the (energy based)
L2 string stability conditions for heterogeneous vehicular
platoon, there is no insight on the L∞ string stability (the
possible overshoot for signal in the time domain).

Generally, traditional design methods used for designing
stabilising and H∞ optimal controllers for Linear Time-
Invariant (LTI) Multiple Input Multiple Output (MIMO) sys-
tems are grounded in the Riccati equation and Linear Matrix
Inequality (LMI) framework (see [7], [8], and references
therein). In most of these cases, the controllers designed by
these methods may not be structured and their dimension
could be equal to or larger than the order of the plant. In
this paper, we consider non-conservative frequency domain
based approaches proposed in [9], [10] to design structured
and fixed-order controllers. Many researchers assume homo-
geneity of vehicles in large platoons (networks), however
this might not be true in the real world scenario. In [11],
sufficient conditions for designing string stable distributed
controllers for heterogeneous platoon (solved using small
gain theorem and LMI) was presented. In [5], a pole-zero
cancellation method was proposed to cancel heterogeneity
in engine time constants through post-compensation of the
wireless feed-forward signal. In [6], the string stability
of heterogeneous vehicular platoons in an adaptive cruise
control configuration with non-connected automated vehicles
has been considered. However, in this paper, we study the
possibility to optimise, with reduced complexity, the stability
and robustness/performance of (identical) local controllers
for the large scale LTI heterogeneous vehicular platoons in an
one vehicle look-ahead topology with numerous (constant)
time-delays using frequency domain based direct optimisa-
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tion techniques. Since we consider the frequency domain ap-
proach, we have necessary and sufficient stability conditions
for the LTI system with time-delays. Additionally, it might be
possible to add an upper layer of control to one vehicle look-
ahead CACC, so as to include the possibility of information
transfer from the last vehicle to the first vehicle (see [12],
[13]). We refer to [14], [15], [16], [17] and references within
for details on recent publications related to the subject.

The remainder of this paper is organised as follows.
Section II provides a motivation for the problem considered
in this paper. Section III presents the linearised vehicle plant
model considered and the outputs available to the controller.
Section IV describes the Delay Differential Algebraic Equa-
tion (DDAE) used to model the heterogeneous vehicular
platoon with time-delays. Section V reviews the direct opti-
misation based approach available for designing robust fixed-
order (identical) controllers for CACC. Section VI validates
the proposed approach using MATLAB software. Finally,
Section VII contains the concluding remarks.

II. MOTIVATION
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Fig. 1. Heterogeneous platoon of three vehicles in classical ACC one
vehicle look-ahead topology.
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Fig. 2. Deceleration response, accelerations of heterogeneous (parameter)
vehicles in ACC platoon which is exponentially stable but not string stable.
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Fig. 3. Deceleration response, velocities of heterogeneous (parameter)
vehicles in ACC platoon which is exponentially stable but not string stable.

We illustrate the importance of string stability (perfor-
mance) for heterogeneous platoons using a classical Adap-
tive Cruise Control (ACC) configuration (see Fig. 1). We

simulate the string instability phenomenon in heterogeneous
vehicular platoons using third order LTI models with delays
in the ACC configuration stabilised by a PD controller,
and introducing a disturbance (deceleration input) in the
reference vehicle. We can see in Figs. 2 and 3, a small
deceleration signal in the reference vehicle (a0), results in
undesirable responses through the string. In Fig. 3, it can
be seen that the deceleration reference signal results in
negative velocity during simulation. However, in reality, it
would be saturated (at zero). One way to interpret this effect
would be that the lack of performance standards could result
in undesirable stops (velocity = 0 m/s2) or traffic jams.
The string stability performance of automated vehicles is
necessary to be guaranteed for smooth traffic flows. Even
though the undesirable effects on traffic flow are simulated
in this section using a platoon of three vehicles, due to the
nature of the problem and based on intuition, we can say that
the performance worsens as the number of vehicles increase
in the string. This performance problem is framed as a strict
string stability problem in terms of induced-L2 norm for
control design in Section V-C.

III. PLANT MODEL

In this section, we present the vehicle models used for the
CACC problem considered in this paper. The LTI vehicle
model has been taken from [1], however, we consider exist-
ing (constant) time-delays and some heterogeneous elements
in the dynamics of the vehicles. The heterogeneity considered
in this paper is confined to the parameters in Table I.

TABLE I
HETEROGENEITY IN THE CACC NETWORK.

Notation Parameter of vehicle i
hi Head-way time constant
τi Drive-line time constant
φai Actuation delay
φbi Communication delay
φci Sensor delay

We assume all the parameters in Table I to be positive and
real-valued. We consider the ith vehicle model as, Ṡi(t)

V̇i(t)

Ḟai(t)

 =

 Vi(t)
Fai(t)

− 1
τi
Fai(t) + 1

τi
ui(t− φai)

 , (1)

for all i = 1, ..., n where n is the total number of vehicles
in the platoon, Si is the position, Vi is the velocity, and Fai
is the acceleration of vehicle i. Given a reference trajectory,
Sref,0(t) = Vref,0 · t, we stabilise and control the system
around the stationary solution (when ui = 0)

Si(t) = Sref,i(t) = Vref,0 · t−
i∑

k=1

(hkVref,0 + Lk + rk),

i = 1, ...., n, where Li is the length, ri is the standstill
distance, and hi is the head-way time constant of vehicle
i. That is, we consider each vehicle to be associated with a
reference trajectory with real-valued constant velocity Vref,0.
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Note that the reference distance for vehicle i from the vehicle
ahead has a velocity component. We can describe the relative
motion of the ith vehicle as

si(t) = Si(t)− Sref,i(t), vi(t) = Vi(t)− Ṡref,i(t),
ai(t) = Fai(t)− S̈ref,i(t) = Fai(t), ∀ i = 1, ..., n.

(2)

For the virtual vehicle 0, we consider V0 = Vref,0, S0 =
Sref,0, then s0, v0 = 0. The equations in (1) change toṡi(t)v̇i(t)

ȧi(t)

 =

 vi(t)
ai(t)

− 1
τi
ai(t) + 1

τi
ui(t− φai)

 , (3)

and the corresponding transfer function from ui to si can be
written as

Gi(s) =
e−φais

(τis+ 1)s2
. (4)

We assume that the controller of vehicle i has access to the
position error (ei(t)), the velocity error (ėi(t)), and the input
signal transmitted from the vehicle ahead through wireless
communication (ui−1(t)), that is yi(t) = [ei(t− φci) ėi(t−
φci) ui−1(t− φb(i−1))]

T. The position error is given by

ei(t) = Si−1(t)− Si(t)− hiVi(t)− Li − ri
= si−1(t)− si(t)− hivi(t),

(5)

and the velocity error is given by

ėi(t) = Vi−1(t)− Vi(t)− hiFai(t)
= vi−1(t)− vi(t)− hiai(t),

(6)

for all vehicles i = 1, ..., n (by definition, s0, v0 = 0).

IV. CLOSED-LOOP SYSTEM MODEL

The dynamics of the one vehicle look-ahead pla-
toon without control is given (using the state xpi(t) =
[ei(t) vi(t) ai(t) γui(t) γ

T
yi(t)]

T) by

Epẋpi = Api0xpi(t) +Api1xpi(t− φai)
+Api2xpi(t− φci) +Bpi1ui(t) + Fpi0xp(i−1)(t)

+ Fpi1xp(i−1)(t− φb(i−1)) + Fpi2xp(i−1)(t− φci),
yi(t) = Cpi0xpi(t), i = 1, ..., n, xp0 = 0,

(7)

where ei is the position error, vi is the relative velocity, and
ai is the acceleration of plant/vehicle i, whereas γui and
γyi are dummy variables for controlled input ui and output
to controller yi respectively. Note that xp0 = 0 or vehicle
0 doesn’t exist from analysis point of view (see (5), (6)),
however, for simplicity of representation we consider i =
1, ..., n in (7). In the matrices below

Api0 =


0 −1 −hi 0 0
0 0 1 0 0
0 0 − 1

τi
0 0

0 0 0 −1 0
0 0 0 0 −I

, Bpi1 =


0
0
0
1
0

,
[Fpi0](j,k) =

{
1, if (j, k) = (1, 2)

0, otherwise,

[Api1](j,k) =

{
1
τi
, if (j, k) = (3, 4)

0, otherwise,

Cpi0 =
[
0 0 0 0 I

]
,

Api2 =


0 0 . . . 0
...

...
. . .

...
0 0 . . . 01 0 0

0 −1 −hi
0 0 0

 0 . . . 0

,

[Fpi1](j,k) =

{
1, if (j, k) = (7, 4)

0, otherwise,

[Fpi2](j,k) =

{
1, if (j, k) = (6, 2)

0, otherwise,

Ep =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

,
Apij is given for i = 1, ..., n, Fpij is given for i = 2, ..., n,
and Fp1j = 0 (i = 1), where j = 0, 1, 2. We use I and 0 to
denote the identity matrix and the matrix with zero entries of
appropriate dimensions respectively, and [ · ](j,k) denotes the
element at the jth row and kth column of a matrix. We also
consider each subsystem to be controlled by a fixed-order
LTI feedback controller (order nc) of the form{

ẋci(t) = Acxci(t) +Bcyi(t),

ui(t) = Ccxci(t) +Dcyi(t), i = 1, ..., n.
(8)

A static controller (nc = 0) would have only the Dc

component corresponding to [kp kd kff ] as in [1] (with
kff = 1). We consider the scenario of the heterogeneous
vehicles being controlled using identical local controllers
ui(s) = K(s)yi(s) ∀ i = 1, ..., n. We define the following
state vector for the closed-loop system

xi(t) = [xT
pi(t) u

T
i (t) x

T
ci(t) y

T
i (t)]T,

which includes plants, controllers, and network interconnec-
tions. We use R to denote the set of all real numbers. We
re-write system equations using the new state xi ∈ Rncl , in
the form of DDAE (see [10], [18] for more details on DDAE)
Eẋi(t) = Ai0xi(t) +Ai1xi(t− φai) +Ai2xi(t− φci)

+Fi0xi−1(t) + Fi1xi−1(t− φb(i−1))

+Fi2xi−1(t− φci) ∀ i = 1, . . . , n, x0 = 0,

(9)

where the matrices are

E =

Ep 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

, Ai0 =

Api0 Bpi1 0 0
Cpi0 0 0 −I
0 0 Ac Bc
0 −I Cc Dc

 ,
Ai1 = blkdiag{Api1, 0, 0, 0}, Fi0 = blkdiag{Fpi0, 0, 0, 0},
Ai2 = blkdiag{Api2, 0, 0, 0}, Fi1 = blkdiag{Fpi1, 0, 0, 0},
Fi2 = blkdiag{Fpi2, 0, 0, 0},

i = 1, ..., n, where the abbreviation blkdiag{·} implies the
block diagonal matrix. Notice in the above equation that
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the controller parameters are contained in matrix Ai0, as
indicated with the dashed box. In the direct optimisation ap-
proach of [9], [10], [19], stability and performance measures
expressed in terms of the spectral abscissa and H∞ norms
are optimised as a function of the elements of controller
matrices Ac, Bc, Cc and Dc. We contain all the controller
parameters in a vector

p̄ = vec

[
Ac Bc
Cc Dc

]
. (10)

Whenever appropriate, we stress the dependence of Ai0 on
these parameters with the notation Ai0(p̄).

V. STABILITY AND PERFORMANCE OBJECTIVES

We optimise the controller parameters in p̄ for stability
objectives in terms of spectral abscissa (the real part of
the rightmost eigenvalue in the complex plane) and pseudo-
spectral abscissa using algorithms in [9], [20] respectively as
a starting point. Additionally, we tune controller parameters
for robustness objectives in terms of induced-L2 norms, us-
ing a graphical frequency-gridding approach with the help of
bode plot and patternsearch1. The objective functions
considered in this paper are as follows.

A. Platoon stability: spectral abscissa

The linear models of vehicles and the platoon used in this
paper are not stable. They have zero eigenvalues, therefore,
as a first step we stabilise the platoon by computing local
controllers that minimise the spectral abscissa. The spectral
abscissa (c(p̄)) of the closed-loop system in (9) can be
expressed as follows

c(p̄) = sup
λ∈C
{R(λ) : det∆(λ, p̄) = 0},

where,

∆(λ, p̄) =


∆1 0 0 . . . 0

F̂21 ∆2 0 . . . 0

0 F̂32 ∆3 . . . 0
...

...
. . . . . .

...
0 0 . . . F̂n(n−1) ∆n

 .
(11)

We use the notation R(λ) to indicate the real part of the
complex number λ (eigenvalue), also, ∆i corresponds to the
characteristic matrix of individual vehicles,

∆i(λ, p̄) = λE −Ai0(p̄)−Ai1e−λφai −Ai2e−λφci , (12)

for all i = 1, ..., n, and F̂i(i−1) appears due to the interaction
between vehicles, where

F̂i(i−1)(λ) = −Fi0 − Fi1e−λφb(i−1) − Fi2e−λφci , (13)

for all i = 2, ..., n. Since the differences between ∆i ∀ i =
1, ..., n lie in some parameters within the state coefficient
matrices (see (12)), then we can rewrite it as

∆̄(λ, p̄, p̂i) = λE− Ā0(p̄, p̂i)− Ā1(λ, p̂i)− Ā2(λ, p̂i), (14)

1Built-in optimisation algorithm within MATLAB.

for all i = 1, ..., n, where p̂i = [τi hi φai φbi φci]
T

is the plant parameter vector corresponding to vehicle
i, Ā0(p̄, p̂i) = Ai0(p̄), Ā1(λ, p̂i) = Ai1e−λφai , and
Ā2(λ, p̂i) = Ai2e−λφci .

Theorem 1: For the systems given in (9), the spectral
abscissa in (11) is equivalent to

c(p̄) = max
i

sup
λ∈C
{R(λ) : det∆̄(λ, p̄, p̂i) = 0} : i ∈ {1, ..., n}.

(15)
Proof. The assertions for the Theorem 1 directly follow from
the block-triangular structure of (11), then (15) arises from
the diagonal blocks, and from the structure of the associated
eigenvalue problem.

The exponential stability (unlike strict string stability) of
the whole CACC network in look-ahead topologies does not
depend on the interaction/coupling of vehicles. We minimise
the spectral abscissa of the platoon in (9) for a faster
exponential decay rate of solutions,

min
p̄
c(p̄).

However, the computational complexity of this stabilisation
approach still depends on the number of vehicles.

B. Platoon stability: pseudospectral abscissa

In this section, we solve the stabilisation problem of
platoons in look-ahead topologies, using a method whose
computational complexity is independent of the platoon size.
We can formulate it as a problem of parameterised system,
and compute the pseudospectral abscissa for some structured
real-valued perturbations. Since the differences between the
vehicles in (12) lie in some parameters within the state
coefficient matrices (see (14)), a sufficient condition for
stability is given by the robust stability of the corresponding
uncertain system. Let us define the pseudospectrum of the
perturbed system,

Λ :=
⋃
p̂δ∈R

{
λ ∈ C : det(∆̄(λ, p̄, p̂δ)) = 0

}
, (16)

where the vector p̂δ (corresponding to the vehicle i) is the
uncertainty belonging to some region R ∈ R5. Note that ∆̄
in (16) can include all the characteristic matrices ∆i ∀ i =
1, ..., n as in (12) by defining the heterogeneity in vehicle
parameters to be contained within R. For robust stability
optimisation, we introduce the pseudospectral abscissa

α := sup{R(λ) : λ ∈ Λ}.

Since the matrices in (14) are affine in the uncertain param-
eters, the pseudospectral abscissa can be computed using the
structure exploiting algorithm for real-valued perturbations in
[20]. The objective would be to minimise the pseudospectral
abscissa

min
p̄
α,

to obtain a stable system for all perturbations belonging to
the region R with α < 0.
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C. Platoon string stability

In this subsection, we focus on formulating a condi-
tion for the strict string stability of the vehicular platoon.
We assume throughout this paper that we observe signals
(inputs, accelerations, and velocities) for some exogenous
disturbance (w(s)) at the input of the first vehicle such that
u1(s) = w(s)+K(s)y1(s). We define the transfer function of
the closed-loop system (9) from w(s) to the input observed
at vehicle i as

Pi(s) :=
ui(s)

w(s)
∀ i = 1, ..., n.

The induced-L2 norm of the transfer function can be written
as

||Pi||H∞ = sup
w 6=0

||ui||L2

||w||L2

∀ i = 1, ..., n,

where the L2 norm is defined on the interval t ∈ [0,∞)

||ui(t)||L2 =

√∫ ∞
0

(ui(t))2dt,

hence,

||ui||L2
≤ ||Pi||H∞ ||w||L2

∀ i = 1, ..., n.

The string stability sensitivity function corresponding to the
controlled input is

Γ(s) :=

ui(s)
w(s)

ui−1(s)
w(s)

= Pi(s)(Pi−1(s))−1. (17)

If we derive the above string stability function assuming
heterogeneity in the parameters of vehicles in the platoon,
we would obtain

Γ(s, p̄, p̂i, p̂i−1) =
(K ffe−φb(i−1)s +Gi−1K

fbe−φcis)

(1 +K fb(his+ 1)Gie−φcis)
,

(18)
∀ i = 2, ..., n, Gi contains the plant dynamics as in (4),

K(s) = Cc(sI −Ac)−1Bc +Dc

=
[
K fb1(s) K fb2(s) K ff(s)

] (19)

is the stabilising controller (ui(s) = K(s)yi(s), ui ∈
R, yi ∈ R3). For simplicity in representation, we use
K fb(s) = K fb1(s) + sK fb2(s) to denote the feedback part
of controller corresponding to the signal ei. The function
Γ in (18) contains the plant and the controller parameters
of vehicle i, and some plant parameters of vehicle i − 1.
Recall that we denote the controller parameters and the plant
parameters of vehicle i using p̄ and p̂i respectively. The
CACC configuration that arises from (9) for heterogeneous
(parameter) vehicles is given in Fig. 4.

Note that the authors in [1] consider (18) for strict string
stability. This is sufficient for their case, as the string
stability sensitivity function corresponding to the controlled
input and the acceleration are the same for homogeneous
vehicular platoons. However, this is not valid for the case of
heterogeneous vehicular platoons. Therefore, we rewrite the
string stability sensitivity function in terms of acceleration

his+ 1

e
−φa(i−1)s

τi−1s+1

e−φais

τis+1
e−φb(i−1)s

s

e−φcis

K(s) Gi(s)
Gi−1(s)

ei

ui−1
uisi−1

ai

ai−1

si

−
+

Vehicle i

Fig. 4. The one vehicle look-ahead configuration of CACC.

(observing the accelerations for the exogenous input w). The
new string stability sensitivity function (corresponding to
acceleration) becomes

Ψ(s, p̄, p̂i, p̂i−1) =

ai(s)
w(s)

ai−1(s)
w(s)

=

e−φais

τis+1 ·
ui(s)
w(s)

e
−φa(i−1)s

τi−1s+1 ·
ui−1(s)
w(s)

=
(K ffe−φb(i−1)s +Gi−1K

fbe−φcis)(τi−1s+ 1)e−φais

(1 +K fb(his+ 1)Gie−φcis)(τis+ 1)e−φa(i−1)s
,

(20)

for all i = 2, ..., n. Note that Ψ is the string stability
sensitivity function corresponding to both acceleration and
velocity (ai(s) = s · vi(s)). Based on the assumptions men-
tioned above, for L2 strict string stability of heterogeneous
vehicular platoons, we define the following (similar to [1]).

Definition 1: We consider the interconnected system (9)
to be L2 strict string stable if c(p̄) < 0 and

sup
ω∈R
|Ψ(jω, p̄, p̂i, p̂i−1)| ≤ 1 ∀ i = 2, ..., n.

Finally, we optimise (using frequency-gridding approach) the
function

min
p̄

{
max
p̂i,p̂i−1

(
sup
ω∈R
|Ψ(jω, p̄, p̂i, p̂i−1)|

)}
: i ∈ {2, ..., n},

while c(p̄) < 0, to obtain a stabilising controller that achieves
strict L2 string stability.

D. Investigating a robust string stability achieving controller

The platoon string stability problem in the previous sub-
section can be extended to find a controller for an uncertain
string stability sensitivity function (with uncertainties in
vehicle parameters confined to real intervals) to increase scal-
ability to multiple vehicles. Now we consider the Ψ function
to be uncertain with perturbations at all the vehicle/plant
parameters (including time-delays). We define the vectors
p̂δ (corresponding to the parameters of vehicle i) and p̆δ
(corresponding to the parameters of vehicle ahead) as the
uncertainty belonging to some region R ∈ R5 respectively.
We define the new robust induced-L2 norm (as the worst
case L2 gain for all perturbations) while the corresponding
α < 0 (exponential stability),

χ∞ := max
p̂δ,p̆δ∈R

{
sup
ω∈R
|Ψ(jω, p̄, p̂δ, p̆δ)|

}
. (21)
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If the corresponding α > 0, then χ∞ = ∞. By intuitively
minimising the worst case scenarios using the approach in
Section V-C, the robust induced-L2 norm may be brought
to a desirable value (χ∞ ≤ 1). This provides robust
performance for all the bounded perturbations/uncertainties
in terms of maximum induced-L2 norm. In this paper, we
determined χ∞ by maximising induced-L2 norm for all the
possible combinations of vehicle parameters confined in their
respective regions in the real coordinate space.

VI. SIMULATION BASED STUDIES

Let us consider a case of heterogeneous platoon with three
vehicles (n = 3), whose parameters are given in Table II. We
consider only three vehicles in the platoon for simplicity in
presentation. Our aim is to guarantee (exponential) stability

TABLE II
THE VEHICLE PARAMETERS USED FOR SIMULATIONS.

i τi hi φai φbi φci
1 0.07 0.7 0.18 0.018 0.18
2 0.1 0.8 0.2 0.02 0.2
3 0.01 0.6 0.15 0.015 0.15

and (string stability) performance for the platoon2. The string
stability sensitivity function considered is

Ψ(s, p̄, p̂l, p̂k) = . . .

. . .
(K ffe−φbks +GkK

fbe−φcls)(τks+ 1)e−φals

(1 +K fb(hls+ 1)Gle−φcls)(τls+ 1)e−φaks
,

(22)

for all k, l = 1, 2, 3, where vehicle l is following vehicle k.
Note that (20) and (22) are the same function, however, we
abuse the subscript notations (k, l) to show that we include
all possible combinations of the heterogeneous vehicles from
Table II in the platoon.

Considering that the vehicles (with parameters in Table II)
are to be controlled by identical controllers, we minimise the
objective function (while c(p̄) < 0)

min
p̄

{
max
p̂l,p̂k

(
sup
ω∈R
|Ψ(jω, p̄, p̂l, p̂k)|

)}
≤ 1 : k, l ∈ {1, 2, 3},

(23)
to obtain the controller

K =



ẋci(t) =

[
−1.4999 1.5909

0.5346 −3.8166

]
xci(t)

+

[
1.9677 −1.2820 −1.7317

−0.4932 1.1862 0.7864

]
yi(t)

ui(t) =
[
−1.0527 0.3931

]
xci(t)

+
[
1.7204 0.0702 0.0178

]
yi(t),

∀ i = 1, 2, 3.
(24)

A preliminary minimisation of c(p̄) was performed to
ensure that the starting values for p̄ in (23) had c(p̄) < 0
(exponential stability). The frequency responses are plotted

2The software tool and the vehicular platoon example are available in
http://twr.cs.kuleuven.be/research/software/delay-control/CACCproblem.zip

in Fig. 5 for the function Ψ(s, p̄, p̂l, p̂k) with K given in (24)
for all k, l = 1, 2, 3. The time responses of accelerations and
velocities for a reference signal (Vref,0, Fa0 = V̇ref,0) are
shown in Figs. 6-7 for a combination of the three vehicles
from Table II (in the platoon) simulated using MATLAB.
Similarly, the time responses of position errors for vehicles
in the same arrangement are given in Fig. 8. The robust
induced-L2 norm for the one vehicle look-ahead vehicular
platoon using K given in (24) was also investigated. We
found χ∞ ≤ 1 and α = −0.1485 for

τi ∈ [0.01, 0.1], hi ∈ [0.6, 0.8], φai ∈ [0.15, 0.2],

φbi ∈ [0.015, 0.02], and φci ∈ [0.15, 0.2]
(25)

∀ i = 1, ..., n, for any natural number n. In summary,
the controller K given in (24) is guaranteed to maintain
exponential stability and strict L2 string stability for any
number of vehicles in system (9) and for any combination
within the platoon, given that the vehicle parameters are
confined to the intervals in (25).
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Fig. 5. Frequency response of the function Ψ for all the nine possible
combinations of the three heterogeneous vehicles in the platoon.
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Fig. 6. Acceleration response for the reference signal Vref,0 (platoon of
the 3 vehicles controlled using the controller K).
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Fig. 7. Velocity response for the reference signal Vref,0 (platoon of the
3 vehicles controlled using the controller K).
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Fig. 8. Position errors for the reference signal Vref,0 (platoon of the 3
vehicles controlled using the controller K).

VII. CONCLUSION

The design problem of stabilising (identical) controllers
that achieves strict L2 string stability for heterogeneous
(parameter) vehicular platoons in the one vehicle look-
ahead topology was considered. We proposed an approach to
design the controllers satisfying the stability and performance
requirements for linearised third order heterogeneous vehicle
plant models. The proposed approach was implemented in
MATLAB and the corresponding results were presented.

We solved the controller design problem using direct
optimisation techniques in the frequency domain, grounded
in necessary and sufficient stability conditions. One of the
main limitations for the direct optimisation based approach
is the non-convexity of the optimisation problem. Therefore,
the algorithm can converge to local optimum. We mitigate
this problem by considering sufficiently large number of
randomly generated starting points, and choosing the most
optimal solution from them.

A scalable design approach to obtain (identical) decen-
tralised controllers was also proposed for the case of hetero-
geneous (parameter) one vehicle look-ahead platoon, wherein
the computational complexity is independent of the platoon
size. We ensure that the achieved exponential stability and
string stability properties are independent of the number of
vehicles in the platoon, given that their parameters are con-
fined to some real intervals. This improves the computational
efficiency and scalability.
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